ABSTRACT
As a type of parasitic agent, satellite RNAs (satRNAs) rely on cognate helper viruses to achieve their replication and transmission. During the infection of satRNAs, helper virus RNAs serve as templates for synthesizing viral proteins, including the replication proteins essential for satRNA replication. However, the role of non-template functions of helper virus RNAs in satRNA replication remains unexploited. Here we employed the well-studied model that is composed of cucumber mosaic virus (CMV) and its associated satRNA. In the experiments employing the CMV trans-replication system, we observed an unexpected phenomenon the replication proteins of the mild strain LS-CMV exhibited defective in supporting satRNA replication, unlike those of the severe strain Fny-CMV. Independent of translation products, all CMV genomic RNAs could enhance satRNA replication, when combined with the replication proteins of CMV. This enhancement is contingent upon the recruitment and complete replication of helper virus RNAs. Using the method developed for analyzing the satRNA recruitment, we observed a markedly distinct ability of the replication proteins from both CMV strains to recruit the positive-sense satRNA-harboring RNA3 mutant for replication. This is in agreement with the differential ability of both 1a proteins in binding satRNAs in plants. The discrepancies provide a convincing explanation for the variation of the replication proteins of both CMV strains in replicating satRNAs. Taken together, our work provides compelling evidence that the non-template functions of helper virus RNAs create an optimal replication environment to enhance satRNA proliferation.
Subject(s)
Cucumovirus , Helper Viruses , RNA, Satellite , RNA, Viral , Virus Replication , Helper Viruses/genetics , Helper Viruses/physiology , Cucumovirus/genetics , Cucumovirus/metabolism , Cucumovirus/physiology , RNA, Satellite/metabolism , RNA, Satellite/genetics , RNA, Viral/genetics , RNA, Viral/metabolism , Plant Diseases/virology , Nicotiana/virology , Nicotiana/metabolism , Nicotiana/genetics , Viral Proteins/metabolism , Viral Proteins/geneticsABSTRACT
Tomato spotted wilt virus-mediated delivery of CRISPR/Cas9 bypasses the need for stable transformation and permits efficient, DNA-free genome editing in pepper. Remarkably, up to 77.9% of regenerated pepper plants contained heritable edits. This method has been validated with two pepper varieties and is compatible with existing tissue culture protocols.
Subject(s)
CRISPR-Cas Systems , Capsicum , Gene Editing , Gene Editing/methods , Capsicum/genetics , Capsicum/virology , CRISPR-Cas Systems/genetics , Genome, Plant/genetics , RNA Viruses/genetics , Tospovirus/genetics , Tospovirus/physiologyABSTRACT
Virus-induced gene silencing (VIGS) is a versatile and attractive approach for functional gene characterization in plants. Although several VIGS vectors for maize (Zea mays) have been previously developed, their utilities are limited due to low viral infection efficiency, insert instability, short maintenance of silencing, inadequate inoculation method, or abnormal requirement of growth temperature. Here, we established a Cucumber mosaic virus (CMV)-based VIGS system for efficient maize gene silencing that overcomes many limitations of VIGS currently available for maize. Using two distinct strains, CMV-ZMBJ and CMV-Fny, we generated a pseudorecombinant-chimeric (Pr) CMV. Pr CMV showed high infection efficacy but mild viral symptoms in maize. We then constructed Pr CMV-based vectors for VIGS, dubbed Pr CMV VIGS. Pr CMV VIGS is simply performed by mechanical inoculation of young maize leaves with saps of Pr CMV-infected Nicotiana benthamiana under normal growth conditions. Indeed, suppression of isopentenyl/dimethylallyl diphosphate synthase (ZmIspH) expression by Pr CMV VIGS resulted in non-inoculated leaf bleaching as early as 5 d post-inoculation (dpi) and exhibited constant and efficient systemic silencing over the whole maize growth period up to 105 dpi. Furthermore, utilizing a ligation-independent cloning (LIC) strategy, we developed a modified Pr CMV-LIC VIGS vector, allowing easy gene cloning for high-throughput silencing in maize. Thus, our Pr CMV VIGS system provides a much-improved toolbox to facilitate efficient and long-duration gene silencing for large-scale functional genomics in maize, and our pseudorecombination-chimera combination strategy provides an approach to construct efficient VIGS systems in plants.
Subject(s)
Cucumovirus/physiology , Gene Silencing , Genomics , Zea mays/virology , Chimera , Nicotiana/physiologyABSTRACT
As a class of parasitic, non-coding RNAs, satellite RNAs (satRNAs) have to compete with their helper virus for limited amounts of viral and/or host resources for efficient replication, by which they usually reduce viral accumulation and symptom expression. Here, we report a cucumber mosaic virus (CMV)-associated satRNA (sat-T1) that ameliorated CMV-induced symptoms, accompanied with a significant reduction in the accumulation of viral genomic RNAs 1 and 2, which encode components of the viral replicase. Intrans replication assays suggest that the reduced accumulation is the outcome of replication competition. The structural basis of sat-T1 responsible for the inhibition of viral RNA accumulation was determined to be a three-way branched secondary structure that contains two biologically important hairpins. One is indispensable for the helper virus inhibition, and the other engages in formation of a tertiary pseudoknot structure that is essential for sat-T1 survival. The secondary structure containing the pseudoknot is the first RNA element with a biological phenotype experimentally identified in CMV satRNAs, and it is structurally conserved in most CMV satRNAs. Thus, this may be a generic method for CMV satRNAs to inhibit the accumulation of the helper virus via the newly-identified RNA structure.
Subject(s)
Cucumber Mosaic Virus Satellite/metabolism , Cucumovirus/physiology , Helper Viruses/physiology , Nicotiana/virology , Plant Diseases/virology , RNA, Viral/metabolism , Base Sequence , Cucumber Mosaic Virus Satellite/chemistry , Cucumber Mosaic Virus Satellite/genetics , Cucumovirus/genetics , Helper Viruses/genetics , Mutation , Nucleic Acid Conformation , RNA, Viral/chemistry , RNA, Viral/genetics , Virus Replication/geneticsABSTRACT
Pyricularia oryzae is the causal agent of blast disease on staple gramineous crops. Sulphur is an essential element for the biosynthesis of cysteine and methionine in fungi. Here, we targeted the P. oryzae PoMET3 encoding the enzyme ATP sulfurylase, and PoMET14 encoding the APS (adenosine-5'-phosphosulphate) kinase that are involved in sulfate assimilation and sulphur-containing amino acids biosynthesis. In P. oryzae, deletion of PoMET3 or PoMET14 separately results in defects of conidiophore formation, significant impairments in conidiation, methionine and cysteine auxotrophy, limited invasive hypha extension, and remarkably reduced virulence on rice and barley. Furthermore, the defects of the null mutants could be restored by supplementing with exogenous cysteine or methionine. Our study explored the biological functions of sulfur assimilation and sulphur-containing amino acids biosynthesis in P. oryzae.
Subject(s)
Ascomycota/physiology , Phosphotransferases (Alcohol Group Acceptor)/metabolism , Sulfate Adenylyltransferase/metabolism , Ascomycota/drug effects , Cysteine/metabolism , Cysteine/pharmacology , Gene Deletion , Hordeum/microbiology , Hyphae/pathogenicity , Hyphae/physiology , Methionine/metabolism , Methionine/pharmacology , Mutation , Oryza/microbiology , Phosphotransferases (Alcohol Group Acceptor)/genetics , Plant Diseases/microbiology , Spores, Fungal , Sulfate Adenylyltransferase/genetics , VirulenceABSTRACT
Pyricularia oryzae is the causal pathogen of rice blast disease. Autophagy has been shown to play important roles in P. oryzae development and plant infection. The P. oryzae endosomal system is highly dynamic and has been shown to be associated with conidiogenesis and pathogenicity as well. To date, the crosstalk between autophagy and endocytosis has not been explored in P. oryzae. Here, we identified three P. oryzae VPS9 domain-containing proteins, PoVps9, PoMuk1 and PoVrl1. We found that PoVps9 and PoMuk1 are localized to vesicles and are each co-localized with PoVps21, a recognized marker of early endosomes. Deletion of PoVPS9 resulted in severe defects in endocytosis and autophagosome degradation and impaired the localization of PoVps21 to endosomes. Additionally, deletion of the PoMUK1 gene in the ΔPovps9 mutant background exhibited more severe defects in development, autophagy and endocytosis compared with the ΔPovps9 mutant. Pull-down assay showed that PoVps9 interacts with PoVps21, PoRab11 and PoRab1, which have been verified to participate in endocytosis. Furthermore, yeast two-hybrid and co-immunoprecipitation assays confirmed that PoVps9 directly interacts with the GDP form of PoVps21. Thus, PoVps9 is a key protein involved in autophagy and in endocytosis.
Subject(s)
Autophagy/genetics , Endocytosis/genetics , Fungal Proteins/genetics , Magnaporthe/genetics , Magnaporthe/pathogenicity , Oryza/microbiology , Endocytosis/physiology , Endosomes/genetics , Endosomes/metabolism , Plant Diseases/microbiology , Protein Domains/geneticsABSTRACT
UNLABELLED: The Cucumber Mosaic Virus (CMV) 2b protein is an RNA-silencing suppressor that plays roles in CMV accumulation and virulence. The 2b proteins of subgroup IA CMV strains partition between the nucleus and cytoplasm, but the biological significance of this is uncertain. We fused an additional nuclear localization signal (NLS) to the 2b protein of subgroup IA strain Fny-CMV to create 2b-NLS and tested its effects on subcellular distribution, silencing, and virulence. The additional NLS enhanced 2b protein nuclear and nucleolar accumulation, but nuclear and nucleolar enrichment correlated with markedly diminished silencing suppressor activity in patch assays and abolished 2b protein-mediated disruption of microRNA activity in transgenic Arabidopsis. Nucleus/nucleolus-localized 2b protein possesses at least some ability to inhibit antiviral silencing, but this was not sufficient to prevent recovery from disease in younger, developing leaves in Arabidopsis. However, enhanced nuclear and nucleolar accumulation of 2b increased virulence and accelerated symptom appearance in older leaves. Experiments with Arabidopsis lines carrying mutant Dicer-like alleles demonstrated that compromised suppressor activity explained the diminished ability of 2b-NLS to enhance virus accumulation. Remarkably, the increased virulence that 2b-NLS engendered was unrelated to effects on microRNA- or short interfering RNA-regulated host functions. Thus, although nucleus- and nucleolus-localized 2b protein is less efficient at silencing suppression than cytoplasm-localized 2b, it enhances CMV virulence. We propose that partitioning of the 2b protein between the cytoplasmic and nuclear/nucleolar compartments allows CMV to regulate the balance between virus accumulation and damage to the host, presumably to maximize the benefit for the virus. IMPORTANCE: In this work, the main finding is that nucleus/nucleolus-localized 2b protein is strongly associated with CMV virulence, which is independent of its effect on small RNA pathways. Moreover, this work supports the contention that the silencing suppressor activity of CMV 2b protein is predominantly exerted by that portion of the 2b protein residing in the cytoplasm. Thus, we propose that partitioning of the 2b protein between the cytoplasmic and nuclear/nucleolar compartments allows CMV to regulate the balance between virus accumulation and damage to the host, presumably to maximize the benefit for the virus.
Subject(s)
Cell Nucleus/metabolism , Cucumovirus/physiology , Cytoplasm/metabolism , Host-Pathogen Interactions , RNA Interference , Viral Proteins/metabolism , Virulence Factors/metabolism , Arabidopsis/immunology , Arabidopsis/virology , Cell Nucleus/chemistry , Cytoplasm/chemistry , Plant Diseases/immunology , Plant Diseases/virology , Plant Leaves/virology , Plants, Genetically ModifiedABSTRACT
Nucleotide-binding leucine-rich repeat (NLR) proteins contribute widely to plant immunity by regulating defense mechanisms through the elicitation of a hypersensitive response (HR). Here, we find that TaRACK1B (the receptor for activated C-kinase 1B) regulates wheat immune response against Chinese wheat mosaic virus (CWMV) infection. TaRACK1B recruits TaSGT1 and TaHSP90 to form the TaRACK1B-TaSGT1-TaHSP90 complex. This complex is essential for maintaining NLR proteins' stability (TaRGA5-like and TaRGH1A-like) in order to control HR activation and inhibit viral infection. However, the cysteine-rich protein encoded by CWMV can disrupt TaRACK1B-TaSGT1-TaHSP90 complex formation, leading to the reduction of NLR-protein stability and suppression of HR activation, thus promoting CWMV infection. Interestingly, the 7K protein of wheat yellow mosaic virus also interferes with this antiviral immunity. Our findings show a shared viral counter-defense strategy whereby two soil-borne viruses may disrupt the TaRACK1B-TaSGT1-TaHSP90 complex, suppressing NLR-protein-mediated broad-spectrum antiviral immunity and promoting viral infection in wheat.
Subject(s)
NLR Proteins , Plant Diseases , Plant Immunity , Plant Proteins , Triticum , Triticum/immunology , Triticum/virology , Triticum/genetics , Plant Proteins/metabolism , Plant Proteins/immunology , Plant Proteins/genetics , Plant Diseases/virology , Plant Diseases/immunology , NLR Proteins/metabolism , HSP90 Heat-Shock Proteins/metabolism , Protein BindingABSTRACT
The necrogenic strain N5 of tomato mosaic virus (ToMV-N5) causes systemic necrosis in tomato cultivar Hezuo903. In this work, we mapped the viral determinant responsible for the induction of systemic necrosis. By exchanging viral genes between N5 and a non-necrogenic strain S1, we found that movement protein (MP) was the determinant for the differential symptoms caused by both strains. Compared with S1 MP, N5 MP had an additional ability to increase virus accumulation, which was not due to its functions in viral cell-to-cell movement. Actually, N5 MP, but not S1 MP, was a weak RNA silencing suppressor, which assisted viral accumulation. Sequence alignment showed that both MPs differed by only three amino acid residues. Experiments with viruses having mutated MPs indicated that the residue isoleucine at position 170 in MP was the key site for MP to increase virus accumulation, but also was required for MP to induce systemic necrosis in virus-infected tomato plants. Collectively, the lethal necrosis caused by N5 is dependent on its MP protein that enhances virus accumulation via its RNA silencing suppressor activity, probably leading to systemic necrosis responses in tomato plants.
Subject(s)
Solanum lycopersicum , Tobamovirus , Viral Proteins/chemistry , Tobamovirus/genetics , Plants , Necrosis , Plant Diseases , Plant Viral Movement Proteins/genetics , Plant Viral Movement Proteins/metabolism , NicotianaABSTRACT
Southern rice black-streaked dwarf virus (SRBSDV; Fijivirus, Reoviridae) has become a threat to cereal production in East Asia in recent years. Our previous cytopathologic studies have suggested that SRBSDV induces a process resembling programmed cell death in infected tissues that results in distinctive growth abnormalities. The viral product responsible for the cell death, however, remains unknown. Here P9-2 protein, but not its RNA, was shown to induce cell death in Escherichia coli and plant cells when expressed either locally with a transient expression vector or systemically using a heterologous virus. Both computer prediction and fluorescent assays indicated that the viral nonstructural protein was targeted to the plasma membrane (PM) and further modification of its subcellular localization abolished its ability to induce cell death, indicating that its PM localization was required for the cell death induction. P9-2 was predicted to harbour two transmembrane helices within its central hydrophobic domain. A series of mutation assays further showed that its central transmembrane hydrophobic domain was crucial for cell death induction and that its conserved F90, Y101, and L103 amino acid residues could play synergistic roles in maintaining its ability to induce cell death. Its homologues in other fijiviruses also induced cell death in plant and bacterial cells, implying that the fijiviral nonstructural protein may trigger cell death by targeting conserved cellular factors or via a highly conserved mechanism.
Subject(s)
Oryza , Oryza/metabolism , Viral Nonstructural Proteins/genetics , Cell Death , Plant DiseasesABSTRACT
MicroRNAs (miRNAs) are a class of small RNAs that affect the morphological and physiological development of plants. In recent years, there is accumulating evidence that miRNAs are involved in defense mechanism of host plants. Therefore, investigating the alteration of miRNAs expression profiles after virus infection will provide new insights for understanding the sophisticated virus-host plant interaction. The current miRNA sequence database (miRBase) contains more than 1669 mature plant miRNAs across 25 species, but few tomato miRNAs are reported. Here we created a microarray suitable for detection of plant miRNAs based on the conservative character of miRNAs, and a total of 105 conserved plant miRNAs were detected from tomato leaf tissues. Among them, 85% of the detected miRNAs showed significant expression alterations when infected by different strains of cucumber mosaic virus (CMV) and N5 strain of tomato mosaic virus (ToMV). Combination with their symptoms development, interferences of CMV 2b protein and alleviated/aggravated satellite RNA on host miRNA pathway were discussed, and the differences in interference mechanisms between CMV and ToMV on host miRNA pathway were compared. Our results represent the comprehensive investigation of tomato miRNAs on a genome scale thus far and provide information to study the interaction between plant viruses and host plants.
Subject(s)
Cucumovirus/physiology , Oligonucleotide Array Sequence Analysis/methods , Plant Diseases/genetics , Plant Diseases/virology , Solanum lycopersicum/genetics , Solanum lycopersicum/virology , Tobamovirus/physiologyABSTRACT
A large number of viral delivery systems have been developed for characterizing functional genes and producing heterologous recombinant proteins in plants, and but most of them are unable to co-express two fusion-free foreign proteins in the whole plant for extended periods of time. In this study, we modified tobacco rattle virus (TRV) as a TRVe dual delivery vector, using the strategy of gene substitution. The reconstructed TRVe had the capability to simultaneously produce two fusion-free foreign proteins at the whole level of Nicotiana benthamiana, and maintained the genetic stability for the insert of double foreign genes. Moreover, TRVe allowed systemic expression of two foreign proteins with the total lengths up to â¼900 aa residues. In addition, Cas12a protein and crRNA were delivered by the TRVe expression system for site-directed editing of genomic DNA in N. benthamiana 16c line constitutively expressing green fluorescent protein (GFP). Taker together, the TRV-based delivery system will be a simple and powerful means to rapidly co-express two non-fused foreign proteins at the whole level and facilitate functional genomics studies in plants.
Subject(s)
CRISPR-Cas Systems , Plant Viruses , Indicators and Reagents/metabolism , Plant Viruses/genetics , Nicotiana/metabolism , Recombinant Proteins/metabolism , Gene Expression , Genetic Vectors/geneticsABSTRACT
Nigrospora nonsegmented RNA virus 1 (NoNRV1) has been reported previously in the fungus Nigrospora oryzae, but its biological effects on its host are unknown. In this work, we isolated a strain 9-1 of N. oryzae from a chrysanthemum leaf and identified NoNRV1 infection in the isolated strain. The genome sequence of NoNRV1 identified here is highly homologous to that of the isolate HN-21 of NoNRV1 previously reported; thus, we tentatively designated the newly identified NoNRV1 as NoNRV1-ZJ. Drug treatment with Ribavirin successfully removed NoNRV1-ZJ from the strain 9-1, which provided us with an ideal control to determine the biological impacts of NoNRV1 infection on host fungi. By comparing the virus-carrying (9-1) and virus-cured (9-1C) strains, our results indicated that infection with NoNRV1 promoted the pigmentation of the host cells, while it had no discernable effects on host growth on potato dextrose agar plates when subjected to osmotic or oxidative stress. Interestingly, we observed inhibitory impacts of virus infection on the thermotolerance of N. oryzae and the pathogenicity of the host fungus in cotton leaves. Collectively, our work provides clear evidence of the biological relevance of NoNRV1 infection in N. oryzae, including pigmentation, hypovirulence, and thermotolerance.
Subject(s)
Fungal Viruses , RNA Viruses , Fungal Viruses/genetics , Phylogeny , Plant Diseases/microbiology , RNA Viruses/genetics , VirulenceABSTRACT
The Chinese wheat mosaic virus (CWMV) genome consists of two positive-strand RNAs that are required for CWMV replication and translation. The eukaryotic translation elongation factor (eEF1A) is crucial for the elongation of protein translation in eukaryotes. Here, we show that silencing eEF1A expression in Nicotiana benthamiana plants by performing virus-induced gene silencing can greatly reduce the accumulation of CWMV genomic RNAs, whereas overexpression of eEF1A in plants increases the accumulation of CWMV genomic RNAs. In vivo and in vitro assays showed that eEF1A does not interact with CWMV RNA-dependent RNA polymerase. Electrophoretic mobility shift assays revealed that eEF1A can specifically bind to the 3'-untranslated region (UTR) of CWMV genomic RNAs. By performing mutational analyses, we determined that the conserved region in the 3'-UTR of CWMV genomic RNAs is necessary for CWMV replication and translation, and that the sixth stem-loop (SL-6) in the 3'-UTR of CWMV genomic RNAs plays a key role in CWMV infection. We conclude that eEF1A is an essential host factor for CWMV infection. This finding should help us to develop new strategies for managing CWMV infections in host plants.
Subject(s)
3' Untranslated Regions , Peptide Elongation Factors , Plant Diseases/virology , Plant Viruses , Plant Viruses/pathogenicity , RNA, Viral/genetics , Nicotiana/virologyABSTRACT
MicroRNAs (miRNAs) are a class of highly conserved endogenous non-coding small RNAs crossing kingdoms of organisms. By searching known miRNAs identified from plant species against tomato nucleotide sequences, 13 pre-miRNAs of the nine mature miRNAs were found, amongst, six had been cloned. To confirm our prediction, a miRNA-detecting microarray was designed with probes complementary to all non-redundant mature plant miRNAs documented to date. After hybridizing with small RNAs extracted from tomato leaf tissue, 78 highly expressed mature miRNAs were detected, including all the miRNAs predicted above. Conformation of some miRNAs expression by Northern hybridization indicated that they were highly accumulated not only in leaf tissues but also in roots and stems. Additional BLAST searches with newly recognized miRNAs against tomato mRNAs from NCBI yielded 23 potential targets mainly associated with the phase change from vegetative to generative growth, with flower development and with responding to plant hormone and virus stress.
Subject(s)
MicroRNAs/genetics , RNA, Plant/genetics , Solanum lycopersicum/genetics , Base Sequence , Chromosomes, Artificial, Bacterial/genetics , Conserved Sequence , Solanum lycopersicum/growth & development , Solanum lycopersicum/metabolism , MicroRNAs/chemistry , MicroRNAs/metabolism , Molecular Sequence Data , Nucleic Acid Conformation , Oligonucleotide Array Sequence Analysis , RNA, Plant/chemistry , RNA, Plant/metabolism , Sequence Homology, Nucleic Acid , Tissue DistributionABSTRACT
Interspecific exchange of RNA1 or RNA2 between the cucumoviruses cucumber mosaic virus (CMV) and tomato aspermy virus (TAV) was reported to be non-viable in plants previously. Here we investigated viability of the reassortants between CMV and TAV in Nicotiana benthamiana plants by Agrobacterium-mediated viral inoculation. The reassortants were composed of CMV RNA1 and TAV RNA2 plus RNA3 replicated in the inoculated leaves, while they were defective in viral systemic movement at the early stage of infection. Interestingly, the reassortant containing TAV RNA1 and CMV RNA2 and RNA3 infected plants systemically, but produced RNA4A (the RNA2 subgenome) at an undetectable level. The defect in production of RNA4A was due to the 1a protein encoded by TAV RNA1, and partially restored by replacing the C-terminus (helicase domain) in TAV 1a with that of CMV 1a. Collectively, exchange of the replicase components between CMV and TAV was acceptable for viral replication, but was defective in either directing transcription of subgenomic RNA4A or facilitating viral long-distance movement. Our finding may shed some light on evolution of subgenomic RNA4A in the family Bromoviridae.
Subject(s)
Cucumovirus/physiology , Genome, Viral , RNA, Viral , RNA-Dependent RNA Polymerase/metabolism , Virus Replication , Agrobacterium/physiology , Gene Expression , Genes, Reporter , Phenotype , Plant Diseases/microbiology , Plant Diseases/virology , RNA Helicases , Reassortant Viruses , Transcription, GeneticABSTRACT
Virus-induced gene silencing (VIGS) is an important tool for functional genomics studies in plants. With this method, it is possible to target most endogenous genes and downregulate the messenger RNA (mRNA) in a sequence-specific manner. Chinese wheat mosaic virus (CWMV) has a bipartite, single-strand positive RNA genome, and can infect both wheat and Nicotiana benthamiana, and the optimal temperature for systemic infection in plants is 17°C. To assess the potential of the virus as a vector for gene silencing at low temperature, a fragment of the N. benthamiana or wheat phytoene desaturase (PDS) gene was expressed from a modified CWMV RNA2 clone and the resulting photo bleaching in infected plants was used as a reporter for silencing. Downregulation of PDS mRNA was also measured by quantitative reverse-transcriptase polymerase chain reaction (RT-qPCR). In experiments using fragments of PDS ranging from 500 to 1500 nucleotides, insert length influenced the stability and the efficiency of VIGS. The CWMV induced silencing system was also used to suppress miR165/166 and miR3134a through expression of miRNA target mimics. The relative expression levels of mature miR165/166 and miR3134a decreased whereas the transcript levels of their target genes increased. Interestingly, we also found the CWMV-induced silencing system was more efficient compare with the vector based on Barley stripe mosaic virus (BSMV) or Foxtail mosaic virus (FoMV) in wheat or the vector based on TRV in N. benthamiana at 17°C. In summary, the CWMV vector is effective in silencing endogenous genes and miRNAs at 17°C, thereby providing a powerful tool for gene function analysis in both N. benthamiana and wheat at low temperature.
ABSTRACT
We previously devised a cucumber mosaic virus (CMV)-based vector system carrying microRNA target mimic sequences for analysis of microRNA function in Arabidopsis thaliana. We describe an improved version in which target mimic cloning is achieved by annealing two partly-overlapping complementary DNA oligonucleotides for insertion into an infectious clone of CMV RNA3 (LS strain) fused to the cauliflower mosaic virus-derived 35S promoter. LS-CMV variants carrying mimic sequences were generated by co-infiltrating plants with Agrobacterium tumefaciens cells harboring engineered RNA3 with cells carrying RNA1 and RNA2 infectious clones. The utility of using agroinfection to deliver LS-CMV-derived microRNA target mimic sequences was demonstrated using a miR165/166 target mimic and three solanaceous hosts: Nicotiana benthamiana, tobacco (N. tabacum), and tomato (Solanum lycopersicum). In all three hosts the miR165/166 target mimic induced marked changes in developmental phenotype. Inhibition of miRNA accumulation and increased target mRNA (HD-ZIP III) accumulation was demonstrated in tomato. Thus, a CMV-derived target mimic delivered via agroinfection is a simple, cheap and powerful means of launching virus-based miRNA mimics and is likely to be useful for high-throughput investigation of miRNA function in a wide range of plants.