Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 50
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Cell ; 187(11): 2767-2784.e23, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38733989

ABSTRACT

The vasculature of the central nervous system is a 3D lattice composed of laminar vascular beds interconnected by penetrating vessels. The mechanisms controlling 3D lattice network formation remain largely unknown. Combining viral labeling, genetic marking, and single-cell profiling in the mouse retina, we discovered a perivascular neuronal subset, annotated as Fam19a4/Nts-positive retinal ganglion cells (Fam19a4/Nts-RGCs), directly contacting the vasculature with perisomatic endfeet. Developmental ablation of Fam19a4/Nts-RGCs led to disoriented growth of penetrating vessels near the ganglion cell layer (GCL), leading to a disorganized 3D vascular lattice. We identified enriched PIEZO2 expression in Fam19a4/Nts-RGCs. Piezo2 loss from all retinal neurons or Fam19a4/Nts-RGCs abolished the direct neurovascular contacts and phenocopied the Fam19a4/Nts-RGC ablation deficits. The defective vascular structure led to reduced capillary perfusion and sensitized the retina to ischemic insults. Furthermore, we uncovered a Piezo2-dependent perivascular granule cell subset for cerebellar vascular patterning, indicating neuronal Piezo2-dependent 3D vascular patterning in the brain.


Subject(s)
Cerebellum , Neurons , Retina , Animals , Female , Male , Mice , Cerebellum/metabolism , Cerebellum/blood supply , Cerebellum/cytology , Ion Channels/metabolism , Mice, Inbred C57BL , Neurons/metabolism , Retina/cytology , Retina/metabolism , Retinal Ganglion Cells/metabolism , Retinal Vessels/metabolism
2.
J Neurosci Res ; 102(1): e25273, 2024 01.
Article in English | MEDLINE | ID: mdl-38284846

ABSTRACT

Primary cilia are microtubule-based sensory organelles that project from the apical surface of most mammalian cells, including oligodendrocytes, which are myelinating cells of the central nervous system (CNS) that support critical axonal function. Dysfunction of CNS glia is associated with aging-related white matter diseases and neurodegeneration, and ciliopathies are known to affect CNS white matter. To investigate age-related changes in ciliary profile, we examined ciliary length and frequency in the retinogeniculate pathway, a white matter tract commonly affected by diseases of aging but in which expression of cilia has not been characterized. We found expression of Arl13b, a marker of primary cilia, in a small group of Olig2-positive oligodendrocytes in the optic nerve, optic chiasm, and optic tract in young and aged C57BL/6 wild-type mice. While the ciliary length and ciliated oligodendrocyte cells were constant in young mice in the retinogeniculate pathway, there was a significant increase in ciliary length in the anterior optic nerve as compared to the aged animals. Morphometric analysis confirmed a specific increase in the ciliation rate of CC1+ /Olig2+ oligodendrocytes in aged mice compared with young mice. Thus, the prevalence of primary cilia in oligodendrocytes in the visual pathway and the age-related changes in ciliation suggest that they may play important roles in white matter and age-associated optic neuropathies.


Subject(s)
Optic Nerve , White Matter , Animals , Mice , Mice, Inbred C57BL , Oligodendroglia , Neuroglia , Mammals
3.
J Neuroophthalmol ; 43(1): 69-75, 2023 03 01.
Article in English | MEDLINE | ID: mdl-36166787

ABSTRACT

BACKGROUND: Episodic high-altitude exposure leads to optic disc edema and retinopathy. It is uncertain whether high-altitude exposure is a risk factor for nonarteritic anterior ischemic optic neuropathy (NAION). METHODS: We performed a single-center, retrospective, cross-sectional case study of 5 patients with high-altitude-associated NAION (HA-NAION) from April 2014 to April 2019. Main study parameters included known vascular risk factors for NAION, evolution of visual acuity, visual field, optic disc, and macula measurements. RESULTS: We studied 5 eyes of 5 patients with HA-NAION that occurred at 7,000-9,000 ft above sea level, 28 patients with classic NAION that developed at sea level (normal altitude NAION or NA-NAION), and 40 controls. All 5 patients with HA-NAION had clinically confirmed NAION by a neuro-ophthalmologist within 3-21 days of onset and comprehensive follow-up evaluations (average follow-up of 23 months). Other than high-altitude exposure, 4 of 5 patients had undiagnosed obstructive sleep apnea (OSA, apnea-hypopnea index 5.4-22.2) and 1 had systemic vascular risk factors. All patients had disc-at-risk in the contralateral eye. The best-corrected distance visual acuity was 20/20 to 20/70 (median logMAR 0) at presentation and 20/70 to counting finger (median logMAR 0) at ≥6 months. Automated static perimetry revealed average mean deviation of -18.6 dB at presentation and -22.1 dB at ≥6 months. The average retinal nerve fiber layer was 244 µm (80-348 µm) at onset and 59 µm (55-80 µm) at ≥6 months. The average ganglion cell complex thickness was 50 µm (43-54 µm) at onset and 52 µm (50-55 µm) at ≥6 months. The patients with OSA were started on home continuous positive airway pressure treatment. Visual outcomes were similar in patients with HA-NAION and NA-NAION. - After addressing all NAION risk factors, no new events occurred in the HA-NAION group within 2-8 years with or without repeat high-altitude exposure. CONCLUSIONS: NAION can occur under high-altitude conditions. HA-NAION is associated with relatively younger age at onset, disc-at-risk, and OSA. These patients exhibit a relatively progressive course of vision loss after initial onset and severe thinning of optic nerves on optical coherence tomography. Treatment for OSA is recommended, especially with repeated high-altitude exposure.


Subject(s)
Optic Neuropathy, Ischemic , Humans , Optic Neuropathy, Ischemic/diagnosis , Optic Neuropathy, Ischemic/etiology , Retinal Ganglion Cells , Retrospective Studies , Cross-Sectional Studies , Altitude , Tomography, Optical Coherence/methods
4.
Exp Eye Res ; 225: 109139, 2022 12.
Article in English | MEDLINE | ID: mdl-35691373

ABSTRACT

Nonarteritic anterior ischemic optic neuropathy (NAION) is a common acute optic neuropathy and cause of irreversible vision loss in those older than 50 years of age. There is currently no effective treatment for NAION and the biological mechanisms leading to neuronal loss are not fully understood. Promising novel targets include glial cells activation and intercellular communication mediated by molecules such as gap junction protein Connexin 43 (Cx43), which modulate neuronal fate in central nervous system disorders. In this study, we investigated retinal glial changes and neuronal loss following a novel NAION animal model using a 577 nm yellow laser. We induced unilateral photochemical thrombosis using rose bengal at the optic nerve head vasculature in adult C57BL/6 mice using a 577 nm laser and performed morphometric analysis of the retinal structure using serial in vivo optical coherence tomography (OCT) and histology for glial and neuronal markers. One day after experimental NAION, in acute phase, OCT imaging revealed peripapillary thickening of the retinal ganglion cell complex (GCC, baseline: 79.5 ±â€¯1.0 µm, n = 8; NAION: 93.0 ±â€¯2.5 µm, n = 8, P < 0.01) and total retina (baseline: 202.9 ±â€¯2.4 µm, n = 8; NAION: 228.1 ±â€¯6.8 µm, n = 8, P < 0.01). Twenty-one days after ischemia, at a chronic phase, there was significant GCC thinning (baseline 78.3 ±â€¯2.1 µm, n = 6; NAION: 72.2 ±â€¯1.9 µm, n = 5, P < 0.05), mimicking human disease. Examination of molecular changes in the retina one day after ischemia revealed that NAION induced a significant increase in retinal VEGF levels (control: 2319 ±â€¯195, n = 5; NAION: 4549 ±â€¯683 gray mean value, n = 5, P < 0.05), which highly correlated with retinal thickness (r = 0.89, P < 0.05). NAION also led to significant increase in mRNA level for Cx43 (Gj1a) at day 1 (control: 1.291 ±â€¯0.38; NAION: 3.360 ±â€¯0.58 puncta/mm2, n = 5, P < 0.05), but not of glial fibrillary acidic protein (Gfap) at the same time (control: 2,800 ±â€¯0.59; NAION: 4,690 ±â€¯0.90 puncta/mm2 n = 5, P = 0.19). Retinal ganglion cell loss at day 21 was confirmed by a 30% decrease in Brn3a+ cells (control: 2,844 ±â€¯235; NAION: 2,001 ±â€¯264 cells/mm2, n = 4, P < 0.05). We described a novel protocol of NAION induction by photochemical thrombosis using a 577 nm laser, leading to retinal edema and VEGF increase at day 1 and RGCs loss at day 21 after injury, consistent with the pathophysiology of human NAION. Early changes in glial cells intercommunication revealed by increased Cx43+ gap junctions are consistent with a retinal glial role in mediating cell-to-cell signaling after an ischemic insult. Our study demonstrates an early glial response in a novel NAION animal model and reveals glial intercommunication molecules such as Cx43 as a promising therapeutic target in acute NAION.


Subject(s)
Optic Neuropathy, Ischemic , Adult , Mice , Humans , Animals , Optic Neuropathy, Ischemic/diagnosis , Vascular Endothelial Growth Factor A , Connexin 43/genetics , Up-Regulation , Mice, Inbred C57BL , Retina/pathology , Tomography, Optical Coherence/methods , Lasers , Disease Models, Animal
5.
J Neuroophthalmol ; 42(2): e511-e513, 2022 06 01.
Article in English | MEDLINE | ID: mdl-35482433

ABSTRACT

ABSTRACT: Optic disc drusen (ODD) are calcified deposits at the anterior optic nerve that are often detectable by ophthalmic imaging, including optical coherence tomography and fundus autofluorescence imaging. Multicolor (MC) imaging is a novel modality that captures reflectance of blue, green, and near-infrared laser lights with confocal scanning laser ophthalmoscopy to rapidly acquire high-resolution reflectance images of the optic disc and retina. Here, we show an eye with 3 MC imaging features of ODD, including prominent green hyperreflectance of the optic disc, green sheathing of the papillary and peripapillary vasculature (arterioles > venules), and presence of orange superficial ODD. MC imaging can provide rapid high-resolution assessment of eyes with optic nerve head elevation to help distinguish pseudopapilledema vs papilledema in children and adults without dilation, and future large studies incorporating MC imaging will help determine its contribution in the diagnosis and monitoring of ODD and assessment of other causes of optic nerve head elevation.


Subject(s)
Optic Disk Drusen , Optic Nerve Diseases , Papilledema , Adult , Child , Humans , Nerve Fibers , Optic Disk Drusen/diagnostic imaging , Papilledema/diagnostic imaging , Retinal Ganglion Cells , Tomography, Optical Coherence/methods
6.
Curr Opin Neurol ; 34(1): 108-115, 2021 02 01.
Article in English | MEDLINE | ID: mdl-33278141

ABSTRACT

PURPOSE OF REVIEW: Optic nerve head elevation can be associated with vision loss. This review provides an update regarding key features of optic disc drusen (ODD) compared with papilledema from increased intracranial pressure and optic disc edema from other causes. RECENT FINDINGS: Clinical history and funduscopic examination are not sufficient to correctly diagnose different causes of optic nerve head elevation. Multimodal ophthalmic imaging is noninvasive and should be used as first-line diagnostic testing to distinguish optic disc edema or papilledema from pseudoedema. Advanced ophthalmic imaging, including enhanced depth imaging optical coherence tomography (EDI-OCT) and autofluorescence imaging, can visualize ODD at high resolution and determine whether there is optic disc edema. OCT angiography does not require contrast and can rapidly visualize papillary, peripapillary, and macular microvasculature and identify important vascular biomarker of ischemia and, potentially, visual prognosis. SUMMARY: Multimodal ophthalmic imaging can help in the diagnosis of ODD and optic disc edema and identify patients at high risk of vision loss and neurological issues in order to ensure appropriate diagnosis and treatment.


Subject(s)
Diagnostic Techniques, Ophthalmological/trends , Optic Disk Drusen/diagnosis , Optic Disk/diagnostic imaging , Papilledema/diagnosis , Blindness/diagnosis , Blindness/etiology , Humans , Intracranial Hypertension/diagnosis , Intracranial Hypertension/etiology , Multimodal Imaging/methods , Multimodal Imaging/trends , Ophthalmoscopy/methods , Ophthalmoscopy/trends , Optic Disk/blood supply , Optic Disk/physiopathology , Optic Disk Drusen/physiopathology , Papilledema/physiopathology , Retinal Ganglion Cells/pathology , Tomography, Optical Coherence/methods , Tomography, Optical Coherence/trends
7.
Exp Eye Res ; 193: 107957, 2020 04.
Article in English | MEDLINE | ID: mdl-32032627

ABSTRACT

Vision loss is a devastating consequence of systemic hypoxia, but the cellular mechanisms are unclear. We investigated the impact of acute hypoxia in the retina and optic nerve. We induced systemic hypoxia (10% O2) in 6-8w mice for 48 h and performed in vivo imaging using optical coherence tomography (OCT) at baseline and after 48 h to analyze structural changes in the retina and optic nerve. We analyzed glial cellular and molecular changes by histology and immunofluorescence and the impact of pretreatment with 4-phenylbutyric acid (4-PBA) in oligodendroglia survival. After 48 h hypoxia, we found no change in ganglion cell complex thickness and no loss of retinal ganglion cells. Despite this, there was significantly increased expression of CCAAT-enhancer-binding protein homologous protein (CHOP), a marker of endoplasmic reticulum stress, in the retina and optic nerve. In addition, hypoxia induced obvious increase of GFAP expression in the anterior optic nerve, where it co-localized with CHOP, and significant loss of Olig2+ oligodendrocytes. Pretreatment with 4-PBA, which has been shown to reduce endoplasmic reticulum stress, rescued total Olig2+ oligodendrocytes and increased the pool of mature (CC-1+) but not of immature (PDGFRa+) oligodendrocytes. Consistent with a selective vulnerability of the retina and optic nerve in hypoxia, the most striking changes in the 48 h murine model of hypoxia were in glial cells in the optic nerve, including increased CHOP expression in the astrocytes and loss of oligodendrocytes. Our data support a model where glial dysfunction is among the earliest events in systemic hypoxia - suggesting that glia may be a novel target in treatment of hypoxia.


Subject(s)
Hypoxia/complications , Neuroglia/pathology , Optic Nerve Diseases/diagnosis , Optic Nerve/pathology , Animals , Cell Survival , Disease Models, Animal , Female , Hypoxia/diagnosis , In Situ Nick-End Labeling , Mice , Mice, Inbred C57BL , Optic Nerve Diseases/etiology , Retinal Ganglion Cells/pathology , Tomography, Optical Coherence/methods
8.
Proc Natl Acad Sci U S A ; 114(6): E970-E979, 2017 02 07.
Article in English | MEDLINE | ID: mdl-28115719

ABSTRACT

Giant cell arteritis (GCA) causes autoimmune inflammation of the aorta and its large branches, resulting in aortic arch syndrome, blindness, and stroke. CD4+ T cells and macrophages form organized granulomatous lesions in the walls of affected arteries, destroy the tunica media, and induce ischemic organ damage through rapid intimal hyperplasia and luminal occlusion. Pathogenic mechanisms remain insufficiently understood; specifically, it is unknown whether the unopposed activation of the immune system is because of deficiency of immunoinhibitory checkpoints. Transcriptome analysis of GCA-affected temporal arteries revealed low expression of the coinhibitory ligand programmed death ligand-1 (PD-L1) concurrent with enrichment of the programmed death-1 (PD-1) receptor. Tissue-residing and ex vivo-generated dendritic cells (DC) from GCA patients were PD-L1lo, whereas the majority of vasculitic T cells expressed PD-1, suggesting inefficiency of the immunoprotective PD-1/PD-L1 immune checkpoint. DC-PD-L1 expression correlated inversely with clinical disease activity. In human artery-SCID chimeras, PD-1 blockade exacerbated vascular inflammation, enriched for PD-1+ effector T cells, and amplified tissue production of multiple T-cell effector cytokines, including IFN-γ, IL-17, and IL-21. Arteries infiltrated by PD-1+ effector T cells developed microvascular neoangiogenesis as well as hyperplasia of the intimal layer, implicating T cells in the maladaptive behavior of vessel wall endogenous cells. Thus, in GCA, a breakdown of the tissue-protective PD1/PD-L1 checkpoint unleashes vasculitic immunity and regulates the pathogenic remodeling of the inflamed arterial wall.


Subject(s)
Arteries/metabolism , Giant Cell Arteritis/genetics , Inflammation/genetics , T-Lymphocytes/metabolism , Aged , Aged, 80 and over , Animals , Arteries/pathology , B7-H1 Antigen/genetics , B7-H1 Antigen/metabolism , Cells, Cultured , Cytokines/genetics , Cytokines/metabolism , Female , Gene Expression Profiling/methods , Giant Cell Arteritis/metabolism , Humans , Inflammation/metabolism , Male , Mice, Inbred NOD , Mice, Knockout , Mice, SCID , Middle Aged , Programmed Cell Death 1 Receptor/genetics , Programmed Cell Death 1 Receptor/metabolism
9.
J Neuroophthalmol ; 37(3): 258-264, 2017 09.
Article in English | MEDLINE | ID: mdl-28538035

ABSTRACT

BACKGROUND: The optic nerve head is vulnerable to ischemia leading to anterior ischemic optic neuropathy (AION), the most common acute optic neuropathy in those older than 50 years of age. METHODS: We performed a cross-sectional study of 55 nonarteritic anterior ischemic optic neuropathy (NAION) eyes in 34 patients to assess clinical outcome and perform structure-function correlations. RESULTS: The peak age of NAION onset was between 50 and 55 years. Sixty-seven percent of patients presented with their first event between the ages of 40 and 60 years, and 32% presented at ≤50 years. Those with NAION onset at age ≤50 years did not have significantly better visual outcome per logMAR visual acuity, automated perimetric mean deviation (PMD) or optical coherence tomography (OCT) measurements. Kaplan-Meier survival curve and multivariate Cox proportional regression analysis showed that age >50 years at NAION onset was associated with greater risk of second eye involvement, with hazard ratio of 20. Older age at onset was significantly correlated with greater thinning of the ganglion cell complex (GCC) (P = 0.022) but not with logMAR visual acuity, PMD, or thinning of retinal nerve fiber layer (RNFL). Using area under receiver operating characteristic curve analyses, we found that thinning of RNFL and GCC was best able to predict visual outcome, and that mean RNFL thickness >65 µm or macular GCC thickness >55 µm significantly correlated with good visual field outcome. CONCLUSIONS: We showed that NAION onset at age >50 years had a greater risk of second eye involvement. Patients with OCT mean RNFL thickness >65 µm and mean macular ganglion cell complex thickness >55 µm had better visual outcomes.


Subject(s)
Aging , Optic Disk/diagnostic imaging , Optic Neuropathy, Ischemic/diagnosis , Tomography, Optical Coherence/methods , Visual Acuity , Visual Fields/physiology , Adult , Aged , Cross-Sectional Studies , Female , Humans , Male , Middle Aged , Optic Neuropathy, Ischemic/physiopathology , ROC Curve , Retinal Ganglion Cells/pathology , Retrospective Studies , Visual Field Tests
12.
J Neuroophthalmol ; 34(2): 153-4, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24796602

ABSTRACT

Although supernumerary extraocular muscles are common in monkeys and other species, they are relatively rare in humans and typically are noted in the context of childhood strabismus. We present a case of an incidentally found unilateral accessory lateral rectus muscle in a 51-year-old woman with normal ocular motor control. In this patient, the accessory lateral rectus was approximately 10% the size of a normally sized lateral rectus muscle. It originated from the orbital apex, traveled between the optic nerve and the lateral rectus and attached to the superolateral aspect of the globe. This unique case demonstrates that accessory lateral rectus in humans may have no impact on eye movement and ocular alignment.


Subject(s)
Pituitary Neoplasms/complications , Female , Humans , Magnetic Resonance Imaging , Middle Aged , Oculomotor Muscles/pathology , Oculomotor Muscles/physiopathology , Optic Chiasm/pathology
14.
Am J Ophthalmol Case Rep ; 36: 102124, 2024 Dec.
Article in English | MEDLINE | ID: mdl-39156909

ABSTRACT

Purpose: This case report highlights the importance of monitoring ocular health for patients starting on siponimod treatment, a sphingosine-1-phosphate receptor modulator, for relapsing-remitting multiple sclerosis. By showing how medication adverse events present in patients, we can revisit the current guidelines on ophthalmic evaluation recommendations. Observations: We report a 60-year-old patient who presented with unilateral blurry vision upon initiating siponimod therapy for the treatment of relapsing-remitting multiple sclerosis. Her exam findings did not show visual field defects but were significant for cystoid macular edema distorting the foveal contour. Upon stopping siponimod therapy, the patient's macular edema and symptoms resolved significantly within 7 days and completely resolved 1 month later. Conclusions and importance: This case showcases siponimod-associated cystoid macular edema in a patient without known risk factors, such as diabetes mellitus and uveitis. The patient also had the earliest reported symptom onset to date following the initiation of siponimod therapy. Current recommendations from the American Academy of Ophthalmology and FDA stress the importance of ophthalmic evaluation three to four months after treatment initiation for patients with a history of risk factors. Given our current case and its comparison with four previously reported cases, we recommend that physicians inform patients of possible ocular adverse events with siponimod therapy regardless of their past medical history and duration of treatment.

15.
Drug Deliv ; 31(1): 2379369, 2024 Dec.
Article in English | MEDLINE | ID: mdl-39010743

ABSTRACT

PURPOSE: Targeted drug delivery to the optic nerve head may be useful in the preclinical study and later clinical management of optic neuropathies, however, there are no FDA-approved drug delivery systems to achieve this. The purpose of this work was to develop an optic nerve head drug delivery technique. METHODS: Different strategies to approach the optic nerve head were investigated, including standard intravitreal and retroorbital injections. A novel SupraChoroidal-to-Optic-NervE (SCONE) delivery was optimized by creating a sclerotomy and introducing a catheter into the suprachoroidal space. Under direct visualization, the catheter was guided to the optic nerve head. India ink was injected. The suprachoroidal approach was performed in New Zealand White rabbit eyes in vivo (25 animals total). Parameters, including microneedle size and design, catheter design, and catheter tip angle, were optimized ex vivo and in vivo. RESULTS: Out of the candidate optic nerve head approaches, intravitreal, retroorbital, and suprachoroidal approaches were able to localize India ink to within 2 mm of the optic nerve. The suprachoroidal approach was further investigated, and after optimization, was able to deposit India ink directly within the optic nerve head in up to 80% of attempts. In eyes with successful SCONE delivery, latency and amplitude of visual evoked potentials was not different than the naïve untreated eye. CONCLUSIONS: SCONE delivery can be used for targeted drug delivery to the optic nerve head of rabbits without measurable toxicity measured anatomically or functionally. Successful development of this system may yield novel opportunities to study optic nerve head-specific drug delivery in animal models, and paradigm-shifting management strategies for treating optic neuropathies. TRANSLATIONAL RELEVANCE: Here we demonstrate data on a new method for targeted delivery to the optic nerve head, addressing a significant unmet need in therapeutics for optic neuropathies.


Subject(s)
Drug Delivery Systems , Animals , Rabbits , Choroid , Optic Nerve/drug effects , Evoked Potentials, Visual/drug effects , Optic Disk , Intravitreal Injections , Needles , Carbon
16.
Cell Rep Med ; 5(3): 101437, 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38428428

ABSTRACT

Leber hereditary optic neuropathy (LHON) is a mitochondrial disease leading to rapid and severe bilateral vision loss. Idebenone has been shown to be effective in stabilizing and restoring vision in patients treated within 1 year of onset of vision loss. The open-label, international, multicenter, natural history-controlled LEROS study (ClinicalTrials.gov NCT02774005) assesses the efficacy and safety of idebenone treatment (900 mg/day) in patients with LHON up to 5 years after symptom onset (N = 199) and over a treatment period of 24 months, compared to an external natural history control cohort (N = 372), matched by time since symptom onset. LEROS meets its primary endpoint and confirms the long-term efficacy of idebenone in the subacute/dynamic and chronic phases; the treatment effect varies depending on disease phase and the causative mtDNA mutation. The findings of the LEROS study will help guide the clinical management of patients with LHON.


Subject(s)
Optic Atrophy, Hereditary, Leber , Ubiquinone/analogs & derivatives , Humans , Optic Atrophy, Hereditary, Leber/drug therapy , Optic Atrophy, Hereditary, Leber/genetics , Optic Atrophy, Hereditary, Leber/diagnosis , Antioxidants/therapeutic use , Ubiquinone/therapeutic use , Ubiquinone/genetics , Mutation
17.
Cell Rep ; 42(9): 113038, 2023 09 26.
Article in English | MEDLINE | ID: mdl-37624696

ABSTRACT

Chronic neurodegeneration and acute injuries lead to neuron losses via diverse processes. We compared retinal ganglion cell (RGC) responses between chronic glaucomatous conditions and the acute injury model. Among major RGC subclasses, αRGCs and intrinsically photosensitive RGCs (ipRGCs) preferentially survive glaucomatous conditions, similar to findings in the retina subject to axotomy. Focusing on an αRGC intrinsic factor, Osteopontin (secreted phosphoprotein 1 [Spp1]), we found an ectopic neuronal expression of Osteopontin (Spp1) in other RGCs subject to glaucomatous conditions. This contrasted with the Spp1 downregulation subject to axotomy. αRGC-specific Spp1 elimination led to significant αRGC loss, diminishing their resiliency. Spp1 overexpression led to robust neuroprotection of susceptible RGC subclasses under glaucomatous conditions. In contrast, Spp1 overexpression did not significantly protect RGCs subject to axotomy. Additionally, SPP1 marked adult human RGC subsets with large somata and SPP1 expression in the aqueous humor correlated with glaucoma severity. Our study reveals Spp1's role in mediating neuronal resiliency in glaucoma.


Subject(s)
Glaucoma , Optic Nerve Diseases , Humans , Retinal Ganglion Cells/metabolism , Osteopontin , Optic Nerve/metabolism , Optic Nerve Diseases/metabolism
18.
J Neuroophthalmol ; 32(1): 42-4, 2012 Mar.
Article in English | MEDLINE | ID: mdl-21613961

ABSTRACT

A previously healthy girl failed a routine eye screening at the age of 6 years. Her visual fields showed generalized depression in the right eye and a superotemporal defect in the left eye, consistent with a junctional scotoma. Funduscopic examination and fluorescein angiography revealed markedly dilated tortuous vascular loops with arteriovenous communications consistent with retinal arteriovenous malformations (AVMs). MRI of the brain and cerebral angiography demonstrated right ophthalmic and right thalamic AVMs, with compression and atrophy of the right optic chiasm. This represents a case of Wyburn-Mason syndrome with a junctional scotoma.


Subject(s)
Arteriovenous Fistula/pathology , Intracranial Arteriovenous Malformations/pathology , Neurocutaneous Syndromes/pathology , Retinal Artery Occlusion/pathology , Vision, Low/pathology , Arteriovenous Fistula/complications , Arteriovenous Fistula/physiopathology , Child , Female , Humans , Intracranial Arteriovenous Malformations/etiology , Intracranial Arteriovenous Malformations/physiopathology , Neurocutaneous Syndromes/complications , Neurocutaneous Syndromes/physiopathology , Retinal Artery Occlusion/etiology , Retinal Artery Occlusion/physiopathology , Vision, Low/etiology , Vision, Low/physiopathology
19.
Pac Symp Biocomput ; 27: 242-253, 2022.
Article in English | MEDLINE | ID: mdl-34890153

ABSTRACT

Eye tracking, or oculography, provides insight into where a person is looking. Recent advances in camera technology and machine learning have enabled prevalent devices like smart-phones to track gaze and visuo-motor behavior at near clinical-quality resolution. A critical gap in using oculography to diagnose visuo-motor dysfunction on a large scale is in the design of visual task paradigms, algorithms for diagnosis, and sufficiently large datasets. In this study, we used a 500 Hz infrared oculography dataset in healthy controls and patients with various neurological diseases causing visuo-motor abnormality due to eye movement disorder or vision loss. We used novel visuo-motor tasks involving rapid reading of 40 single-digit numbers per page and developed a machine learning algorithm for predicting disease state. We show that oculography data acquired while a person reads one page of 40 single-digit numbers (15-30 seconds duration) is predictive of of visuo-motor dysfunction (ROC-AUC = 0:973). Remarkably, we also find that short recordings of about 2.5 seconds (6-12× reduction in time) are sufficient for disease detection (ROC-AUC = 0:831). We identify which tasks are most informative for identifying visuo-motor dysfunction (those with the most visual crowding), and more specifically, which aspects of the task are most predictive (the recording segments where gaze moves vertically across lines). In addition to segregating disease and controls, our novel visuo-motor paradigms can discriminate among diseases impacting eye movement, diseases associated with vision loss, and healthy controls (81% accuracy compared with baseline of 33%).


Subject(s)
Computational Biology , Eye-Tracking Technology , Humans
20.
Front Med (Lausanne) ; 9: 1033838, 2022.
Article in English | MEDLINE | ID: mdl-36714135

ABSTRACT

Purpose: The hallmark of non-arteritic anterior ischemic optic neuropathy (NAION) is vascular compromise to the anterior optic nerve and thinning of the retinal nerve fiber layer (RNFL) and secondary degeneration of the retinal ganglion cell body or thinning of the ganglion cell complex (GCC). This study investigates optical coherence tomography (OCT) and OCT Angiography (OCTA) changes in chronic NAION and identifies imaging biomarkers that best predict disease. Methods: We performed a retrospective case-control study of 24 chronic NAION eyes (18 patients) and 70 control eyes (45 patients) to compare both whole-eye and regional OCT, OCTA, static perimetry measurements. OCT measurements were quantified automatically using commercial software, and OCTA was analyzed using custom MATLAB script with large vessel removal to measure 154 total parameters per eye. Results: We confirmed that static perimetry mean deviation (MD) was significantly worse in chronic NAION (-13.53 ± 2.36) than control (-0.47 ± 0.72; P < 0.001) eyes, and NAION eyes had 31 µm thinner RNFL (control: 95.9 ± 25.8 µm; NAION: 64.5 ± 18.0, P < 0.001), and 21.8 µm thinner GCC compared with controls (control: 81.5 ± 4.4 µm; NAION: 59.7 ± 10.5, P < 0.001). Spearman correlation analysis of OCTA parameters reveal that vessel area density (VAD) and flux are highly correlated with visual field MD and OCT measurements. Hierarchical clustering two distinct groups (NAION and control), where standardized measurements of NAION eyes were generally lower than controls. Two-way mixed ANOVAs showed significant interaction between patient status (control and chronic NAION) and structure (optic disk and macula) for annulus VAD and flux values and mean RNFL and GCC thickness. Post-hoc tests showed this effect stems from lower peripapillary values in NAION compared to controls. Separate logistic regression models with LASSO regularization identified VAD and flux are one of the best OCTA parameters for predicting NAION. Conclusion: Ischemic insult to the optic disk is more severe likely from primary degeneration of the affected peripapillary region while macula is affected by secondary retrograde degeneration and loss of retinal ganglion cells. In addition to OCT measurements, peripapillary and macular vascular parameters such as VAD and flux are good predictors of optic nerve and retinal changes in NAION.

SELECTION OF CITATIONS
SEARCH DETAIL