Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 182
Filter
Add more filters

Affiliation country
Publication year range
1.
Cell Tissue Res ; 391(2): 323-337, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36447073

ABSTRACT

Systemic sclerosis associated with lung interstitial lung disease (SSc-ILD) is the most common cause of death among patients with SSc. Mesenchymal stem cell (MSCs) transplantations had been treated by SSc patients that showed in the previous case report. The therapeutic mechanisms and effects of MSCs on SSc-ILD are still obscure. In this study, we investigated the therapeutic effects and mechanisms of treatment of BM-MSC derived from C57BL/6 on the topoisomerase I (TOPO I) induced SSc-ILD-like mice model. The mice were immunized with a mixture of recombinant human TOPO I in PBS solution (500 U/mL) and completed Freund's adjuvant [CFA; 1:1 (volume/volume)] twice per week for 9 weeks. On week 10, the mice were sacrificed to analyze the related pathological parameters. Lung and skin pathologies were analyzed using histochemical staining. CD4 T-helper (TH) cell differentiation in lung and skin-draining lymph nodes was detected using flow cytometry. Our results revealed that allogeneic and syngeneic MSCs exhibited similar repressive effects on TOPO I-induced IgG1 and IgG2a in the SSc group. After intravascular (IV) treatment with syngeneic or allogeneic MSCs, the dermal thickness and fibrosis dramatically condensed and significantly reduced airway hyperresponsiveness. These findings showed that both allogeneic and syngeneic MSCs have therapeutic potential for SSc-ILD.


Subject(s)
Lung Diseases, Interstitial , Mesenchymal Stem Cells , Pneumonia , Scleroderma, Systemic , Humans , Animals , Mice , DNA Topoisomerases, Type I , Mice, Inbred C57BL , Fibrosis , Scleroderma, Systemic/complications , Scleroderma, Systemic/therapy , Lung Diseases, Interstitial/etiology , Lung Diseases, Interstitial/pathology , Lung/pathology , Pneumonia/pathology
2.
Toxicol Appl Pharmacol ; 465: 116453, 2023 04 15.
Article in English | MEDLINE | ID: mdl-36914119

ABSTRACT

HNSCC (Head and Heck Squamous Cell Carcinoma) is a reasonably prevalent cancer with a high mortality rate. In this study, we tried to examine the anti-metastasis and apoptosis/autophagy actions of Coenzyme Q0 (CoQ0, 2,3-dimethoxy-5-methyl-1,4-benzoquinone), a derivative of Antrodia camphorata in HNCC TWIST1 overexpressing (FaDu-TWIST1) cells as well as in vivo tumor xenograft mice model. Using fluorescence based cellular assays, western blot and nude mice tumor xenografts, we determined that CoQ0 effectively reduced cell viability and displayed rapid morphological changes in FaDu-TWIST1 cells compared to FaDu cells. Non/sub-cytotoxic concentrations of CoQ0 treatment reduces the cell migration by downregulating TWIST1 and upregulating E-cadherin. Apoptosis produced by CoQ0 was mostly related with caspase-3 activation, PARP cleavage, and VDAC-1 expression. The FaDu-TWIST1 cells treated with CoQ0 exhibits autophagy-mediated LC3-II accumulation and acidic vesicular organelles (AVOs) formation. Pre-treatment with 3-MA and CoQ effectively prevented CoQ0-induced cell death and CoQ0-triggered autophagy in FaDu-TWIST cells as a death mechanism. CoQ0 induces ROS production in FaDu-TWIST1 cells and NAC pre-treatment significantly reduces anti-metastasis, apoptosis, and autophagy. Likewise, ROS-mediated AKT inhibition regulates CoQ0-induced apoptosis/autophagy in FaDu-TWIST1 cells. In vivo studies exhibit, CoQ0 effectively delays and reduces the tumor incidence and burden in FaDu-TWIST1-xenografted nude mice. Current findings display, CoQ0 exhibits a novel anti-cancer mechanism hence, it might be appropriate for anticancer therapy, and a new potent drug for HNSCC.


Subject(s)
Head and Neck Neoplasms , Ubiquinone , Humans , Animals , Mice , Ubiquinone/pharmacology , Ubiquinone/therapeutic use , Reactive Oxygen Species/metabolism , Mice, Nude , Squamous Cell Carcinoma of Head and Neck , Cell Death , Apoptosis , Cell Line, Tumor , Autophagy , Head and Neck Neoplasms/drug therapy , Xenograft Model Antitumor Assays , Nuclear Proteins , Twist-Related Protein 1
3.
Int J Mol Sci ; 24(24)2023 Dec 05.
Article in English | MEDLINE | ID: mdl-38138961

ABSTRACT

89Zr-iPET has been widely used for preclinical and clinical immunotherapy studies to predict patient stratification or evaluate therapeutic efficacy. In this study, we prepared and evaluated 89Zr-DFO-anti-PD-L1-mAb tracers with varying chelator-to-antibody ratios (CARs), including 89Zr-DFO-anti-PD-L1-mAb_3X (tracer_3X), 89Zr-DFO-anti-PD-L1-mAb_10X (tracer_10X), and 89Zr-DFO-anti-PD-L1-mAb_20X (tracer_20X). The DFO-anti-PD-L1-mAb conjugates with varying CARs were prepared using a random conjugation method and then subjected to quality control. The conjugates were radiolabeled with 89Zr and evaluated in a PD-L1-expressing CT26 tumor-bearing mouse model. Next, iPET imaging, biodistribution, pharmacokinetics, and ex vivo pathological and immunohistochemical examinations were conducted. LC-MS analysis revealed that DFO-anti-PD-L1-mAb conjugates were prepared with CARs ranging from 0.4 to 2.0. Radiochemical purity for all tracer groups was >99% after purification. The specific activity levels of tracer_3X, tracer_10X, and tracer_20X were 2.2 ± 0.6, 8.2 ± 0.6, and 10.5 ± 1.6 µCi/µg, respectively. 89Zr-iPET imaging showed evident tumor uptake in all tracer groups and reached the maximum uptake value at 24 h postinjection (p.i.). Biodistribution data at 168 h p.i. revealed that the tumor-to-liver, tumor-to-muscle, and tumor-to-blood uptake ratios for tracer_3X, tracer_10X, and tracer_20X were 0.46 ± 0.14, 0.58 ± 0.33, and 1.54 ± 0.51; 4.7 ± 1.3, 7.1 ± 3.9, and 14.7 ± 1.1; and 13.1 ± 5.8, 19.4 ± 13.8, and 41.3 ± 10.6, respectively. Significant differences were observed between tracer_3X and tracer_20X in the aforementioned uptake ratios at 168 h p.i. The mean residence time and elimination half-life for tracer_3X, tracer_10X, and tracer_20X were 25.4 ± 4.9, 24.2 ± 6.1, and 25.8 ± 3.3 h and 11.8 ± 0.5, 11.1 ± 0.7, and 11.7 ± 0.6 h, respectively. No statistical differences were found between-tracer in the aforementioned pharmacokinetic parameters. In conclusion, 89Zr-DFO-anti-PD-L1-mAb tracers with a CAR of 1.4-2.0 may be better at imaging PD-L1 expression in tumors than are traditional low-CAR 89Zr-iPET tracers.


Subject(s)
Chelating Agents , Neoplasms , Humans , Mice , Animals , Chelating Agents/therapeutic use , Radioisotopes/therapeutic use , Positron-Emission Tomography/methods , Antibodies, Monoclonal/therapeutic use , Tissue Distribution , B7-H1 Antigen , Deferoxamine/therapeutic use , Neoplasms/drug therapy , Zirconium/pharmacokinetics , Cell Line, Tumor
4.
Plant Foods Hum Nutr ; 78(2): 286-291, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36820999

ABSTRACT

Early intervention can significantly improve the colorectal cancer survival rate. Foods rich in phenolic compounds, such as jaboticaba (Myrciaria cauliflora), may prevent tumorigenesis. We investigated the effectivity of jaboticaba whole fruit ethanolic extract (FEX) in suppressing aberrant crypt foci (ACF), the earliest lesion of colorectal cancer (CRC), in 1,2-dimethylhydrazine (DMH)-induced rats and the underlying mechanisms related to the gut microbiota composition and short chain fatty acid (SCFA). This study was approved by the Institutional Animal Care and Use Committee (IACUC) of Providence University (Trial Registration Number 20180419A01, registration date: 22 December 2018). The FEX contains gallic acid and an especially high ellagic acid concentration of 54.41 ± 1.80 and 209.79 ± 2.49 mg/100 g FEX. The highest total ACF number (150.00 ± 43.86) was recorded in the DMH control (D) group. After 56 days of oral FEX treatment, the total ACF number in the low FEX dosage (DL) group was significantly lower compared to the D group (p < 0.05). The large-sized ACF (> 5 foci), which has a higher probability of progressing to later stage, was significantly decreased in the high FEX dosage (DH) group. The 16s rDNA metagenomic sequencing of the cecal material revealed that the CRC biomarker Lachnoclostridium was significantly suppressed in the DH group (p < 0.05), whereas some SCFA-producing taxa and the cecal butyrate concentration were significantly elevated in the DL and DH groups (p < 0.05). This study demonstrated the potential of jaboticaba whole fruit in CRC prevention, especially in the initial stage, by shifting gut microbiota composition and improving cecal butyrate level.


Subject(s)
Aberrant Crypt Foci , Colonic Neoplasms , Colorectal Neoplasms , Rats , Animals , Fruit , Gallic Acid , Colorectal Neoplasms/prevention & control , Butyrates , 1,2-Dimethylhydrazine/toxicity
5.
Chin J Physiol ; 65(3): 125-135, 2022.
Article in English | MEDLINE | ID: mdl-35775531

ABSTRACT

Cajanus cajan (L.) Millsp., known as pigeon pea, is one of the major grain legume crops of the tropical world. It recognizes as an ethnomedicine to possess various functions, such as helping in healing wound and cancer therapy. We investigated whether 95% ethanol extracts from C. cajan root (EECR) protect against methylglyoxal (MGO)-induced insulin resistance (IR) and hyperlipidemia in male Wistar rats and explored its possible mechanisms. The hypoglycemic potential of EECR was evaluated using α-amylase, α-glucosidase activities, and advanced glycation end products (AGEs) formation. For in vivo study, the rats were divided into six groups and orally supplemented with MGO except for Group 1 (controls). Group 2 was supplemented with MGO only, Group 3: MGO + metformin, Group 4: MGO + Low dose-EECR (L-EECR; 10 mg/kg bw), Group 5: MGO + Middle dose-EECR (M-EECR; 50 mg/kg bw), and Group 6: MGO + High dose-EECR (H-EECR; 100 mg/kg bw). EECR possessed good inhibition of α-glucosidase, α-amylase activities, and AGEs formation (IC50 = 0.12, 0.32, and 0.50 mg/mL), respectively. MGO significantly increased serum levels of blood glucose (GLU), glycosylated hemoglobin, homeostasis model assessment of IR, AGEs, lipid biochemical values, and atherogenic index, whereas EECR decreased these levels in a dose-dependent manner. EECR can also act as an insulin sensitizer, which significantly decreased (47%, P < 0.05) the blood GLU levels after intraperitoneal injection of insulin in the insulin tolerance tests. The hypoglycemic and antihyperlipidemic mechanisms of EECR are likely through several possible pathways including the inhibition of carbohydrate-hydrolyzing enzymes (α-glucosidase and α-amylase) and the enhancement of MGO-trapping effects on inhibition of AGEs formation.


Subject(s)
Cajanus , Diabetes Mellitus, Experimental , Animals , Cajanus/metabolism , Diabetes Mellitus, Experimental/drug therapy , Glycation End Products, Advanced/metabolism , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/therapeutic use , Hypolipidemic Agents/pharmacology , Hypolipidemic Agents/therapeutic use , Insulin , Magnesium Oxide , Male , Pyruvaldehyde/metabolism , Pyruvaldehyde/pharmacology , Rats , Rats, Wistar , alpha-Amylases , alpha-Glucosidases
6.
Eur J Nutr ; 60(4): 1781-1793, 2021 Jun.
Article in English | MEDLINE | ID: mdl-32860126

ABSTRACT

PURPOSE: The major aim of the present study was to determine the effects of quercetin, a well-known flavonoid, on attenuating cisplatin (CDDP)-induced fat loss and the possible mechanisms. METHODS: Tumor-bearing nude mice and tumor-free BALB/c mice were administrated with CDDP alone or in combination with quercetin by a diet containing 0.1% or 1% quercetin (LQ or HQ) or by intraperitoneal injection (IQ) to determine the effects of quercetin on the anticancer effect of CDDP or CDDP-induced fat loss. The effects of quercetin on fat accumulation in CDDP-exposed 3T3-L1 cells were also determined. RESULTS: We first showed that HQ and IQ significantly enhanced the anticancer effect of CDDP by upregulating p53- and p21-associated pathways, while tended to attenuate CDDP-induced fat loss in tumor-bearing nude mice. The study in 3T3-L1 cells showed that CDDP decreased the fat accumulation accompanied by strong upregulation of the expression of six genes which are associated with fat metabolism, while quercetin completely suppressed such an effect. The tumor-free BALB/c mice study consistently showed a protective effect of HQ on CDDP-induced body weight and epididymal fat loss. HQ also increased the fat levels in liver and muscle tissues. In epididymal fat tissues, HQ consistently attenuated CDDP-induced changes in fat metabolism-associated gene expression. However, CDDP alone or in combination with HQ did not affect the food intake. CONCLUSIONS: This study demonstrates that quercetin possesses the potential to suppress CDDP-induced fat loss may partly through the regulation of the fat metabolism-associated gene expression.


Subject(s)
Antineoplastic Agents , Neoplasms , Animals , Cisplatin/toxicity , Mice , Mice, Inbred BALB C , Mice, Nude , Quercetin/pharmacology
7.
Vet Pathol ; 58(4): 743-750, 2021 07.
Article in English | MEDLINE | ID: mdl-33866880

ABSTRACT

Canine parvovirus type 2 (CPV-2) is among the most important and highly contagious pathogens that cause enteric or systemic infections in domestic and nondomestic carnivores. However, the spillover of CPV-2 to noncarnivores is rarely mentioned. Taiwanese pangolins (Manis pentadactyla pentadactyla) are threatened due to habitat fragmentation and prevalent animal trafficking. Interactions between Taiwanese pangolins, humans, and domestic animals have become more frequent in recent years. However, information about the susceptibility of pangolins to common infectious agents of domestic animals has been lacking. From October 2017 to June 2019, 4 pangolins that were rescued and treated in wildlife rescue centers in central and northern Taiwan presented with gastrointestinal signs. Gross and histopathological examination revealed the main pathologic changes to be necrotic enteritis with involvement of the crypts in all intestinal segments in 2 pangolins. By immunohistochemistry for CPV-2, there was positive labeling of cryptal epithelium throughout the intestine, and immunolabeling was also present in epidermal cells adjacent to a surgical amputation site, and in mononuclear cells in lymphoid tissue. The other 2 pangolins had mild enteritis without crypt involvement, and no immunolabeling was detected. The nucleic acid sequences of polymerase chain reaction (PCR) amplicons from these 4 pangolins were identical to a Chinese CPV-2c strain from domestic dogs. Quantitative PCR revealed a higher ratio of CPV-2 nucleic acid to internal control gene in the 2 pangolins with severe intestinal lesions and positive immunoreactivity. Herein, we present evidence of CPV-2 infections in pangolins.


Subject(s)
Dog Diseases , Parvoviridae Infections , Parvovirus, Canine , Animals , Animals, Wild , Dogs , Leukocyte Count/veterinary , Pangolins , Parvoviridae Infections/veterinary , Phylogeny
8.
Carcinogenesis ; 40(2): 335-348, 2019 04 29.
Article in English | MEDLINE | ID: mdl-30726934

ABSTRACT

Therapeutic administration of glucocorticoids (GCs) is frequently used as add-on chemotherapy for palliative purposes during breast cancer treatment. Recent studies have shown that GC treatment induces microRNA-708 in ovarian cancer cells, resulting in impaired tumor cell proliferation and metastasis. However, the regulatory functions of GCs on miR-708 and its downstream target genes in human breast cancer cells (BCCs) are poorly understood. In this study, we found that treatment with either the synthetic GC dexamethasone (DEX) or the natural GC mimic, antcin A (ATA) significantly increased miR-708 expression by transactivation of glucocorticoid receptor alpha (GRα) in MCF-7 and MDA-MB-231 human BCCs. Induction of miR-708 by GR agonists resulted in inhibition of cell proliferation, cell-cycle progression, cancer stem cell (CSC)-like phenotype and metastasis of BCCs. In addition, GR agonist treatment or miR-708 mimic transfection remarkably inhibited IKKß expression and suppressed nuclear factor-kappaB (NF-κB) activity and its downstream target genes, including COX-2, cMYC, cyclin D1, Matrix metalloproteinase (MMP)-2, MMP-9, CD24, CD44 and increased p21CIP1 and p27KIP1 that are known to be involved in proliferation, cell-cycle progression, metastasis and CSC marker protein. BCCs xenograft models indicate that treatment with GR agonists significantly reduced tumor growth, weight and volume. Overall, our data strongly suggest that GR agonists induced miR-708 and downstream suppression of NF-κB signaling, which may be applicable as a novel therapeutic intervention in breast cancer treatment.


Subject(s)
Breast Neoplasms/genetics , Carcinogenesis/genetics , Down-Regulation/genetics , MicroRNAs/genetics , NF-kappa B/genetics , Receptors, Glucocorticoid/genetics , Signal Transduction/genetics , Animals , Cell Line, Tumor , Cell Proliferation/genetics , Female , Humans , MCF-7 Cells , Mice , Mice, Inbred BALB C , Mice, Nude , Neoplastic Stem Cells/pathology
9.
J Cell Physiol ; 234(4): 4125-4139, 2019 04.
Article in English | MEDLINE | ID: mdl-30146779

ABSTRACT

Antrodia camphorata (AC) exhibits potential for engendering cell-cycle arrest as well as prompting apoptosis and metastasis inhibition in triple-negative breast cancer (TNBC) cells. We performed the current study to explore the anti-epithelial-to-mesenchymal transition (EMT) properties of fermented AC broth in TNBC cells. Our results illustrated that noncytotoxic concentrations of AC (20-60 µg/ml) reversed the morphological changes (fibroblastic-to-epithelial phenotype) as well as the EMT by upregulating the observed E-cadherin expression. Furthermore, we discovered treatment with AC substantially inhibit the Twist expression in human TNBC (MDA-MB-231) cells as well as in those that were transfected with Twist. In addition, we determined AC to decrease the observed Wnt/ß-catenin nuclear translocation through a pathway determined to be dependent on GSK3ß. Notably, AC treatment consistently inhibited the EMT by downregulating mesenchymal marker proteins like N-cadherin, vimentin, Snail, ZEB-1, and fibronectin; at that same time upregulating epithelial marker proteins like occludin and ZO-1. Bioluminescence imaging that was executed in vivo demonstrated AC substantially suppressed breast cancer metastasis to the lungs. Notably, we found that western blot analysis confirmed that AC decreased lung metastasis as demonstrated by upregulation of E-cadherin expression in biopsied lung tissue. Together with our results support the anti-EMT activity of AC, indicating AC as having the potential for acting as an anticancer agent for the treatment of human TNBC treatment.


Subject(s)
Antineoplastic Agents/pharmacology , Antrodia/chemistry , Epithelial-Mesenchymal Transition/drug effects , Triple Negative Breast Neoplasms/drug therapy , Wnt Signaling Pathway/drug effects , Animals , Antigens, CD/genetics , Antigens, CD/metabolism , Antineoplastic Agents/isolation & purification , Apoptosis/drug effects , Cadherins/genetics , Cadherins/metabolism , Cell Line, Tumor , Cell Movement/drug effects , Female , Glycogen Synthase Kinase 3 beta/metabolism , Humans , Lung Neoplasms/genetics , Lung Neoplasms/metabolism , Lung Neoplasms/prevention & control , Lung Neoplasms/secondary , Mice, Inbred BALB C , Mice, Nude , Neoplasm Invasiveness , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/metabolism , Triple Negative Breast Neoplasms/pathology , Twist-Related Protein 1/genetics , Twist-Related Protein 1/metabolism , Xenograft Model Antitumor Assays
10.
BMC Vet Res ; 15(1): 155, 2019 May 17.
Article in English | MEDLINE | ID: mdl-31101115

ABSTRACT

BACKGROUND: Sphingosine kinase 1 (SPHK1) is an enzyme that converts pro-apoptotic ceramide and sphingosine into anti-apoptotic sphingosine-1-phosphate. There is growing evidence that SPHK1 activation promotes oncogenic transformation, tumor growth, chemotherapy resistance, and metastatic spread. High SPHK1 expression has been associated with a poor prognosis in several human cancers. RESULTS: In the present study, the expression level of SPHK1 was examined in feline mammary tumor (FMT) specimens, and the IHC expression level of SPHK1 was associated with the histological grade of FMTs. IHC analysis of 88 FMT cases revealed that the expression level of SPHK1 was upregulated in 53 tumor tissues (60.2%) compared to adjacent mammary tissues. SPHK1 expression in FMTs was significantly associated with histological grade, presence of lymphovascular invasion, and estrogen receptor negativity. Treatment of primary FMT cells with SPHK1 inhibitors reduced cell viability, indicating that SPHK1 acts to promote FMT cell survival. These results indicate that SPHK1 may play an important role in FMTs and may be a therapeutic target in cats with FMT. CONCLUSIONS: SPHK1 over-expression in breast cancer tissues is associated with a poor prognosis in humans. SPHK1 over-expression in more aggressive FMTs provides support for a potential role of SPHK1 inhibitors for the treatment of FMTs. Targeting SPHK1 has potent cytotoxic effects in primary FMT cells. These findings suggest that further examination of the role SPHK1 plays in FMTs will pave the way for the investigation of SPHK1 inhibitors in future clinical applications.


Subject(s)
Cat Diseases/pathology , Mammary Neoplasms, Animal/enzymology , Mammary Neoplasms, Animal/pathology , Phosphotransferases (Alcohol Group Acceptor)/metabolism , Animals , Blood Vessels/pathology , Cat Diseases/enzymology , Cats , Female , Gene Expression Regulation, Neoplastic , Lymphatic System/pathology , Mammary Glands, Animal/enzymology , Mammary Glands, Animal/metabolism , Mammary Neoplasms, Animal/genetics , Mammary Neoplasms, Animal/metabolism , Neoplasm Invasiveness , Phosphotransferases (Alcohol Group Acceptor)/genetics , Receptors, Estrogen/genetics , Receptors, Estrogen/metabolism
11.
Planta Med ; 84(15): 1110-1117, 2018 Oct.
Article in English | MEDLINE | ID: mdl-29763944

ABSTRACT

Baicalin is the main flavonoid from the roots of an important medicinal plant, Scutellaria baicalensis, which shows a variety biological activities. Psoriasis is a chronic immune-mediated inflammatory disease that affects the skin. The unmet need of psoriasis is that many patients do not respond adequately to available clinical treatment. In this study, we found that baicalin showed inhibited dermal inflammation in a murine model of psoriasis via topical application of imiquimod. After a 5-day topical imiquimod application, baicalin or the control vehicle cream was to applied to the lesions of BALB/c mice for a further 4 days. The erythema, scaling, and thickness of the epidermal layer significantly improved in the baicalin-treated mice. The levels of interleukin-17A, interleukin-22, interleukin-23, and tumor necrosis factor in the skin significantly decreased after baicalin treatment. Baicalin also inhibited imiquimod-induced interleukin-17A production in skin draining lymph node cells. The infiltration of γδ T cells into the skin lesions induced by imiquimod was also suppressed after baicalin treatment. These results suggest that baicalin inhibited skin inflammation through the inhibition of the interleukin-17/interleukin-23 axis in a murine model of psoriasis.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Cytokines/metabolism , Drug Eruptions/drug therapy , Flavonoids/pharmacology , Psoriasis/drug therapy , Aminoquinolines/adverse effects , Animals , Anti-Inflammatory Agents, Non-Steroidal/chemistry , Disease Models, Animal , Drug Eruptions/pathology , Female , Flavonoids/chemistry , Humans , Imiquimod , Interleukin-17/metabolism , Mice , Mice, Inbred BALB C , Psoriasis/pathology , Receptors, Interleukin/metabolism , Skin/pathology
12.
Biochim Biophys Acta ; 1859(2): 246-61, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26548719

ABSTRACT

Coenzyme Q (CoQ) analogs with variable number of isoprenoid units have been demonstrated as anti-inflammatory and antioxidant/pro-oxidant molecules. In this study we used CoQ0 (2,3-dimethoxy-5-methyl-1,4-benzoquinone, zero isoprenoid side-chains), a novel quinone derivative, and investigated its molecular actions against LPS-induced inflammation and redox imbalance in murine RAW264.7 macrophages and mice. In LPS-stimulated macrophages, non-cytotoxic concentrations of CoQ0 (2.5-10 µM) inhibited iNOS/COX-2 protein expressions with subsequent reductions of NO, PGE2, TNF-α and IL-1ß secretions. This inhibition was reasoned by suppression of NFκB (p65) activation, and inhibition of AP-1 (c-Jun., c-Fos, ATF2) translocation. Our findings indicated that IKKα-mediated I-κB degradation and MAPK-signaling are involved in regulation of NFκB/AP-1 activation. Furthermore, CoQ0 triggered HO-1 and NQO-1 genes through increased Nrf2 nuclear translocation and Nrf2/ARE-signaling. This phenomenon was confirmed by diminished CoQ0 protective effects in Nrf2 knockdown cells, where LPS-induced NO, PGE2, TNF-α and IL-1ß productions remained high. Molecular evidence revealed that CoQ0 enhanced Nrf2 steady-state level at both transcriptional and translational levels. CoQ0-induced Nrf2 activation appears to be regulated by ROS-JNK-signaling cascades, as evidenced by suppressed Nrf2 activation upon treatment with pharmacological inhibitors of ROS (N-acetylcysteine) and JNK (SP600125). Besides, oral administration of CoQ0 (5 mg/kg) suppressed LPS-induced (1 mg/kg) induction of iNOS/COX-2 and TNF-α/IL-1ß through tight regulation of NFκB/Nrf2 signaling in mice liver and spleen. Our findings conclude that pharmacological actions of CoQ0 are mediated via inhibition of NFκB/AP-1 activation and induction of Nrf2/ARE-signaling. Owing to its potent anti-inflammatory and antioxidant properties, CoQ0 could be a promising candidate to treat inflammatory disorders.


Subject(s)
Benzoquinones/administration & dosage , Inflammation/genetics , NF-E2-Related Factor 2/genetics , Transcription Factor AP-1/biosynthesis , Transcription Factor RelA/genetics , Ubiquinone/administration & dosage , Animals , Cyclooxygenase 2/genetics , Gene Expression Regulation/drug effects , Heme Oxygenase-1/genetics , Inflammation/chemically induced , Inflammation/drug therapy , Inflammation/pathology , Lipopolysaccharides/toxicity , Macrophages/metabolism , Macrophages/pathology , Mice , NF-E2-Related Factor 2/biosynthesis , NF-kappa B/genetics , Nitric Oxide Synthase Type II/genetics , Oxidation-Reduction/drug effects , Reactive Oxygen Species/metabolism , Signal Transduction/drug effects , Transcription Factor AP-1/genetics , Transcription Factor RelA/biosynthesis , Ubiquinone/analogs & derivatives
13.
Environ Toxicol ; 32(8): 2070-2084, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28370894

ABSTRACT

Cigarette smoke exposure activates several cellular mechanisms predisposing to atherosclerosis, including oxidative stress, dyslipidemia, and vascular inflammation. Antrodia camphorata, a renowned medicinal mushroom in Taiwan, has been investigated for its antioxidant, anti-inflammatory, and antiatherosclerotic properties in cigarette smoke extracts (CSE)-treated vascular smooth muscle cells (SMCs), and ApoE-deficient mice. Fermented culture broth of Antrodia camphorata (AC, 200-800 µg/mL) possesses effective antioxidant activity against CSE-induced ROS production. Treatment of SMCs (A7r5) with AC (30-120 µg/mL) remarkably ameliorated CSE-induced morphological aberrations and cell death. Suppressed ROS levels by AC corroborate with substantial inhibition of CSE-induced DNA damage in AC-treated A7r5 cells. We found CSE-induced apoptosis through increased Bax/Bcl-2 ratio, was substantially inhibited by AC in A7r5 cells. Notably, upregulated SOD and catalase expressions in AC-treated A7r5 cells perhaps contributed to eradicate the CSE-induced ROS generation, and prevents DNA damage and apoptosis. Besides, AC suppressed AP-1 activity by inhibiting the c-Fos/c-Jun expressions, and NF-κB activation through inhibition of I-κBα degradation against CSE-stimulation. This anti-inflammatory property of AC was accompanied by suppressed CSE-induced VEGF, PDGF, and EGR-1 overexpressions in A7r5 cells. Furthermore, AC protects lung fibroblast (MRC-5) cells from CSE-induced cell death. In vivo data showed that AC oral administration (0.6 mg/d/8-wk) prevents CSE-accelerated atherosclerosis in ApoE-deficient mice. This antiatherosclerotic property was associated with increased serum total antioxidant status, and decreased total cholesterol and triacylglycerol levels. Thus, Antrodia camphorata may be useful for prevention of CSE-induced oxidative stress and diseases. © 2016 Wiley Periodicals, Inc. Environ Toxicol 32: 2070-2084, 2017.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Antioxidants/pharmacology , Antrodia/chemistry , Apoptosis/drug effects , DNA Damage/drug effects , Muscle, Smooth, Vascular/drug effects , Nicotiana/chemistry , Reactive Oxygen Species/metabolism , Smoke/adverse effects , Animals , Apolipoproteins E/genetics , Atherosclerosis/metabolism , Atherosclerosis/pathology , Atherosclerosis/prevention & control , Cell Line , Culture Media/pharmacology , Female , Fibroblasts/cytology , Fibroblasts/drug effects , Humans , Inflammation/metabolism , Lung/cytology , Mice , Muscle, Smooth, Vascular/pathology , NF-kappa B/metabolism , Oxidative Stress/drug effects , Rats , Tobacco Products , Transcription Factor AP-1/metabolism
14.
J Biomed Sci ; 23(1): 46, 2016 May 17.
Article in English | MEDLINE | ID: mdl-27188327

ABSTRACT

BACKGROUND: The aim of the study was to develop a nude mouse xenograft model implanted with both benign and malignant xenografts as the preliminary candidate screening tool for contrast agent development in lesion malignancy indication. RESULTS: A malignant xenograft (either MCF-7 cell/matrigel™ or MDA-MB 231 cell/matrigel) and a benign xenograft (culture medium/matrigel) with cleft and slit-like features of intracanaliculer fibroadenoma were implanted subcutaneously into flanks of individual nu/nu nude mouse with >90 % successful inoculation rate. Both malignant and benign xenografts with volume up to 4 cm(3) and (size up to 2 cm) after 5(th) week were characterized in vivo by sonogram (exhibiting endogenous morphological contrast features between benign and malignant xenografts), dynamic contrast enhanced multi-detector computed tomography (presenting non-targeting exogenous morphological and dynamic contrast features between benign and malignant xenografts), and then were harvested for histological and immunohistochemistry (revealing example of targeting/molecular contrast features, such as expression of cancer vascular markers of malignant xenografts). Malignant xenografts appeared morphologically taller than wide (axis parallel to skin) with angular/ill-defined margin under sonogram observations, revealed more evident rim enhancement, angular margin and washout pattern in the time-density curve from dynamic contrast enhance multi-detector computed tomography images, and had more visible cancer vascular markers (CD31 and VEGF) expression. With limited number of subjects (5-27 for each group of a specific imaging contrast feature), those imaging contrast features of the xenograft model had larger than 85 % sensitivity, specificity, accuracy, positive and negative prediction values in indicating xenograft malignancy except for results from color Doppler detections. CONCLUSIONS: The murine xenograft model might provide an earlier efficacy evaluation of new contrast agent candidate for lesion malignancy interrogation with qualitative and quantitative indication before a human study to reduce the risk and conserve the resources (time, finance and manpower).


Subject(s)
Breast Neoplasms/diagnostic imaging , Contrast Media/pharmacology , Echocardiography, Doppler/methods , Mammary Neoplasms, Experimental/diagnostic imaging , Animals , Female , Heterografts , Humans , MCF-7 Cells , Mice , Mice, Nude , Neoplasm Transplantation
15.
BMC Vet Res ; 12(1): 142, 2016 Jul 16.
Article in English | MEDLINE | ID: mdl-27422008

ABSTRACT

BACKGROUND: KIT is a tyrosine kinase growth factor receptor. High expression of KIT has been found in several tumors including canine hemangiosarcoma (HSA). This study investigated the correlation of KIT expression and c-kit sequence mutations in canine HSAs and benign hemangiomas (HAs). RESULTS: Immunohistochemistry (IHC) staining confirmed KIT expression in 94.4 % (34/36) of HSAs that was significantly higher than 0 % in HAs (0/16). Sequencing the entire c-kit coding region of HSAs and normal canine cerebellums (NCCs) revealed GNSK-deletion in exon 9. As for exon 9 genotyping by TA-cloning strategy, GNSK-deletion c-kit accounted for 48.6 % (68/140) colonies amplified from12 KIT-positive HSAs, a significantly higher frequency than 14.1 % (9/64) of colonies amplified from six NCCs. CONCLUSIONS: Due to the distinct expression pattern revealed by IHC, KIT might be used to distinguish benign or malignant vascular endothelial tumors. Moreover, the high incidence of GNSK-deletion c-kit in canine HSAs implicates KIT isoforms as possibly participating in the tumorigenesis of canine HSAs.


Subject(s)
Dog Diseases/genetics , Gene Expression Regulation, Neoplastic , Hemangiosarcoma/veterinary , Proto-Oncogene Proteins c-kit/genetics , Animals , Dog Diseases/enzymology , Dog Diseases/physiopathology , Dogs , Hemangioma/enzymology , Hemangioma/genetics , Hemangioma/physiopathology , Hemangiosarcoma/enzymology , Hemangiosarcoma/genetics , Hemangiosarcoma/physiopathology , Protein Isoforms , Proto-Oncogene Proteins c-kit/chemistry
16.
Arch Toxicol ; 90(9): 2249-2260, 2016 Sep.
Article in English | MEDLINE | ID: mdl-26438401

ABSTRACT

Tubular cell apoptosis significantly contributes to cisplatin-induced acute kidney injury (AKI) pathogenesis. Although KCa3.1, a calcium-activated potassium channel, participates in apoptosis, its involvement in cisplatin-induced AKI is unknown. Here, we found that cisplatin treatment triggered an early induction of KCa3.1 expression associated with HK-2 cell apoptosis, the development of renal tubular damage, and apoptosis in mice. Treatment with the highly selective KCa3.1 blocker TRAM-34 suppressed cisplatin-induced HK-2 cell apoptosis. We further assessed whether KCa3.1 mediated cisplatin-induced AKI in genetic knockout and pharmacological blockade mouse models. KCa3.1 deficiency reduced renal function loss, renal tubular damage, and the induction of the apoptotic marker caspase-3 in the kidneys of cisplatin-treated KCa3.1 (-/-) mice. Pharmacological blockade of KCa3.1 by TRAM-34 similarly attenuated cisplatin-induced AKI in mice. Furthermore, we dissected the mechanisms underlying cisplatin-induced apoptosis reduction via KCa3.1 blockade. We found that KCa3.1 blockade attenuated cytochrome c release and the increase in the intrinsic apoptotic mediators Bax, Bak, and caspase-9 after cisplatin treatment. KCa3.1 blocking inhibited the cisplatin-induced activation of the endoplasmic reticulum (ER) stress mediator caspase-12, which is independent of calcium-dependent protease m-calpain activation. Taken together, KCa3.1 blockade protects against cisplatin-induced AKI through the attenuation of apoptosis by interference with intrinsic apoptotic and ER stress-related mediators, providing a potential target for the prevention of cisplatin-induced AKI.


Subject(s)
Acute Kidney Injury/prevention & control , Cisplatin/toxicity , Intermediate-Conductance Calcium-Activated Potassium Channels/antagonists & inhibitors , Intermediate-Conductance Calcium-Activated Potassium Channels/metabolism , Kidney Tubules, Proximal/drug effects , Potassium Channel Blockers/pharmacology , Pyrazoles/toxicity , Acute Kidney Injury/chemically induced , Acute Kidney Injury/genetics , Acute Kidney Injury/metabolism , Animals , Apoptosis/drug effects , Apoptosis Regulatory Proteins/metabolism , Cell Line , Cytoprotection , Disease Models, Animal , Endoplasmic Reticulum Stress/drug effects , Humans , Intermediate-Conductance Calcium-Activated Potassium Channels/deficiency , Intermediate-Conductance Calcium-Activated Potassium Channels/genetics , Kidney Tubules, Proximal/metabolism , Kidney Tubules, Proximal/pathology , Mice, Inbred C57BL , Mice, Knockout , Signal Transduction/drug effects , Time Factors
17.
Eur J Nutr ; 54(3): 397-406, 2015 Apr.
Article in English | MEDLINE | ID: mdl-24866449

ABSTRACT

PURPOSE: We have previously shown that quercetin modulates the proinflammatory effect of ß-carotene (BC) induced by oral benzo[a]pyren (Bap) partly through the regulation of the JNK pathway. In the present study, we determined whether the combination of BC and quercetin regulates the antioxidant enzymes and the activation of NF-κB in Mongolian gerbils exposed to Bap. We also compared the combined effects of BC+ quercetin with that of BC+ ascorbic acid (C)+ α-tocopherol (E). METHODS: The gerbils were given BC (10 mg/kg) alone or in combination with quercetin (50 or 100 mg/kg) or C (13 mg/kg)+E (92 mg/kg) by gavage 3 times/week for 6 months. During the first 2 months, the gerbils were exposed to Bap by intratracheal instillation once/week. The levels of proinflammatory cytokines, thiobarbituric acid reactive substances, antioxidant enzymes and NF-κB activation in the plasma or the lungs were determined. RESULTS: Bap increased the level of proinflammatory cytokines and oxidative stress in the plasma or lungs, while it decreased the antioxidant systems. Bap also increased nuclear NF-κB levels in the lungs. BC partly recovered the Bap-induced decrease in antioxidant activity, antioxidant enzyme activities and glutathione levels but had no effect on proinflammatory cytokines and NF-κB translocation. BC in combination with quercetin or C+E suppressed all the harmful effects induced by Bap. All the effects of quercetin at 100 mg/kg were similar to the effect of C+E. CONCLUSION: BC in combination with quercetin or C+E rather than BC alone similarly suppresses the Bap-induced inflammatory reaction that was accompanied by the regulation of antioxidant enzymes and the translocation of NF-κB in vivo.


Subject(s)
Antioxidants/metabolism , Inflammation/drug therapy , NF-kappa B/metabolism , Quercetin/pharmacology , beta Carotene/pharmacology , Animals , Ascorbic Acid/pharmacology , Benzo(a)pyrene/toxicity , Catalase/metabolism , Gerbillinae , Glutathione/metabolism , Glutathione Peroxidase/metabolism , Inflammation/chemically induced , Interleukin-1beta/blood , Lipid Peroxidation/drug effects , Lung/drug effects , Lung/metabolism , Male , NF-kappa B/blood , Oxidative Stress/drug effects , Superoxide Dismutase/metabolism , Thiobarbituric Acid Reactive Substances/metabolism , Tumor Necrosis Factor-alpha/blood , alpha-Tocopherol/pharmacology
18.
Nutrients ; 16(14)2024 Jul 17.
Article in English | MEDLINE | ID: mdl-39064740

ABSTRACT

Anisomeles indica (L.) Kuntze is a traditional herb with multiple medicinal properties and with potential for preventing or treating various diseases. Acteoside, one of the active ingredients in A. indica, is prepared into commercially available products of A. indica HP813 powder. In this study, the gastroprotective effects of A. indica HP813 powder were evaluated. Wistar rats were treated with A. indica HP813 powder at doses of 0, 207.5, 415, and 830 mg/kg body weight for 28 days. Then, gastric ulcers were induced by the oral administration of 70% ethanol (10 mL/kg body weight) on day 28. The rats were sacrificed at the end of the trial, and stomach tissues were collected. These stomach tissues were then used for macroscopic, microscopic, and immunohistochemical analyses. The results indicated that the area of gastric ulcer was 48.61%, 35.30%, and 27.16% in the ethanol-induced group, 415 mg/kg A. indica HP813 powder group, and 830 mg/kg A. indica HP813 powder group, respectively. In addition, the lesion scores were 2.9, 2.4, and 2.3 in the ethanol-induced group, 415 mg/kg A. indica HP813 powder group, and 830 mg/kg A. indica HP813 powder group, respectively. The immunochemical staining of the gastric tissue revealed that A. indica HP813 powder reduced the expressions of TNF-α and NF-κB proteins in the gastric tissue, which had been induced by ethanol. Finally, A. indica HP813 powder protected the gastric ulcer from ethanol damage through IκB-α induction. The present results demonstrated that A. indica HP813 powder has protective effects against ethanol-induced gastric ulcer.


Subject(s)
Anti-Ulcer Agents , Ethanol , NF-KappaB Inhibitor alpha , NF-kappa B , Stomach Ulcer , Animals , Male , Rats , Anti-Ulcer Agents/pharmacology , Gastric Mucosa/drug effects , Gastric Mucosa/metabolism , Gastric Mucosa/pathology , NF-kappa B/metabolism , NF-KappaB Inhibitor alpha/metabolism , Plant Extracts/pharmacology , Powders , Rats, Wistar , Stomach Ulcer/chemically induced , Stomach Ulcer/prevention & control , Stomach Ulcer/drug therapy , Stomach Ulcer/metabolism
19.
Antioxidants (Basel) ; 13(7)2024 Jul 11.
Article in English | MEDLINE | ID: mdl-39061900

ABSTRACT

N-acetyl cysteine (NAC) is a versatile drug used in various conditions, but the limitations and toxicities are not clear. The acute toxicity and toxicological mechanisms of an intraperitoneal injection of NAC in normal mice were deciphered. The LD50 for male and female BALB/cByJNarl mice were 800 mg/kg and 933 mg/kg. The toxicological mechanisms of 800 mg/kg NAC (N800) were investigated. The serum biomarkers of hepatic and renal indices dramatically increased, followed by hepatic microvesicular steatosis, renal tubular injury and necrosis, and splenic red pulp atrophy and loss. Thus, N800 resulted in mouse mortality mainly due to acute liver, kidney, and spleen damages. The safe dose (275 mg/kg) of NAC (N275) increased hepatic antioxidant capacity by increasing glutathione levels and catalase activity. N275 elevated the hepatic gene expressions of lipid transporter, lipid synthesis, ß-oxidation, and ketogenesis, suggesting a balance between lipid production and consumption, and finally, increased ATP production. In contrast, N800 increased hepatic oxidative stress by decreasing glutathione levels through suppressing Gclc, and reducing catalase activity. N800 decreased the hepatic gene expressions of lipid transporter, lipid synthesis, and interferred ß-oxidation, leading to lipid accumulation and increasing Cyp2E1 expression, and finally, decreased ATP production. Therefore, NAC doses are limited for normal individuals, especially via intraperitoneal injection or similar means.

20.
Anal Chem ; 85(6): 3110-7, 2013 Mar 19.
Article in English | MEDLINE | ID: mdl-23394145

ABSTRACT

We successfully demonstrate the first solid-state sensor to have reliable responses to breath ammonia of rat. For thioacetamide (TAA)-induced hepatopathy rats, we observe that the proposed sensor can detect liver that undergoes acute-moderate hepatopathy with a p-value less than 0.05. The proposed sensor is an organic diode with vertical nanojunctions produced by using low-cost colloidal lithography. Its simple structure and low production cost facilitates the development of point-of-care technology. We also anticipate that the study is a starting point for investigating sophisticated breath-ammonia-related disease models.


Subject(s)
Ammonia/chemistry , Chemical and Drug Induced Liver Injury/diagnosis , Nanostructures , Animals , Breath Tests/methods , Chemical and Drug Induced Liver Injury/metabolism , Female , Rats , Rats, Sprague-Dawley , Thioacetamide/toxicity
SELECTION OF CITATIONS
SEARCH DETAIL