Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 64
Filter
Add more filters

Country/Region as subject
Publication year range
1.
J Pathol ; 263(1): 74-88, 2024 05.
Article in English | MEDLINE | ID: mdl-38411274

ABSTRACT

Fascin actin-bundling protein 1 (Fascin) is highly expressed in a variety of cancers, including esophageal squamous cell carcinoma (ESCC), working as an important oncogenic protein and promoting the migration and invasion of cancer cells by bundling F-actin to facilitate the formation of filopodia and invadopodia. However, it is not clear how exactly the function of Fascin is regulated by acetylation in cancer cells. Here, in ESCC cells, the histone acetyltransferase KAT8 catalyzed Fascin lysine 41 (K41) acetylation, to inhibit Fascin-mediated F-actin bundling and the formation of filopodia and invadopodia. Furthermore, NAD-dependent protein deacetylase sirtuin (SIRT) 7-mediated deacetylation of Fascin-K41 enhances the formation of filopodia and invadopodia, which promotes the migration and invasion of ESCC cells. Clinically, the analysis of cancer and adjacent tissue samples from patients with ESCC showed that Fascin-K41 acetylation was lower in the cancer tissue of patients with lymph node metastasis than in that of patients without lymph node metastasis, and low levels of Fascin-K41 acetylation were associated with a poorer prognosis in patients with ESCC. Importantly, K41 acetylation significantly blocked NP-G2-044, one of the Fascin inhibitors currently being clinically evaluated, suggesting that NP-G2-044 may be more suitable for patients with low levels of Fascin-K41 acetylation, but not suitable for patients with high levels of Fascin-K41 acetylation. © 2024 The Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Subject(s)
Carrier Proteins , Esophageal Neoplasms , Esophageal Squamous Cell Carcinoma , Microfilament Proteins , Sirtuins , Humans , Acetylation , Actins/metabolism , Cell Line, Tumor , Esophageal Neoplasms/pathology , Histone Acetyltransferases/metabolism , Lymphatic Metastasis , Sirtuins/metabolism
2.
J Pathol ; 263(1): 99-112, 2024 05.
Article in English | MEDLINE | ID: mdl-38411280

ABSTRACT

Desmoglein-2 (DSG2) is a transmembrane glycoprotein belonging to the desmosomal cadherin family, which mediates cell-cell junctions; regulates cell proliferation, migration, and invasion; and promotes tumor development and metastasis. We previously showed serum DSG2 to be a potential biomarker for the diagnosis of esophageal squamous cell carcinoma (ESCC), although the significance and underlying molecular mechanisms were not identified. Here, we found that DSG2 was increased in ESCC tissues compared with adjacent tissues. In addition, we demonstrated that DSG2 promoted ESCC cell migration and invasion. Furthermore, using interactome analysis, we identified serine/threonine-protein kinase D2 (PRKD2) as a novel DSG2 kinase that mediates the phosphorylation of DSG2 at threonine 730 (T730). Functionally, DSG2 promoted ESCC cell migration and invasion dependent on DSG2-T730 phosphorylation. Mechanistically, DSG2 T730 phosphorylation activated EGFR, Src, AKT, and ERK signaling pathways. In addition, DSG2 and PRKD2 were positively correlated with each other, and the overall survival time of ESCC patients with high DSG2 and PRKD2 was shorter than that of patients with low DSG2 and PRKD2 levels. In summary, PRKD2 is a novel DSG2 kinase, and PRKD2-mediated DSG2 T730 phosphorylation promotes ESCC progression. These findings may facilitate the development of future therapeutic agents that target DSG2 and DSG2 phosphorylation. © 2024 The Pathological Society of Great Britain and Ireland.


Subject(s)
Esophageal Neoplasms , Esophageal Squamous Cell Carcinoma , Humans , Esophageal Squamous Cell Carcinoma/metabolism , Phosphorylation , Protein Kinase D2 , Esophageal Neoplasms/pathology , Cell Line, Tumor , Cell Proliferation/physiology , Serine , Cell Movement/physiology , Gene Expression Regulation, Neoplastic , Desmoglein 2/genetics , Desmoglein 2/metabolism
3.
Mol Cell Proteomics ; 22(8): 100593, 2023 08.
Article in English | MEDLINE | ID: mdl-37328063

ABSTRACT

Proteins containing a CAAX motif at the C-terminus undergo prenylation for localization and activity and include a series of key regulatory proteins, such as RAS superfamily members, heterotrimeric G proteins, nuclear lamina protein, and several protein kinases and phosphatases. However, studies of prenylated proteins in esophageal cancer are limited. Here, through research on large-scale proteomic data of esophageal cancer in our laboratory, we found that paralemmin-2 (PALM2), a potential prenylated protein, was upregulated and associated with poor prognosis in patients. Low-throughput verification showed that the expression of PALM2 in esophageal cancer tissues was higher than that in their paired normal esophageal epithelial tissues, and it was generally expressed in the membrane and cytoplasm of esophageal cancer cells. PALM2 interacted with the two subunits of farnesyl transferase (FTase), FNTA and FNTB. Either the addition of an FTase inhibitor or mutation in the CAAX motif of PALM2 (PALM2C408S) impaired its membranous localization and reduced the membrane location of PALM2, indicating PALM2 was prenylated by FTase. Overexpression of PALM2 enhanced the migration of esophageal squamous cell carcinoma cells, whereas PALM2C408S lost this ability. Mechanistically, PALM2 interacted with the N-terminal FERM domain of ezrin of the ezrin/radixin/moesin (ERM) family. Mutagenesis indicated that lysine residues K253/K254/K262/K263 in ezrin's FERM domain and C408 in PALM2's CAAX motif were important for PALM2/ezrin interaction and ezrin activation. Knockout of ezrin prevented enhanced cancer cell migration by PALM2 overexpression. PALM2, depending on its prenylation, increased both ezrin membrane localization and phosphorylation of ezrin at Y146. In summary, prenylated PALM2 enhances the migration of cancer cells by activating ezrin.


Subject(s)
Esophageal Neoplasms , Esophageal Squamous Cell Carcinoma , Humans , Cell Movement , Esophageal Neoplasms/metabolism , Proteomics
4.
Mol Cell Proteomics ; 22(6): 100551, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37076047

ABSTRACT

Esophageal cancer is the seventh most common cancer in the world. Although traditional treatment methods such as radiotherapy and chemotherapy have good effects, their side effects and drug resistance remain problematic. The repositioning of drug function provides new ideas for the research and development of anticancer drugs. We previously showed that the Food and Drug Administration-approved drug sulconazole can effectively inhibit the growth of esophageal cancer cells, but its molecular mechanism is not clear. Here, our study demonstrated that sulconazole had a broad spectrum of anticancer effects. It can not only inhibit the proliferation but also inhibit the migration of esophageal cancer cells. Both transcriptomic sequencing and proteomic sequencing showed that sulconazole could promote various types of programmed cell death and inhibit glycolysis and its related pathways. Experimentally, we found that sulconazole induced apoptosis, pyroptosis, necroptosis, and ferroptosis. Mechanistically, sulconazole triggered mitochondrial oxidative stress and inhibited glycolysis. Finally, we showed that low-dose sulconazole can increase radiosensitivity of esophageal cancer cells. Taken together, these new findings provide strong laboratory evidence for the clinical application of sulconazole in esophageal cancer.


Subject(s)
Esophageal Neoplasms , Proteomics , Humans , Cell Line, Tumor , Esophageal Neoplasms/metabolism , Radiation Tolerance , Oxidative Stress , Apoptosis , Glycolysis
5.
Amino Acids ; 53(8): 1197-1209, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34223992

ABSTRACT

Riboflavin is an essential micronutrient for normal cellular growth and function. Lack of dietary riboflavin is associated with an increased risk for esophageal squamous cell carcinoma (ESCC). Previous studies have identified that the human riboflavin transporter SLC52A3a isoform (encoded by SLC52A3) plays a prominent role in esophageal cancer cell riboflavin transportation. Furthermore, SLC52A3 gene single nucleotide polymorphisms rs3746804 (T>C, L267P) and rs3746803 (C >T, T278M) are associated with ESCC risk. However, whether SLC52A3a (p.L267P) and (p.T278M) act in riboflavin transportation in esophageal cancer cell remains inconclusive. Here, we constructed the full-length SLC52A3a protein fused to green fluorescent protein (GFP-SLC52A3a-WT and mutants L267P, T278M, and L267P/T278M). It was confirmed by immunofluorescence-based confocal microscopy that SLC52A3a-WT, L267P, T278M, and L267P/T278M expressed in cell membrane, as well as in a variety of intracellular punctate structures. The live cell confocal imaging showed that SLC52A3a-L267P and L267P/T278M increased the intracellular trafficking of SLC52A3a in ESCC cells. Fluorescence recovery after photobleaching of GFP-tagged SLC52A3a meant that intracellular trafficking of SLC52A3a-L267P and L267P/T278M was rapid dynamics process, leading to its stronger ability to transport riboflavin. Taken together, the above results indicated that the rs3746804 (p.L267P) polymorphism promoted intracellular trafficking of SLC52A3a and riboflavin transportation in ESCC cells.


Subject(s)
Esophageal Neoplasms/metabolism , Esophageal Squamous Cell Carcinoma/metabolism , Membrane Transport Proteins/genetics , Polymorphism, Single Nucleotide , Riboflavin/metabolism , Biological Transport , Cell Line, Tumor , Esophageal Neoplasms/pathology , Esophageal Squamous Cell Carcinoma/pathology , Exome , Green Fluorescent Proteins/genetics , Humans , Polymerase Chain Reaction/methods
6.
J Cell Mol Med ; 24(8): 4804-4818, 2020 04.
Article in English | MEDLINE | ID: mdl-32164040

ABSTRACT

Differential expression analysis has led to the identification of important biomarkers in oesophageal squamous cell carcinoma (ESCC). Despite enormous contributions, it has not harnessed the full potential of gene expression data, such as interactions among genes. Differential co-expression analysis has emerged as an effective tool that complements differential expression analysis to provide better insight of dysregulated mechanisms and indicate key driver genes. Here, we analysed the differential co-expression of lncRNAs and protein-coding genes (PCGs) between normal oesophageal tissue and ESCC tissues, and constructed a lncRNA-PCG differential co-expression network (DCN). DCN was characterized as a scale-free, small-world network with modular organization. Focusing on lncRNAs, a total of 107 differential lncRNA-PCG subnetworks were identified from the DCN by integrating both differential expression and differential co-expression. These differential subnetworks provide a valuable source for revealing lncRNA functions and the associated dysfunctional regulatory networks in ESCC. Their consistent discrimination suggests that they may have important roles in ESCC and could serve as robust subnetwork biomarkers. In addition, two tumour suppressor genes (AL121899.1 and ELMO2), identified in the core modules, were validated by functional experiments. The proposed method can be easily used to investigate differential subnetworks of other molecules in other cancers.


Subject(s)
Adaptor Proteins, Signal Transducing/genetics , Cytoskeletal Proteins/genetics , Esophageal Squamous Cell Carcinoma/genetics , RNA, Long Noncoding/genetics , Tumor Suppressor Proteins/genetics , Biomarkers, Tumor/genetics , Computational Biology , Esophageal Squamous Cell Carcinoma/pathology , Female , Gene Expression Regulation, Neoplastic , Gene Regulatory Networks/genetics , Humans , Male , Tumor Suppressor Proteins/classification
7.
Nucleic Acids Res ; 46(4): 1793-1809, 2018 02 28.
Article in English | MEDLINE | ID: mdl-29253179

ABSTRACT

EZR, a member of the ezrin-radixin-moesin (ERM) family, is involved in multiple aspects of cell migration and cancer. SMYD3, a histone H3-lysine 4 (H3-K4)-specific methyltransferase, regulates EZR gene transcription, but the molecular mechanisms of epigenetic regulation remain ill-defined. Here, we show that antisense lncRNA EZR-AS1 was positively correlated with EZR expression in both human esophageal squamous cell carcinoma (ESCC) tissues and cell lines. Both in vivo and in vitro studies revealed that EZR-AS1 promoted cell migration through up-regulation of EZR expression. Mechanistically, antisense lncRNA EZR-AS1 formed a complex with RNA polymerase II to activate the transcription of EZR. Moreover, EZR-AS1 could recruit SMYD3 to a binding site, present in a GC-rich region downstream of the EZR promoter, causing the binding of SMYD3 and local enrichment of H3K4me3. Finally, the interaction of EZR-AS1 with SMYD3 further enhanced EZR transcription and expression. Our findings suggest that antisense lncRNA EZR-AS1, as a member of an RNA polymerase complex and through enhanced SMYD3-dependent H3K4 methylation, plays an important role in enhancing transcription of the EZR gene to promote the mobility and invasiveness of human cancer cells.


Subject(s)
Cytoskeletal Proteins/genetics , Esophageal Neoplasms/genetics , Esophageal Squamous Cell Carcinoma/genetics , Gene Expression Regulation, Neoplastic , Histone-Lysine N-Methyltransferase/metabolism , RNA, Long Noncoding/metabolism , Animals , Cell Line, Tumor , Cell Movement , Cytoskeletal Proteins/biosynthesis , Esophageal Neoplasms/metabolism , Esophageal Neoplasms/pathology , Esophageal Squamous Cell Carcinoma/metabolism , Esophageal Squamous Cell Carcinoma/pathology , Humans , Male , Mice, Nude , RNA Polymerase II/metabolism , Transcription Factors/metabolism , Up-Regulation
8.
Cell Mol Life Sci ; 75(14): 2643-2661, 2018 07.
Article in English | MEDLINE | ID: mdl-29428966

ABSTRACT

The human riboflavin transporter-3 (encoded by SLC52A3) plays a prominent role in riboflavin absorption. Interestingly, abnormal expression patterns of SLC52A3 in multiple types of human cancers have been recently noted. However, the molecular mechanisms underlying its dysregulation remain unclear. In this study, we find that SLC52A3 has two transcript variants that differ in the transcriptional start site, and encode different proteins: SLC52A3a and SLC52A3b. Importantly, aberrant expressions of SLC52A3 are associated with stepwise development of esophageal squamous cell carcinoma (ESCC) as well as the survival rates of ESCC patients. Functionally, SLC52A3a, but not SLC52A3b, strongly promotes the proliferation and colony formation of ESCC cells. Furthermore, SLC52A3 5'-flanking regions contain NF-κB p65/Rel-B-binding sites, which are crucial for mediating SLC52A3 transcriptional activity in ESCC cells. Chromatin immunoprecipitation and electrophoretic mobility shift assay reveal that p65/Rel-B bind to 5'-flanking regions of SLC52A3. Accordingly, NF-κB signaling upregulates SLC52A3 transcription upon TNFα stimulation. Taken together, these results elucidate the mechanisms underlying SLC52A3 overexpression in ESCC. More importantly, our findings identify SLC52A3 as both a predictive and prognostic biomarker for this deadly cancer.


Subject(s)
Biomarkers, Tumor/metabolism , Carcinoma, Squamous Cell/metabolism , Esophageal Neoplasms/metabolism , Membrane Transport Proteins/metabolism , Transcription Factor RelA/metabolism , Transcription Factor RelB/metabolism , 5' Flanking Region/genetics , Adult , Aged , Base Sequence , Binding Sites/genetics , Biomarkers, Tumor/genetics , Carcinoma, Squamous Cell/genetics , Carcinoma, Squamous Cell/pathology , Cell Line, Tumor , Esophageal Neoplasms/genetics , Esophageal Neoplasms/pathology , Female , Gene Expression Regulation, Neoplastic , Humans , Male , Membrane Transport Proteins/genetics , Middle Aged , Prognosis , Protein Isoforms/genetics , Protein Isoforms/metabolism , Survival Analysis
9.
J Nutr ; 148(6): 834-843, 2018 06 01.
Article in English | MEDLINE | ID: mdl-29741716

ABSTRACT

Background: Riboflavin is an essential component of the human diet and its derivative cofactors play an established role in oxidative metabolism. Riboflavin deficiency has been linked with various human diseases. Objective: The objective of this study was to identify whether riboflavin depletion promotes tumorigenesis. Methods: HEK293T and NIH3T3 cells were cultured in riboflavin-deficient or riboflavin-sufficient medium and passaged every 48 h. Cells were collected every 5 generations and plate colony formation assays were performed to observe cell proliferation. Subcutaneous tumorigenicity assays in NU/NU mice were used to observe tumorigenicity of riboflavin-depleted HEK293T cells. Mechanistically, gene expression profiling and gene ontology analysis were used to identify abnormally expressed genes induced by riboflavin depletion. Western blot analyses, cell cycle analyses, and chromatin immunoprecipitation were used to validate the expression of cell cycle-related genes. Results: Plate colony formation of NIH3T3 and HEK293T cell lines was enhanced >2-fold when cultured in riboflavin-deficient medium for 10-20 generations. Moreover, we observed enhanced subcutaneous tumorigenicity in NU/NU mice following injection of riboflavin-depleted compared with normal HEK293T cells (55.6% compared with 0.0% tumor formation, respectively). Gene expression profiling and gene ontology analysis revealed that riboflavin depletion induced the expression of cell cycle-related genes. Validation experiments also found that riboflavin depletion decreased p21 and p27 protein levels by ∼20%, and increased cell cycle-related and expression-elevated protein in tumor (CREPT) protein expression >2-fold, resulting in cyclin D1 and CDK4 levels being increased ∼1.5-fold, and cell cycle acceleration. We also observed that riboflavin depletion decreased intracellular riboflavin levels by 20% and upregulated expression of riboflavin transporter genes, particularly SLC52A3, and that the changes in CREPT and SLC52A3 correlated with specific epigenetic changes in their promoters in riboflavin-depleted HEK293T cells. Conclusion: Riboflavin depletion contributes to HEK293T and NIH3T3 cell tumorigenesis and may be a risk factor for tumor development.


Subject(s)
Carcinogenesis/drug effects , Gene Expression Regulation/drug effects , Riboflavin/metabolism , Riboflavin/pharmacology , Animals , Cell Cycle/physiology , Cell Proliferation , HEK293 Cells , Humans , Mice , NIH 3T3 Cells
10.
Cell Biochem Funct ; 36(8): 398-407, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30484863

ABSTRACT

Esophageal squamous cell carcinoma (ESCC) is a common malignancy without effective therapy. Histone deacetylase inhibitors (HDACIs) have been demonstrated as an emerging class of anticancer drugs for a range of haematological and solid tumours. However, the effect of HDACIs has not yet been investigated on ESCC cells. In this study, HDACIs were initially considered to have anticancer activity for ESCC, due to the high expression of HDAC genes in ESCC cell lines by analysing expression data of 27 ESCC cell lines from the Broad-Novartis Cancer Cell Line Encyclopedia. Next, we used five ESCC cell lines and one normal immortalized esophageal epithelial cell line to screen three HDACIs, panobinostat (LBH589), vorinostat (SAHA), and trichostatin A (TSA), for the ability to inhibit growth. Here, we report that LBH589 more effectively suppressed cell proliferation of ESCC cell lines, in a dose-dependent manner, than TSA and SAHA, as well as had lower toxicity against the SHEE normal immortalized esophageal epithelial cell line. Further experiments indicated that LBH589 treatment significantly inhibited TP53 (mutated TP53) expression, both at the mRNA and protein level, and simultaneously increased p21 and decreased cyclin D1 expression. Taken together, we propose that LBH589 inhibits ESCC cell proliferation mainly through inducing cell cycle arrest by increasing p21 and decreasing cyclin D1 in a p53-independent manner. SIGNIFICANCE OF THE STUDY: In this study, the antitumor activity of HDACIs LBH589, SAHA, and TSA on ESCC was characterized, with LBH589 displaying the most potent anti-proliferative activity while not harming normal immortalized esophageal epithelial cells. Furthermore, we propose that LBH589 exerts its anti-proliferative effect by inducing cell cycle arrest. The ability to specifically target cancer cells indicates therapeutic potential for use of LBH589 in the treatment of ESCC.


Subject(s)
Cell Cycle Checkpoints/drug effects , Histone Deacetylase Inhibitors/pharmacology , Panobinostat/pharmacology , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Cell Proliferation/drug effects , Cyclin D1/genetics , Cyclin D1/metabolism , Cyclin-Dependent Kinase Inhibitor p21/genetics , Cyclin-Dependent Kinase Inhibitor p21/metabolism , Down-Regulation/drug effects , Esophageal Neoplasms/metabolism , Esophageal Neoplasms/pathology , Esophageal Squamous Cell Carcinoma/metabolism , Esophageal Squamous Cell Carcinoma/pathology , Humans , Hydroxamic Acids/pharmacology , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism , Up-Regulation/drug effects
11.
Clin Proteomics ; 14: 6, 2017.
Article in English | MEDLINE | ID: mdl-28184180

ABSTRACT

BACKGROUND: Nasopharyngeal carcinoma (NPC) is a major head and neck cancer with high occurrence in Southeast Asia and southern China. We aimed to identify autoantibodies that may contribute to early detection of NPC. METHODS: We used serological proteome analysis to identify candidate autoantibodies against tumor-associated antigens. Levels of autoantibodies and Epstein-Barr virus capsid antigen-IgA (VCA-IgA) were measured by ELISA in 129 patients with NPC and 100 normal controls. We employed receiver operating characteristics to calculate diagnostic accuracy. RESULTS: Sera from patients with NPC yielded multiple spots, two of which were identified as PRDX2 and PRDX3. Levels of serum autoantibodies against PRDX2 and PRDX3 were significantly higher for patients with NPC than for normal controls (P < 0.01), respectively. Combined detection of autoantibodies against PRDX2 and PRDX3 and VCA-IgA provided a high diagnostic accuracy in NPC (an area under the curve (AUC) of 0.811 (95% CI 0.753-0.869), 66.7% sensitivity, and 95.0% specificity). This combination maintained diagnostic performance for early NPC with AUC value of 0.754 (95% CI 0.652-0.857), 50.0% sensitivity, and 95.0% specificity. CONCLUSIONS: This study reports autoantibodies against PRDX2 and PRDX3 identified by a proteomic approach in sera from NPC patients. Our findings suggest that autoantibodies against PRDX2 and PRDX3 may serve as supplementary biomarkers to VCA-IgA for the screening and diagnosis of NPC.

12.
Amino Acids ; 49(5): 943-955, 2017 05.
Article in English | MEDLINE | ID: mdl-28251354

ABSTRACT

Filopodia are dynamic membrane extensions generated by F-actin bundling and are involved in cancer cell migration, invasion and metastasis. Fascin is the crucial actin-bundling protein in filopodia, with phosphorylation at fascin serine 39 being well characterized to regulate fascin-mediated actin bundling in filopodia. However, increasing evidence indicates that fascin is phosphorylated at a number of sites. Whether phosphorylation at other sites also regulates fascin function is unknown. In this study, we show that four potential phosphorylation sites in fascin, specifically tyrosine 23, serine 38, serine 39 and serine 274, regulate cell behavior and filopodia formation in esophageal squamous cancer cells. Expression of non-phosphorylatable mutations at each of the four sites promoted anchorage-independent growth, cell motility and filopodia formation, whereas phosphomimetic mutations at each of these sites inhibited these cell behaviors, implying that fascin function in esophageal squamous cancer is regulated by fascin phosphorylation at multiple sites. Furthermore, phosphorylation at S38 and S39 cooperatively regulated cell behavior and filopodia formation, with dual dephosphorylation at both S38 and S39 residues maximally enhancing cell proliferation, migration and filopodia formation, and phosphorylation at any of the two phosphorylatable sites resulting in reduced enhancement. Taken together, our results reveal that phosphorylation at fascin amino acids Y23, S38, S39 and S274, in combination, downregulates the extent of anchorage-independent growth, cell migration and filopodia formation in esophageal squamous cancer cells.


Subject(s)
Carrier Proteins/metabolism , Epithelial Cells/metabolism , Microfilament Proteins/metabolism , Protein Processing, Post-Translational , Pseudopodia/metabolism , Serine/metabolism , Tyrosine/metabolism , Actins/genetics , Actins/metabolism , Carrier Proteins/genetics , Cell Line, Tumor , Cell Movement , Epithelial Cells/pathology , Esophagus/metabolism , Esophagus/pathology , Humans , Microfilament Proteins/genetics , Mutation , Phosphorylation , Pseudopodia/pathology , Pseudopodia/ultrastructure
13.
Biochim Biophys Acta ; 1853(10 Pt A): 2240-50, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26190820

ABSTRACT

Lipocalin 2 (LCN2) is a poor prognostic factor in esophageal squamous cell carcinoma (ESCC), however its functional roles and molecular mechanisms of action remain to be clarified. Here, we described the functions and signaling pathways for LCN2 in ESCC. Overexpression of LCN2 in ESCC cells accelerated cell migration and invasion in vitro, and promoted lung metastasis in vivo. Blocking LCN2 expression inhibited its pro-oncogenic effect. Either overexpression of LCN2 or treatment with recombinant human LCN2 protein enhanced the activation of MEK/ERK pathway, which in turn increases endogenous LCN2 to increase MMP-9 activity. The decreased p-cofilin and increased p-ERM induced by pERK1/2 cause the cytoskeleton F-actin rearrangement and alter the behavior of ESCC cells mediated by LCN2. As a consequence, activation of MMP-9 and the rearrangement of F-actin throw light on the mechanisms for LCN2 in ESCC. These results imply that LCN2 promotes the migration and invasion of ESCC cells through a novel positive feedback loop.


Subject(s)
Acute-Phase Proteins/metabolism , Carcinoma, Squamous Cell/metabolism , Cell Movement , Esophageal Neoplasms/metabolism , Lipocalins/metabolism , MAP Kinase Signaling System , Neoplasm Proteins/metabolism , Proto-Oncogene Proteins/metabolism , Actins/genetics , Actins/metabolism , Acute-Phase Proteins/genetics , Carcinoma, Squamous Cell/genetics , Carcinoma, Squamous Cell/pathology , Cell Line, Tumor , Cytoskeleton/genetics , Cytoskeleton/metabolism , Esophageal Neoplasms/genetics , Esophageal Neoplasms/pathology , Humans , Lipocalin-2 , Lipocalins/genetics , Matrix Metalloproteinase 9/genetics , Matrix Metalloproteinase 9/metabolism , Mitogen-Activated Protein Kinase 1/genetics , Mitogen-Activated Protein Kinase 1/metabolism , Mitogen-Activated Protein Kinase 3/genetics , Mitogen-Activated Protein Kinase 3/metabolism , Neoplasm Invasiveness/genetics , Neoplasm Invasiveness/pathology , Neoplasm Proteins/genetics , Proto-Oncogene Proteins/genetics
14.
Carcinogenesis ; 35(2): 292-301, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24064224

ABSTRACT

To further our understanding of the pathobiology of esophageal squamous cell carcinoma (ESCC), we previously performed microRNA profiling that revealed downregulation of miR-200b in ESCC. Using quantitative real-time PCR applied to 88 patient samples, we confirmed that ESCC tumors expressed significantly lower levels of miR-200b compared with the respective adjacent benign tissues (P = 0.003). Importantly, downregulation of miR-200b significantly correlated with shortened survival (P = 0.025), lymph node metastasis (P = 0.002) and advanced clinical stage (P = 0.020) in ESCC patients. Quantitative mass spectrometry identified 57 putative miR-200b targets, including Kindlin-2, previously implicated in the regulation of tumor invasiveness and actin cytoskeleton in other cell types. Enforced expression of miR-200b mimic in ESCC cells led to a decrease of Kindlin-2 expression, whereas transfection of miR-200b inhibitor induced Kindlin-2 expression. Furthermore, transfection of miR-200b mimic or knockdown of Kindlin-2 in ESCC cells decreased cell protrusion and focal adhesion (FA) formation, reduced cell spreading and invasiveness/migration. Enforced expression of Kindlin-2 largely abrogated the inhibitory effects of miR-200b on ESCC cell invasiveness. Mechanistic studies revealed that Rho-family guanosine triphosphatases and FA kinase mediated the biological effects of the miR-200b-Kindlin-2 axis in ESCC cells. To conclude, loss of miR-200b, a frequent biochemical defect in ESCC, correlates with aggressive clinical features. The tumor suppressor effects of miR-200b may be due to its suppression of Kindlin-2, a novel target of miR-200b that modulates actin cytoskeleton, FA formation and the migratory/invasiveness properties of ESCC.


Subject(s)
Carcinoma, Squamous Cell/pathology , Cytoskeleton/metabolism , Esophageal Neoplasms/pathology , Focal Adhesions/physiology , Membrane Proteins/genetics , MicroRNAs/genetics , Neoplasm Proteins/genetics , Carcinoma, Squamous Cell/genetics , Carcinoma, Squamous Cell/mortality , Cell Adhesion/physiology , Cell Movement/physiology , Cell Proliferation , Esophageal Neoplasms/genetics , Esophageal Neoplasms/mortality , Female , Humans , Lymphatic Metastasis , Male , Middle Aged , Mutagenesis, Site-Directed , Mutation/genetics , Neoplasm Invasiveness , Phosphorylation , Prognosis , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Survival Rate , Tumor Cells, Cultured
15.
Biochem Cell Biol ; 92(5): 379-89, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25275797

ABSTRACT

Lysyl oxidase-like 2 (LOXL2) participates in every stage of cancer progression and promotes invasion and metastasis. In this study, we identified a novel alternative splicing isoform of LOXL2, namely LOXL2 Δe13, which lacked exon 13. Deletion of exon 13 caused an open reading frame shift and produced a truncated protein. LOXL2 Δe13 was expressed ubiquitously in cell lines and tissues and was mainly localized to the cytoplasm. Although it showed impaired deamination enzymatic activity compared with full-length LOXL2, LOXL2 Δe13 promoted the cell mobility and invasion of esophageal squamous cell carcinoma (ESCC) cells to greater degrees. In further research on the mechanisms, gene expression profiling and signaling pathway analysis revealed that LOXL2 Δe13 induced the expression of MAPK8 without affecting the FAK, AKT, and ERK signaling pathways. RNAi-mediated knockdown of MAPK8 could block the cell migration promoted by LOXL2De13, but it had little effect on that of full-length LOXL2. Our data suggest that LOXL2 Δe13 modulates the effects of cancer cell migration and invasion through a different mechanism from that of full-length LOXL2 and that it may play a very important role in tumor carcinogenesis and progression.


Subject(s)
Amino Acid Oxidoreductases/genetics , Carcinoma, Squamous Cell/genetics , Esophageal Neoplasms/genetics , Protein Isoforms , Alternative Splicing/genetics , Amino Acid Oxidoreductases/metabolism , Carcinoma, Squamous Cell/enzymology , Carcinoma, Squamous Cell/pathology , Cell Line, Tumor , Cell Movement , Esophageal Neoplasms/enzymology , Esophageal Neoplasms/pathology , Esophageal Squamous Cell Carcinoma , Focal Adhesion Kinase 1/metabolism , Gene Expression Profiling/methods , Gene Expression Regulation, Neoplastic/genetics , Humans , Neoplasm Invasiveness , Protein Isoforms/genetics , Signal Transduction/physiology
16.
J Pathol ; 231(2): 257-70, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23836524

ABSTRACT

In contrast to the well-recognized loss of adherens junctions in cancer progression, the role of desmosomal components in cancer development has not been well explored. We previously demonstrated that desmocollin-2 (DSC2), a desmosomal cadherin protein, is reduced in oesophageal squamous cell carcinoma (ESCC), and is associated with enhanced tumour metastasis and poor prognosis. Here, we report that restoration of DSC2 in ESCC cells impeded cell migration and invasion both in vitro and in vivo, whereas siRNA-mediated suppression of DSC2 expression increased cell motility. In E-cadherin-expressing ESCC cells, DSC2 restoration strengthened E-cadherin-mediated adherens junctions and promoted the localization of ß-catenin at these junctions, which indirectly inhibited ß-catenin-dependent transcription. These effects of DSC2 were not present in EC109 cells that lacked E-cadherin expression. ESCC patients with tumours that had reduced E-cadherin and negative DSC2 had poorer clinical outcomes than patients with tumours that lacked either E-cadherin or DSC2, implying that the invasive potential of ESCC cells was restricted by both DSC2 and E-cadherin-dependent junctions. Further studies revealed that DSC2 was a downstream target of miR-25. Enhanced miR-25 promoted ESCC cell invasiveness, whereas restoration of DSC2 abolished these effects. Collectively, our work suggests that miR-25-mediated down-regulation of DSC2 promotes ESCC cell aggressiveness through redistributing adherens junctions and activating beta-catenin signalling.


Subject(s)
Carcinoma, Squamous Cell/metabolism , Desmocollins/metabolism , Esophageal Neoplasms/metabolism , MicroRNAs/metabolism , Neoplasm Invasiveness/genetics , Signal Transduction/physiology , beta Catenin/metabolism , Adherens Junctions/genetics , Adherens Junctions/metabolism , Adherens Junctions/pathology , Adult , Aged , Animals , Carcinoma, Squamous Cell/genetics , Carcinoma, Squamous Cell/pathology , Cell Line, Tumor , Desmocollins/genetics , Down-Regulation , Esophageal Neoplasms/genetics , Esophageal Neoplasms/pathology , Esophageal Squamous Cell Carcinoma , Female , Gene Expression Regulation, Neoplastic/genetics , Humans , Male , Mice , Mice, Nude , MicroRNAs/genetics , Middle Aged , Neoplasm Invasiveness/pathology , Transfection , Transplantation, Heterologous
17.
Biomedicines ; 11(4)2023 Apr 16.
Article in English | MEDLINE | ID: mdl-37189802

ABSTRACT

(1) Background: Esophageal cancer (EC) is an important global health challenge. Due to the lack of necessary biomarkers and therapeutic targets, the survival of EC patients is poor. The EC proteomic data of 124 patients recently published by our group provides a database for research in this field. (2) Methods: Bioinformatics analysis was used to identify DNA replication and repair-related proteins in EC. Proximity ligation assay, colony formation assay, DNA fiber assay, and flow cytometry were used to study the effects of related proteins on EC cells. Kaplan-Meier survival analysis was used to evaluate the relationship between gene expression and the survival time of EC patients. (3) Results: Chromatin assembly factor 1 subunit A (CHAF1A) was highly correlated with proliferating cell nuclear antigen (PCNA) expression in EC. CHAF1A and PCNA colocalized in the nucleus of EC cells. Compared with the knockdown of CHAF1A or PCNA alone, the double knockdown of CHAF1A and PCNA could significantly inhibit EC cell proliferation. Mechanistically, CHAF1A and PCNA synergistically accelerated DNA replication and promoted S-phase progression. EC patients with high expression of both CHAF1A and PCNA had a worse survival rate. (4) Conclusion: we identify CHAF1A and PCNA as key cell cycle-related proteins leading to the malignant progression of EC, and these proteins could serve as important prognostic biomarkers and targets for EC.

18.
Cell Death Differ ; 30(2): 527-543, 2023 02.
Article in English | MEDLINE | ID: mdl-36526897

ABSTRACT

Anillin (ANLN) is a mitosis-related protein that promotes contractile ring formation and cytokinesis, but its cell cycle-dependent degradation mechanisms in cancer cells remain unclear. Here, we show that high expression of ANLN promotes cytokinesis and proliferation in esophageal squamous cell carcinoma (ESCC) cells and is associated with poor prognosis in ESCC patients. Furthermore, the findings of the study showed that the deubiquitinating enzyme USP10 interacts with ANLN and positively regulates ANLN protein levels. USP10 removes the K11- and K63-linked ubiquitin chains of ANLN through its deubiquitinase activity and prevents ANLN ubiquitin-mediated degradation. Importantly, USP10 promotes contractile ring assembly at the cytokinetic furrow as well as cytokinesis by stabilizing ANLN. Interestingly, USP10 and the E3 ubiquitin ligase APC/C co-activator Cdh1 formed a functional complex with ANLN in a non-competitive manner to balance ANLN protein levels. In addition, the macrolide compound FW-04-806 (F806), a natural compound with potential for treating ESCC, inhibited the mitosis of ESCC cells by targeting USP10 and promoting ANLN degradation. F806 selectively targeted USP10 and inhibited its catalytic activity but did not affect the binding of Cdh1 to ANLN and alters the balance of the USP10-Cdh1-ANLN complex. Additionally, USP10 expression was positively correlated with ANLN level and poor prognosis of ESCC patients. Overall, targeting the USP10-ANLN axis can effectively inhibit ESCC cell-cycle progression.


Subject(s)
Esophageal Neoplasms , Esophageal Squamous Cell Carcinoma , Humans , Esophageal Squamous Cell Carcinoma/genetics , Esophageal Neoplasms/metabolism , Contractile Proteins/metabolism , Ubiquitin/metabolism , Cell Proliferation , Cell Line, Tumor , Ubiquitin Thiolesterase/genetics , Ubiquitin Thiolesterase/metabolism
19.
J Surg Oncol ; 105(2): 175-82, 2012 Feb.
Article in English | MEDLINE | ID: mdl-21882196

ABSTRACT

BACKGROUND AND OBJECTIVES: microRNAs (miRNAs), small non-coding RNAs, are always aberrantly expressed in many diseases including human cancers. The aim of this study was to examine and determine the clinical significance of hsa-miR-31, hsa-miR-142-3p, hsa-miR-338-3p, and hsa-miR-1261 expression in esophageal squamous cell carcinoma (ESCC). METHODS: Expression levels of four selected miRNAs, initially evaluated by microarray, were validated by qRT-PCR. Various statistical methods were used to analyze the relationship between miRNA expression and clinicopathologic features and prognosis in 91 patients with ESCC. RESULTS: MiR-31 and miR-142-3p expression were correlated to histological differentiation in ESCC (P < 0.05, Student's t-test); high miR-142-3p expression was associated with a poor prognosis in all 91 ESCC patients (P = 0.014, log-rank) and identified as an independent prognostic factor in ESCC (P = 0.017, univariate Cox; P = 0.022, multivariate Cox). More importantly, stratified analysis indicated that high miR-142-3p expression was correlated to a poor prognosis within good-prognosis groups comprised of ESCC patients with small tumor size, negative lymph node metastasis, or early stage (all P < 0.05). CONCLUSION: The main findings suggest that miR-142-3p is involved in the progression of ESCC and is a potential prognostic biomarker for ESCC.


Subject(s)
Biomarkers, Tumor/genetics , Carcinoma, Squamous Cell/genetics , Esophageal Neoplasms/genetics , MicroRNAs/genetics , Adult , Aged , Aged, 80 and over , Carcinoma, Squamous Cell/mortality , Carcinoma, Squamous Cell/pathology , Case-Control Studies , Esophageal Neoplasms/mortality , Esophageal Neoplasms/pathology , Esophagus/metabolism , Esophagus/pathology , Female , Follow-Up Studies , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , Humans , Lymphatic Metastasis , Male , Middle Aged , Neoplasm Invasiveness , Neoplasm Staging , Oligonucleotide Array Sequence Analysis , Prognosis , RNA, Messenger/genetics , Real-Time Polymerase Chain Reaction , Reverse Transcriptase Polymerase Chain Reaction , Survival Rate
20.
Cell Death Dis ; 13(5): 496, 2022 05 25.
Article in English | MEDLINE | ID: mdl-35614034

ABSTRACT

Esophageal squamous cell carcinoma (ESCC) is one of the world's leading causes of death, and its primary clinical therapy relies on surgical resection, chemotherapy, radiotherapy, and chemoradiotherapy. Although the genomic features and clinical significance of ESCC have been identified, the outcomes of targeted therapies are still unsatisfactory. Here, we demonstrate that mitogen-activated protein kinase (MAPK) signaling is highly activated and associated with poor prognosis in patients with ESCC. Mitogen-activated protein kinase kinase (MEK) inhibitors efficiently blocked the phosphorylation of extracellular signal-regulated kinase 1/2 (ERK1/2) in ESCC, while signal transducer and activator of transcription 3 (STAT3) signaling was rapidly activated. Combined STAT3 inhibition prevented the emergence of resistance and enhanced MEK inhibitor-induced cell cycle arrest and senescence in vitro and in vivo. Mechanistic studies revealed that the suppressor of cytokine signaling 3 (SOCS3) was downregulated, resulting in an increase in STAT3 phosphorylation in MEK-inhibited cells. Furthermore, chromatin immunoprecipitation showed that ELK1, which was activated by MEK/ERK signaling, induced SOCS3 transcription. These data suggest that the development of combined MEK and STAT3 inhibition could be a useful strategy in ESCC targeted therapy.


Subject(s)
Esophageal Neoplasms , Esophageal Squamous Cell Carcinoma , MAP Kinase Signaling System , Mitogen-Activated Protein Kinase Kinases , Protein Kinase Inhibitors , STAT3 Transcription Factor , Cell Line, Tumor , Esophageal Neoplasms/drug therapy , Esophageal Neoplasms/genetics , Esophageal Neoplasms/metabolism , Esophageal Squamous Cell Carcinoma/drug therapy , Esophageal Squamous Cell Carcinoma/genetics , Esophageal Squamous Cell Carcinoma/metabolism , Humans , MAP Kinase Signaling System/drug effects , Mitogen-Activated Protein Kinase Kinases/antagonists & inhibitors , Mitogen-Activated Protein Kinase Kinases/metabolism , Protein Kinase Inhibitors/pharmacology , STAT3 Transcription Factor/antagonists & inhibitors , STAT3 Transcription Factor/genetics , STAT3 Transcription Factor/metabolism , Signal Transduction/drug effects , Suppressor of Cytokine Signaling Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL