Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
1.
Am J Hum Genet ; 93(5): 906-14, 2013 Nov 07.
Article in English | MEDLINE | ID: mdl-24119684

ABSTRACT

We used exome sequencing to identify mutations in sideroflexin 4 (SFXN4) in two children with mitochondrial disease (the more severe case also presented with macrocytic anemia). SFXN4 is an uncharacterized mitochondrial protein that localizes to the mitochondrial inner membrane. sfxn4 knockdown in zebrafish recapitulated the mitochondrial respiratory defect observed in both individuals and the macrocytic anemia with megaloblastic features of the more severe case. In vitro and in vivo complementation studies with fibroblasts from the affected individuals and zebrafish demonstrated the requirement of SFXN4 for mitochondrial respiratory homeostasis and erythropoiesis. Our findings establish mutations in SFXN4 as a cause of mitochondriopathy and macrocytic anemia.


Subject(s)
Anemia, Macrocytic/genetics , Membrane Proteins/genetics , Mitochondrial Diseases/genetics , Adolescent , Animals , Child , Erythropoiesis/genetics , Exome , Female , Gene Knockdown Techniques , Humans , Mitochondrial Proteins/genetics , Mutation , Zebrafish/genetics
2.
BMC Med Genet ; 15: 30, 2014 Mar 06.
Article in English | MEDLINE | ID: mdl-24602372

ABSTRACT

BACKGROUND: D-bifunctional protein deficiency, caused by recessive mutations in HSD17B4, is a severe, infantile-onset disorder of peroxisomal fatty acid oxidation. Few affected patients survive past two years of age. Compound heterozygous mutations in HSD17B4 have also been reported in two sisters diagnosed with Perrault syndrome (MIM # 233400), who presented in adolescence with ovarian dysgenesis, hearing loss, and ataxia. CASE PRESENTATION: An adult male presented with cerebellar ataxia, peripheral neuropathy, hearing loss, and azoospermia. The clinical presentation, in combination with biochemical findings in serum, urine, and muscle biopsy, suggested a mitochondrial disorder. Commercial genetic testing of 18 ataxia and mitochondrial disease genes was negative. Targeted exome sequencing followed by analysis of single nucleotide variants and small insertions/deletions failed to reveal a genetic basis of disease. Application of a computational algorithm to infer copy number variants (CNVs) from exome data revealed a heterozygous 12 kb deletion of exons 10-13 of HSD17B4 that was compounded with a rare missense variant (p.A196V) at a highly conserved residue. Retrospective review of patient records revealed mildly elevated ratios of pristanic:phytanic acid and arachidonic:docosahexaenoic acid, consistent with dysfunctional peroxisomal fatty acid oxidation. CONCLUSION: Our case expands the phenotypic spectrum of HSD17B4-deficiency, representing the first male case reported with infertility. Furthermore, it points to crosstalk between mitochondria and peroxisomes in HSD17B4-deficiency and Perrault syndrome.


Subject(s)
Abnormalities, Multiple/diagnosis , Ataxia/diagnosis , Hearing Loss, Sensorineural/diagnosis , Mitochondrial Diseases/diagnosis , Peroxisomal Multifunctional Protein-2/deficiency , Abnormalities, Multiple/enzymology , Abnormalities, Multiple/genetics , Adult , Ataxia/enzymology , Ataxia/genetics , Azoospermia/diagnosis , Azoospermia/enzymology , Azoospermia/genetics , Base Sequence , DNA Copy Number Variations , Gene Dosage , Hearing Loss, Sensorineural/enzymology , Hearing Loss, Sensorineural/genetics , Heterozygote , High-Throughput Nucleotide Sequencing , Humans , Male , Mitochondrial Diseases/enzymology , Mitochondrial Diseases/genetics , Molecular Diagnostic Techniques , Molecular Sequence Data , Peroxisomal Multifunctional Protein-2/genetics , Phenotype , Sequence Analysis, DNA , Sequence Deletion
3.
BMC Med Genet ; 13: 3, 2012 Jan 06.
Article in English | MEDLINE | ID: mdl-22226368

ABSTRACT

BACKGROUND: Mitochondrial diseases comprise a diverse set of clinical disorders that affect multiple organ systems with varying severity and age of onset. Due to their clinical and genetic heterogeneity, these diseases are difficult to diagnose. We have developed a targeted exome sequencing approach to improve our ability to properly diagnose mitochondrial diseases and apply it here to an individual patient. Our method targets mitochondrial DNA (mtDNA) and the exons of 1,600 nuclear genes involved in mitochondrial biology or Mendelian disorders with multi-system phenotypes, thereby allowing for simultaneous evaluation of multiple disease loci. CASE PRESENTATION: Targeted exome sequencing was performed on a patient initially suspected to have a mitochondrial disorder. The patient presented with diabetes mellitus, diffuse brain atrophy, autonomic neuropathy, optic nerve atrophy, and a severe amnestic syndrome. Further work-up revealed multiple heteroplasmic mtDNA deletions as well as profound thiamine deficiency without a clear nutritional cause. Targeted exome sequencing revealed a homozygous c.1672C > T (p.R558C) missense mutation in exon 8 of WFS1 that has previously been reported in a patient with Wolfram syndrome. CONCLUSION: This case demonstrates how clinical application of next-generation sequencing technology can enhance the diagnosis of patients suspected to have rare genetic disorders. Furthermore, the finding of unexplained thiamine deficiency in a patient with Wolfram syndrome suggests a potential link between WFS1 biology and thiamine metabolism that has implications for the clinical management of Wolfram syndrome patients.


Subject(s)
DNA Mutational Analysis , Exome , High-Throughput Nucleotide Sequencing , Mitochondrial Diseases/diagnosis , Wolfram Syndrome/diagnosis , Atrophy , Brain/pathology , DNA, Mitochondrial/chemistry , Diagnosis, Differential , Exons , Homozygote , Humans , Magnetic Resonance Imaging , Male , Membrane Proteins/genetics , Middle Aged , Mitochondrial Diseases/genetics , Mutation, Missense , Wolfram Syndrome/genetics
4.
Clin Cancer Res ; 28(4): 728-737, 2022 02 15.
Article in English | MEDLINE | ID: mdl-34753780

ABSTRACT

PURPOSE: Oncogenic kinase fusions are targetable with approved and investigational therapies and can also mediate acquired resistance (AR) to targeted therapy. We aimed to understand the clinical validity of liquid biopsy comprehensive genomic profiling (CGP) to detect kinase fusions pan tumor. EXPERIMENTAL DESIGN: CGP was performed on plasma and tissue samples during clinical care. All exons plus selected introns of 16 kinases involved in oncogenic fusions (ALK, BRAF, EGFR, ERBB2, FGFR1/2/3, MET, NTRK1/2/3, PDGFRA/B, RAF1, RET, and ROS1) were sequenced to capture fusions, including well-characterized and novel breakpoints. Plasma circulating tumor DNA (ctDNA) fraction was estimated to inform sensitivity. RESULTS: Of 36,916 plasma cases, 32,492 (88%) had detectable ctDNA. Kinase fusions were detected in 1.8% of ctDNA-positive cases (571/32,492) and were most prevalent in patients with cholangiocarcinoma (4.2%), bladder cancer (3.6%), and non-small cell lung cancer (NSCLC; 3.1%). Of the 63 paired patient samples that had tissue and ctDNA specimens collected within 1 year and with estimated plasma ctDNA fraction >1%, fusions were detected in 47 of 51 (92%) liquid specimens with a fusion in the tissue sample. In 32 patients with fusions detected in liquid but not in tissue, 21 (66%) had evidence of putative acquired resistance. CONCLUSIONS: Targetable kinase fusions are identified in ctDNA across cancer types. In pairs with tissue-identified fusions, fusion detection in ctDNA is reliable with elevated ctDNA fraction. These data support the validity of CGP to enable ctDNA-based fusion detection for informing clinical care in patients with advanced cancer.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Circulating Tumor DNA , Lung Neoplasms , Carcinoma, Non-Small-Cell Lung/drug therapy , Circulating Tumor DNA/genetics , Humans , Lung Neoplasms/drug therapy , Mutation , Protein-Tyrosine Kinases/genetics , Proto-Oncogene Proteins/genetics
5.
Nat Med ; 24(9): 1441-1448, 2018 09.
Article in English | MEDLINE | ID: mdl-30082870

ABSTRACT

Although programmed death-ligand 1-programmed death 1 (PD-L1-PD-1) inhibitors are broadly efficacious, improved outcomes have been observed in patients with high PD-L1 expression or high tumor mutational burden (TMB). PD-L1 testing is required for checkpoint inhibitor monotherapy in front-line non-small-cell lung cancer (NSCLC). However, obtaining adequate tumor tissue for molecular testing in patients with advanced disease can be challenging. Thus, an unmet medical need exists for diagnostic approaches that do not require tissue to identify patients who may benefit from immunotherapy. Here, we describe a novel, technically robust, blood-based assay to measure TMB in plasma (bTMB) that is distinct from tissue-based approaches. Using a retrospective analysis of two large randomized trials as test and validation studies, we show that bTMB reproducibly identifies patients who derive clinically significant improvements in progression-free survival from atezolizumab (an anti-PD-L1) in second-line and higher NSCLC. Collectively, our data show that high bTMB is a clinically actionable biomarker for atezolizumab in NSCLC.


Subject(s)
Antibodies, Monoclonal/therapeutic use , Carcinoma, Non-Small-Cell Lung/blood , Carcinoma, Non-Small-Cell Lung/genetics , Lung Neoplasms/blood , Lung Neoplasms/genetics , Mutation/genetics , Tumor Burden/genetics , Antibodies, Monoclonal, Humanized , B7-H1 Antigen/metabolism , Biomarkers, Tumor/metabolism , Carcinoma, Non-Small-Cell Lung/drug therapy , Humans , Immunotherapy , Kaplan-Meier Estimate , Lung Neoplasms/drug therapy , Progression-Free Survival , Treatment Outcome
6.
J Mol Diagn ; 20(5): 686-702, 2018 09.
Article in English | MEDLINE | ID: mdl-29936259

ABSTRACT

Genomic profiling of circulating tumor DNA derived from cell-free DNA (cfDNA) in blood can provide a noninvasive method for detecting genomic biomarkers to guide clinical decision making for cancer patients. We developed a hybrid capture-based next-generation sequencing assay for genomic profiling of circulating tumor DNA from blood (FoundationACT). High-sequencing coverage and molecular barcode-based error detection enabled accurate detection of genomic alterations, including short variants (base substitutions, short insertions/deletions) and genomic re-arrangements at low allele frequencies (AFs), and copy number amplifications. Analytical validation was performed on 2666 reference alterations. The assay achieved >99% overall sensitivity (95% CI, 99.1%-99.4%) for short variants at AF >0.5%, >95% sensitivity (95% CI, 94.2%-95.7%) for AF 0.25% to 0.5%, and 70% sensitivity (95% CI, 68.2%-71.5%) for AF 0.125% to 0.25%. No false positives were detected in 62 samples from healthy volunteers. Genomic alterations detected by FoundationACT demonstrated high concordance with orthogonal assays run on the same clinical cfDNA samples. In 860 routine clinical FoundationACT cases, genomic alterations were detected in cfDNA at comparable frequencies to tissue; for the subset of cases with temporally matched tissue and blood samples, 75% of genomic alterations and 83% of short variant mutations detected in tissue were also detected in cfDNA. On the basis of analytical validation results, FoundationACT has been approved for use in our Clinical Laboratory Improvement Amendments-certified/College of American Pathologists-accredited/New York State-approved laboratory.


Subject(s)
Circulating Tumor DNA/genetics , Genomics/methods , High-Throughput Nucleotide Sequencing/methods , Circulating Tumor DNA/blood , Gene Amplification , Gene Dosage , Gene Rearrangement , Humans , INDEL Mutation/genetics
7.
Genome Med ; 9(1): 34, 2017 04 19.
Article in English | MEDLINE | ID: mdl-28420421

ABSTRACT

BACKGROUND: High tumor mutational burden (TMB) is an emerging biomarker of sensitivity to immune checkpoint inhibitors and has been shown to be more significantly associated with response to PD-1 and PD-L1 blockade immunotherapy than PD-1 or PD-L1 expression, as measured by immunohistochemistry (IHC). The distribution of TMB and the subset of patients with high TMB has not been well characterized in the majority of cancer types. METHODS: In this study, we compare TMB measured by a targeted comprehensive genomic profiling (CGP) assay to TMB measured by exome sequencing and simulate the expected variance in TMB when sequencing less than the whole exome. We then describe the distribution of TMB across a diverse cohort of 100,000 cancer cases and test for association between somatic alterations and TMB in over 100 tumor types. RESULTS: We demonstrate that measurements of TMB from comprehensive genomic profiling are strongly reflective of measurements from whole exome sequencing and model that below 0.5 Mb the variance in measurement increases significantly. We find that a subset of patients exhibits high TMB across almost all types of cancer, including many rare tumor types, and characterize the relationship between high TMB and microsatellite instability status. We find that TMB increases significantly with age, showing a 2.4-fold difference between age 10 and age 90 years. Finally, we investigate the molecular basis of TMB and identify genes and mutations associated with TMB level. We identify a cluster of somatic mutations in the promoter of the gene PMS2, which occur in 10% of skin cancers and are highly associated with increased TMB. CONCLUSIONS: These results show that a CGP assay targeting ~1.1 Mb of coding genome can accurately assess TMB compared with sequencing the whole exome. Using this method, we find that many disease types have a substantial portion of patients with high TMB who might benefit from immunotherapy. Finally, we identify novel, recurrent promoter mutations in PMS2, which may be another example of regulatory mutations contributing to tumorigenesis.


Subject(s)
DNA Mutational Analysis , Genome, Human , Mutation , Neoplasms/genetics , Adolescent , Adult , Age Factors , Aged , Aged, 80 and over , Cell Transformation, Neoplastic/genetics , Child , DNA, Neoplasm , Exome , Humans , Middle Aged , Mismatch Repair Endonuclease PMS2 , Neoplasms/epidemiology , Neoplasms/metabolism , Neoplasms/pathology , Young Adult
8.
Sci Rep ; 6: 24650, 2016 Apr 19.
Article in English | MEDLINE | ID: mdl-27090146

ABSTRACT

Next generation sequencing is a transformative technology for discovering and diagnosing genetic disorders. However, high-throughput sequencing remains error-prone, necessitating variant confirmation in order to meet the exacting demands of clinical diagnostic sequencing. To address this, we devised an orthogonal, dual platform approach employing complementary target capture and sequencing chemistries to improve speed and accuracy of variant calls at a genomic scale. We combined DNA selection by bait-based hybridization followed by Illumina NextSeq reversible terminator sequencing with DNA selection by amplification followed by Ion Proton semiconductor sequencing. This approach yields genomic scale orthogonal confirmation of ~95% of exome variants. Overall variant sensitivity improves as each method covers thousands of coding exons missed by the other. We conclude that orthogonal NGS offers improvements in variant calling sensitivity when two platforms are used, better specificity for variants identified on both platforms, and greatly reduces the time and expense of Sanger follow-up, thus enabling physicians to act on genomic results more quickly.


Subject(s)
High-Throughput Nucleotide Sequencing/methods , Molecular Diagnostic Techniques/methods , Sequence Analysis, DNA/methods , Exome , Humans , Polymerase Chain Reaction/methods , Sensitivity and Specificity
9.
Neurology ; 80(19): 1762-70, 2013 May 07.
Article in English | MEDLINE | ID: mdl-23596069

ABSTRACT

OBJECTIVE: To evaluate the utility of targeted exome sequencing for the molecular diagnosis of mitochondrial disorders, which exhibit marked phenotypic and genetic heterogeneity. METHODS: We considered a diverse set of 102 patients with suspected mitochondrial disorders based on clinical, biochemical, and/or molecular findings, and whose disease ranged from mild to severe, with varying age at onset. We sequenced the mitochondrial genome (mtDNA) and the exons of 1,598 nuclear-encoded genes implicated in mitochondrial biology, mitochondrial disease, or monogenic disorders with phenotypic overlap. We prioritized variants likely to underlie disease and established molecular diagnoses in accordance with current clinical genetic guidelines. RESULTS: Targeted exome sequencing yielded molecular diagnoses in established disease loci in 22% of cases, including 17 of 18 (94%) with prior molecular diagnoses and 5 of 84 (6%) without. The 5 new diagnoses implicated 2 genes associated with canonical mitochondrial disorders (NDUFV1, POLG2), and 3 genes known to underlie other neurologic disorders (DPYD, KARS, WFS1), underscoring the phenotypic and biochemical overlap with other inborn errors. We prioritized variants in an additional 26 patients, including recessive, X-linked, and mtDNA variants that were enriched 2-fold over background and await further support of pathogenicity. In one case, we modeled patient mutations in yeast to provide evidence that recessive mutations in ATP5A1 can underlie combined respiratory chain deficiency. CONCLUSION: The results demonstrate that targeted exome sequencing is an effective alternative to the sequential testing of mtDNA and individual nuclear genes as part of the investigation of mitochondrial disease. Our study underscores the ongoing challenge of variant interpretation in the clinical setting.


Subject(s)
DNA, Mitochondrial/genetics , Exome/genetics , Gene Targeting/methods , Mitochondrial Diseases/diagnosis , Mitochondrial Diseases/genetics , Sequence Analysis, DNA/methods , Adolescent , Adult , Amino Acid Sequence , Child , Child, Preschool , Female , Genetic Predisposition to Disease , Humans , Infant , Infant, Newborn , Male , Middle Aged , Molecular Sequence Data , Pedigree , Young Adult
10.
Sci Transl Med ; 4(118): 118ra10, 2012 Jan 25.
Article in English | MEDLINE | ID: mdl-22277967

ABSTRACT

Advances in next-generation sequencing (NGS) promise to facilitate diagnosis of inherited disorders. Although in research settings NGS has pinpointed causal alleles using segregation in large families, the key challenge for clinical diagnosis is application to single individuals. To explore its diagnostic use, we performed targeted NGS in 42 unrelated infants with clinical and biochemical evidence of mitochondrial oxidative phosphorylation disease. These devastating mitochondrial disorders are characterized by phenotypic and genetic heterogeneity, with more than 100 causal genes identified to date. We performed "MitoExome" sequencing of the mitochondrial DNA (mtDNA) and exons of ~1000 nuclear genes encoding mitochondrial proteins and prioritized rare mutations predicted to disrupt function. Because patients and healthy control individuals harbored a comparable number of such heterozygous alleles, we could not prioritize dominant-acting genes. However, patients showed a fivefold enrichment of genes with two such mutations that could underlie recessive disease. In total, 23 of 42 (55%) patients harbored such recessive genes or pathogenic mtDNA variants. Firm diagnoses were enabled in 10 patients (24%) who had mutations in genes previously linked to disease. Thirteen patients (31%) had mutations in nuclear genes not previously linked to disease. The pathogenicity of two such genes, NDUFB3 and AGK, was supported by complementation studies and evidence from multiple patients, respectively. The results underscore the potential and challenges of deploying NGS in clinical settings.


Subject(s)
Mitochondrial Diseases/diagnosis , Mitochondrial Diseases/genetics , Sequence Analysis, DNA/methods , Amino Acid Sequence , Base Sequence , Case-Control Studies , Cell Nucleus/genetics , Child , Child, Preschool , DNA, Mitochondrial/genetics , Electron Transport Complex I/genetics , Exome/genetics , Female , Fibroblasts/metabolism , Fibroblasts/pathology , Genes, Mitochondrial/genetics , Genetic Association Studies , Humans , Infant , Infant, Newborn , Male , Mitochondrial Diseases/enzymology , Mitochondrial Myopathies/genetics , Molecular Sequence Data , Mutation/genetics , Oxidative Phosphorylation , Phosphotransferases (Alcohol Group Acceptor)/chemistry , Phosphotransferases (Alcohol Group Acceptor)/genetics , Reproducibility of Results
11.
PLoS One ; 5(12): e14444, 2010 Dec 29.
Article in English | MEDLINE | ID: mdl-21206902

ABSTRACT

The increasing ability to generate large-scale, quantitative proteomic data has brought with it the challenge of analyzing such data to discover the sequence elements that underlie systems-level protein behavior. Here we show that short, linear protein motifs can be efficiently recovered from proteome-scale datasets such as sub-cellular localization, molecular function, half-life, and protein abundance data using an information theoretic approach. Using this approach, we have identified many known protein motifs, such as phosphorylation sites and localization signals, and discovered a large number of candidate elements. We estimate that ~80% of these are novel predictions in that they do not match a known motif in both sequence and biological context, suggesting that post-translational regulation of protein behavior is still largely unexplored. These predicted motifs, many of which display preferential association with specific biological pathways and non-random positioning in the linear protein sequence, provide focused hypotheses for experimental validation.


Subject(s)
Amino Acid Motifs/genetics , Proteomics/methods , Algorithms , Computational Biology/methods , Databases, Protein , Eukaryota , Humans , Mitochondria/metabolism , Phosphorylation , Protein Processing, Post-Translational , Protein Structure, Tertiary , Proteins/chemistry , Proteome , Saccharomyces cerevisiae/metabolism , Schizosaccharomyces/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL