Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 44
Filter
1.
Int J Mol Sci ; 24(17)2023 Aug 28.
Article in English | MEDLINE | ID: mdl-37686157

ABSTRACT

The aim of this study was to elucidate the chemistry of cellular degeneration in human neuroblastoma cells upon exposure to outer-membrane vesicles (OMVs) produced by Porphyromonas gingivalis (Pg) oral bacteria by monitoring their metabolomic evolution using in situ Raman spectroscopy. Pg-OMVs are a key factor in Alzheimer's disease (AD) pathogenesis, as they act as efficient vectors for the delivery of toxins promoting neuronal damage. However, the chemical mechanisms underlying the direct impact of Pg-OMVs on cell metabolites at the molecular scale still remain conspicuously unclear. A widely used in vitro model employing neuroblastoma SH-SY5Y cells (a sub-line of the SK-N-SH cell line) was spectroscopically analyzed in situ before and 6 h after Pg-OMV contamination. Concurrently, Raman characterizations were also performed on isolated Pg-OMVs, which included phosphorylated dihydroceramide (PDHC) lipids and lipopolysaccharide (LPS), the latter in turn being contaminated with a highly pathogenic class of cysteine proteases, a key factor in neuronal cell degradation. Raman characterizations located lipopolysaccharide fingerprints in the vesicle structure and unveiled so far unproved aspects of the chemistry behind protein degradation induced by Pg-OMV contamination of SH-SY5Y cells. The observed alterations of cells' Raman profiles were then discussed in view of key factors including the formation of amyloid ß (Aß) plaques and hyperphosphorylated Tau neurofibrillary tangles, and the formation of cholesterol agglomerates that exacerbate AD pathologies.


Subject(s)
Alzheimer Disease , Neuroblastoma , Humans , Porphyromonas gingivalis , Amyloid beta-Peptides , Lipopolysaccharides , Inclusion Bodies , Blister
2.
Cryobiology ; 98: 46-56, 2021 02.
Article in English | MEDLINE | ID: mdl-33400962

ABSTRACT

In the last decades, liposomes acquired a striking success in the biomedical field thanks to their biocompatibility and drug delivery ability. Many liposomal drug formulations have been already approved by the Food and Drug Administration (FDA) and used for the treatment of a wide range of pathologies with or without further engineering. Their clinical application requires strict compliance with high standard quality rules, and it is crucial to employ storage methods that do not affect the integrity of the vesicles and preventing the leakage of their cargo. In this work, the design of a suitable formulation for freeze-drying had been investigated for two different liposomes, DOPC-DOTAP and the PEGylated counterpart, DOPC-DOTAP-DSPE-PEG. The role of various cryoprotectants was evaluated paying attention to their ability to preserve the structural integrity of liposomes. At first, the study was focused on freezing and two methodologies were investigated, quenching in liquid nitrogen and shelf-ramped freezing. This analysis showed that the disaccharides (cellobiose, glucose, lactose, sucrose, and trehalose) and the polyol (mannitol) protected successfully the integrity of liposomes, while during the process, in the presence of a surfactant, liposomes were strongly damaged and fragmented by the ice crystals. Furthermore, the choice of the rate of freezing depended on the different compositions of the lipid bilayer. Finally, the effects of lyophilization on liposomes with and without additives were studied; cellobiose, lactose and trehalose showed encouraging results for the maintenance of the morpho-functional parameters of liposomes during the entire freeze-drying process.


Subject(s)
Cryopreservation , Liposomes , Cryopreservation/methods , Cryoprotective Agents , Freeze Drying , Freezing , Lipids
3.
Chem Eng J ; 340: 155-172, 2018 May 15.
Article in English | MEDLINE | ID: mdl-30881202

ABSTRACT

At present, ultrasound radiation is broadly employed in medicine for both diagnostic and therapeutic purposes at various frequencies and intensities. In this review article, we focus on therapeutically-active nanoparticles (NPs) when stimulated by ultrasound. We first introduce the different ultrasound-based therapies with special attention to the techniques involved in the oncological field, then we summarize the different NPs used, ranging from soft materials, like liposomes or micro/nano-bubbles, to metal and metal oxide NPs. We therefore focus on the sonodynamic therapy and on the possible working mechanisms under debate of NPs-assisted sonodynamic treatments. We support the idea that various, complex and synergistics physical-chemical processes take place during acoustic cavitation and NP activation. Different mechanisms are therefore responsible for the final cancer cell death and strongly depends not only on the type and structure of NPs or nanocarriers, but also on the way they interact with the ultrasonic pressure waves. We conclude with a brief overview of the clinical applications of the various ultrasound therapies and the related use of NPs-assisted ultrasound in clinics, showing that this very innovative and promising approach is however still at its infancy in the clinical cancer treatment.

4.
Small ; 10(21): 4324-31, 2014 Nov 12.
Article in English | MEDLINE | ID: mdl-25044603

ABSTRACT

Although the detection of methylated cell free DNA represents one of the most promising approaches for relapse risk assessment in cancer patients, the low concentration of cell-free circulating DNA constitutes the biggest obstacle in the development of DNA methylation-based biomarkers from blood. This paper describes a method for the measurement of genomic methylation content directly on circulating tumor cells (CTC), which could be used to deceive the aforementioned problem. Since CTC are disease related blood-based biomarkers, they result essential to monitor tumor's stadiation, therapy, and early relapsing lesions. Within surface's bio-functionalization and cell's isolation procedure standardization, the presented approach reveals a singular ability to detect high 5-methylcytosine CTC-subset content in the whole CTC compound, by choosing folic acid (FA) as transducer molecule. Sensitivity and specificity, calculated for FA functionalized surface (FA-surface), result respectively on about 83% and 60%. FA-surface, allowing the detection and characterization of early metastatic dissemination, provides a unique advance in the comprehension of tumors progression and dissemination confirming the presence of CTC and its association with high risk of relapse. This functionalized surface identifying and quantifying high 5-methylcytosine CTC-subset content into the patient's blood lead significant progress in cancer risk assessment, also providing a novel therapeutic strategy.


Subject(s)
5-Methylcytosine/analysis , Biomarkers, Tumor/analysis , Blood Chemical Analysis/instrumentation , Folic Acid/chemistry , Neoplasms/diagnosis , Neoplastic Cells, Circulating/metabolism , 5-Methylcytosine/blood , 5-Methylcytosine/metabolism , Biomarkers, Tumor/blood , Biomarkers, Tumor/genetics , Blood Chemical Analysis/methods , Cells, Cultured , DNA Methylation , Enzyme-Linked Immunosorbent Assay , Folic Acid/pharmacology , Genes, Neoplasm , Humans , Microscopy, Confocal/instrumentation , Microscopy, Confocal/methods , Neoplasms/blood , Neoplasms/genetics , Neoplasms/mortality , Neoplastic Cells, Circulating/pathology , Surface Properties , Survival Analysis
5.
J Synchrotron Radiat ; 21(Pt 4): 643-53, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24971957

ABSTRACT

Droplets on artificially structured superhydrophobic surfaces represent quasi contact-free sample environments which can be probed by X-ray microbeams and nanobeams in the absence of obstructing walls. This review will discuss basic surface wettability concepts and introduce the technology of structuring surfaces. Quasi contact-free droplets are compared with contact-free droplets; processes related to deposition and evaporation on solid surfaces are discussed. Droplet coalescence based on the electrowetting effect allows the probing of short-time mixing and reaction processes. The review will show for several materials of biological interest that structural processes related to conformational changes, nucleation and assembly during droplet evaporation can be spatially and temporally resolved by raster-scan diffraction techniques. Orientational ordering of anisotropic materials deposited during solidification at pinning sites facilitates the interpretation of structural data.

6.
Blood ; 120(6): 1274-81, 2012 Aug 09.
Article in English | MEDLINE | ID: mdl-22740451

ABSTRACT

Anaplastic large-cell lymphomas (ALCLs) are a group of clinically and biologically heterogeneous diseases including the ALK(+) and ALK(-) systemic forms. Whereas ALK(+) ALCLs are molecularly characterized and can be readily diagnosed, specific immunophenotypic or genetic features to define ALK(-) ALCL are missing, and their distinction from other T-cell non-Hodgkin lymphomas (T-NHLs) remains controversial. In the present study, we undertook a transcriptional profiling meta-analysis of 309 cases, including ALCL and other primary T-NHL samples. Pathway discovery and prediction analyses defined a minimum set of genes capable of recognizing ALK(-) ALCL. Application of quantitative RT-PCR in independent datasets from cryopreserved and formalin-fixed paraffin-embedded samples validated a 3-gene model (TNFRSF8, BATF3, and TMOD1) able to successfully separate ALK(-) ALCL from peripheral T-cell lymphoma not otherwise specified, with overall accuracy near 97%. In conclusion, our data justify the possibility of translating quantitative RT-PCR protocols to routine clinical settings as a new approach to objectively dissect T-NHL and to select more appropriate therapeutic protocols.


Subject(s)
Biomarkers, Tumor/genetics , Genes, Neoplasm , Lymphoma, Large-Cell, Anaplastic/diagnosis , Lymphoma, Large-Cell, Anaplastic/genetics , Molecular Diagnostic Techniques/methods , Receptor Protein-Tyrosine Kinases/genetics , Adult , Anaplastic Lymphoma Kinase , Biomarkers, Tumor/isolation & purification , Biomarkers, Tumor/physiology , Case-Control Studies , Diagnosis, Differential , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , Genes, Neoplasm/physiology , Humans , Microarray Analysis , Models, Statistical , Predictive Value of Tests , Prognosis , Receptor Protein-Tyrosine Kinases/metabolism
7.
Int J Pharm ; 659: 124248, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38782150

ABSTRACT

Pulmonary delivery of drugs has emerged as a promising approach for the treatment of both lung and systemic diseases. Compared to other drug delivery routes, inhalation offers numerous advantages including high targeting, fewer side effects, and a huge surface area for drug absorption. However, the deposition of drugs in the lungs can be limited by lung defence mechanisms such as mucociliary and macrophages' clearance. Among the delivery devices, dry powder inhalers represent the optimal choice due to their stability, ease of use, and absence of propellants. In the last decades, several bottom-up techniques have emerged over traditional milling to produce inhalable powders. Among these techniques, the most employed ones are spray drying, supercritical fluid technology, spray freeze-drying, and thin film freezing. Inhalable dry powders can be constituted by micronized drugs attached to a coarse carrier (e.g., lactose) or drugs embedded into a micro- or nanoparticle. Particulate-based formulations are commonly composed of polymeric micro- and nanoparticles, liposomes, solid lipid nanoparticles, dendrimers, nanocrystals, extracellular vesicles, and inorganic nanoparticles. Moreover, engineered formulations including large porous particles, swellable microparticles, nano-in-microparticles, and effervescent nanoparticles have been developed. Particle engineering has also a crucial role in tuning the physical-chemical properties of both carrier-based and carrier-free inhalable powders. This approach can increase powder flowability, deposition, and targeting by customising particle surface features.


Subject(s)
Drug Delivery Systems , Dry Powder Inhalers , Powders , Administration, Inhalation , Humans , Drug Delivery Systems/methods , Lung/metabolism , Animals , Nanoparticles/chemistry , Nanotechnology/methods
8.
Pharmaceutics ; 16(7)2024 Jun 22.
Article in English | MEDLINE | ID: mdl-39065547

ABSTRACT

The state of well-being and health of our body is regulated by the fine osmotic and biochemical balance established between the cells of the different tissues, organs, and systems. Specific districts of the human body are defined, kept in the correct state of functioning, and, therefore, protected from exogenous or endogenous insults of both mechanical, physical, and biological nature by the presence of different barrier systems. In addition to the placental barrier, which even acts as a linker between two different organisms, the mother and the fetus, all human body barriers, including the blood-brain barrier (BBB), blood-retinal barrier, blood-nerve barrier, blood-lymph barrier, and blood-cerebrospinal fluid barrier, operate to maintain the physiological homeostasis within tissues and organs. From a pharmaceutical point of view, the most challenging is undoubtedly the BBB, since its presence notably complicates the treatment of brain disorders. BBB action can impair the delivery of chemical drugs and biopharmaceuticals into the brain, reducing their therapeutic efficacy and/or increasing their unwanted bioaccumulation in the surrounding healthy tissues. Recent nanotechnological innovation provides advanced biomaterials and ad hoc customized engineering and functionalization methods able to assist in brain-targeted drug delivery. In this context, lipid nanocarriers, including both synthetic (liposomes, solid lipid nanoparticles, nanoemulsions, nanostructured lipid carriers, niosomes, proniosomes, and cubosomes) and cell-derived ones (extracellular vesicles and cell membrane-derived nanocarriers), are considered one of the most successful brain delivery systems due to their reasonable biocompatibility and ability to cross the BBB. This review aims to provide a complete and up-to-date point of view on the efficacy of the most varied lipid carriers, whether FDA-approved, involved in clinical trials, or used in in vitro or in vivo studies, for the treatment of inflammatory, cancerous, or infectious brain diseases.

9.
Small ; 9(3): 402-12, 2013 Feb 11.
Article in English | MEDLINE | ID: mdl-23027505

ABSTRACT

The generation of 3D networks of primary neurons is a big challenge in neuroscience. Here, a novel method is presented for a 3D neuronal culture on superhydrophobic (SH) substrates. How nano-patterned SH devices stimulate neurons to build 3D networks is investigated. Scanning electron microscopy and confocal imaging show that soon after plating neurites adhere to the nanopatterned pillar sidewalls and they are subsequently pulled between pillars in a suspended position. These neurons display an enhanced survival rate compared to standard cultures and develop mature networks with physiological excitability. These findings underline the importance of using nanostructured SH surfaces for directing 3D neuronal growth, as well as for the design of biomaterials for neuronal regeneration.


Subject(s)
Nanostructures/chemistry , Neurons/cytology , Tissue Engineering/methods , Animals , Cell Adhesion/physiology , Cells, Cultured , Mice , Neurons/physiology
10.
Nano Lett ; 12(12): 6453-8, 2012 Dec 12.
Article in English | MEDLINE | ID: mdl-23171353

ABSTRACT

Direct imaging becomes important when the knowledge at few/single molecule level is requested and where the diffraction does not allow to get structural and functional information. Here we report on the direct imaging of double stranded (ds) λ-DNA in the A conformation, obtained by combining a novel sample preparation method based on super hydrophobic DNA molecules self-aggregation process with transmission electron microscopy (TEM). The experimental breakthrough is the production of robust and highly ordered paired DNA nanofibers that allowed its direct TEM imaging and the double helix structure revealing.


Subject(s)
Bacteriophage lambda/genetics , DNA, Viral/chemistry , DNA, Viral/ultrastructure , Bacteriophage lambda/chemistry , Hydrophobic and Hydrophilic Interactions , Molecular Dynamics Simulation , Nanofibers/chemistry , Nanofibers/ultrastructure , Nucleic Acid Conformation
11.
ACS Biomater Sci Eng ; 9(10): 5871-5885, 2023 Oct 09.
Article in English | MEDLINE | ID: mdl-37671648

ABSTRACT

Extracellular vesicles (EVs) have been studied for years for their role as effectors and mediators of cell-to-cell communication and their potential application to develop new and increasingly performing nanotechnological systems for the diagnosis and/or treatment of many diseases. Given all the EVs applications as just isolated, functionalized, or even engineered cellular-derived pharmaceuticals, the standardization of reliable and reproducible methods for their preservation is urgently needed. In this study, we isolated EVs from a healthy blood cell line, B lymphocytes, and compared the effectiveness of different storage methods and relative freeze-drying formulations to preserve some of the most important EVs' key features, i.e., concentration, mean size, protein content, and surface antigen's expression. To develop a preservation method that minimally affects the EVs' integrity and functionality, we applied the freeze-drying process in combination with different excipients. Since EVs are isolated not only from body fluids but also from culture media conditioned by the cells growing there, we decided to test both the effects of the traditional pharmaceutical excipient and of biological media to develop EVs solidified products with desirable appearance and performance properties. Results showed that some of the tested excipients, i.e., sugars in combination with dextran and glycine, successfully maintained the stability and integrity of EVs upon lyophilization. In addition, to evaluate the preservation of the EVs' biological activity, we assessed the cytotoxicity and internalization ability of the reconstituted EVs in healthy (B lymphocytes) and tumoral (Burkitt's lymphoma) cells. Reconstituted EVs demonstrated toxicity only toward the cancerous cells, opening new therapeutic opportunities for the oncological field. Furthermore, our study showed how some biological or cellular-conditioned fluids, commonly used in the field of cell cultures, can act not only as cryoprotectants but also as active pharmaceutical ingredients, significantly tuning the therapeutic effect of EVs, even increasing their cellular internalization.

12.
Cell Biosci ; 12(1): 61, 2022 May 14.
Article in English | MEDLINE | ID: mdl-35568919

ABSTRACT

BACKGROUND: We propose an efficient method to modify B-cell derived EVs by loading them with a nanotherapeutic stimuli-responsive cargo and equipping them with antibodies for efficient targeting of lymphoma cells. RESULTS: The post-isolation engineering of the EVs is accomplished by a freeze-thaw method to load therapeutically-active zinc oxide nanocrystals (ZnO NCs), obtaining the so-called TrojanNanoHorse (TNH) to recall the biomimetism and cytotoxic potential of this novel nanoconstruct. TNHs are further modified at their surface with anti-CD20 monoclonal antibodies (TNHCD20) achieving specific targeting against lymphoid cancer cell line. The in vitro characterization is carried out on CD20+ lymphoid Daudi cell line, CD20-negative cancerous myeloid cells (HL60) and the healthy counterpart (B lymphocytes). The TNH shows nanosized structure, high colloidal stability, even over time, and good hemocompatibility. The in vitro characterization shows the high biocompatibility, targeting specificity and cytotoxic capability. Importantly, the selectivity of TNHCD20 demonstrates significantly higher interaction towards the target lymphoid Daudi cell line compared to the CD20-negative cancerous myeloid cells (HL60) and the healthy counterpart (lymphocytes). An enhanced cytotoxicity directed against Daudi cancer cells is demonstrated after the TNHCD20 activation with high-energy ultrasound shock-waves (SW). CONCLUSION: This work demonstrates the efficient re-engineering of EVs, derived from healthy cells, with inorganic nanoparticles and monoclonal antibodies. The obtained hybrid nanoconstructs can be on-demand activated by an external stimulation, here acoustic pressure waves, to exploit a cytotoxic effect conveyed by the ZnO NCs cargo against selected cancer cells.

13.
Cells ; 11(2)2022 01 11.
Article in English | MEDLINE | ID: mdl-35053344

ABSTRACT

Indoor air pollutants (IAP), which can pose a serious risk to human health, include biological pollutants, nitric oxide (NO), nitrogen dioxide (NO2), volatile organic compounds (VOC), sulfur dioxide (SO2), carbon monoxide (CO), carbon dioxide (CO2), silica, metals, radon, and particulate matter (PM). The aim of our work is to conduct a multidisciplinary study of fine silica particles (<2.5 µm) in the presence or absence of ozone (O3), and evaluate their potential cytotoxicity using MTS, micronucleus, and the comet test in two cell lines. We analyzed A549 (human basal alveolar epithelial cell adenocarcinoma) and Hs27 (human normal fibroblasts) exposed to dynamic conditions by an IRC simulator under ozone flow (120 ppb) and in the presence of silica particles (40 µg/h). The viability of A549 and Hs27 cells at 48 and 72 h of exposure to silica or silica/ozone decreases, except at 72 h in Hs27 treated with silica/ozone. The micronucleus and comet tests showed a significant increase in the number of micronuclei and the % of DNA in the queue, compared to the control, in both lines in all treatments, even if in different cell times/types. We found that silica alone or with more O3 causes more pronounced genotoxic effects in A549 tumor cells than in normal Hs27 fibroblasts.


Subject(s)
Adenocarcinoma/pathology , Epithelium/pathology , Fibroblasts/pathology , Models, Biological , Mutagens/toxicity , Ozone/toxicity , Silicon Dioxide/toxicity , Cell Line, Tumor , Comet Assay , Epithelium/drug effects , Fibroblasts/drug effects , Humans , Micronucleus Tests
14.
Cells ; 11(10)2022 05 20.
Article in English | MEDLINE | ID: mdl-35626736

ABSTRACT

The necessity to improve in vitro cell screening assays is becoming ever more important. Pharmaceutical companies, research laboratories and hospitals require technologies that help to speed up conventional screening and therapeutic procedures to produce more data in a short time in a realistic and reliable manner. The design of new solutions for test biomaterials and active molecules is one of the urgent problems of preclinical screening and the limited correlation between in vitro and in vivo data remains one of the major issues. The establishment of the most suitable in vitro model provides reduction in times, costs and, last but not least, in the number of animal experiments as recommended by the 3Rs (replace, reduce, refine) ethical guiding principles for testing involving animals. Although two-dimensional (2D) traditional cell screening assays are generally cheap and practical to manage, they have strong limitations, as cells, within the transition from the three-dimensional (3D) in vivo to the 2D in vitro growth conditions, do not properly mimic the real morphologies and physiology of their native tissues. In the study of human pathologies, especially, animal experiments provide data closer to what happens in the target organ or apparatus, but they imply slow and costly procedures and they generally do not fully accomplish the 3Rs recommendations, i.e., the amount of laboratory animals and the stress that they undergo must be minimized. Microfluidic devices seem to offer different advantages in relation to the mentioned issues. This review aims to describe the critical issues connected with the conventional cells culture and screening procedures, showing what happens in the in vivo physiological micro and nano environment also from a physical point of view. During the discussion, some microfluidic tools and their components are described to explain how these devices can circumvent the actual limitations described in the introduction.


Subject(s)
Lab-On-A-Chip Devices , Microfluidics , Animals , Biocompatible Materials , Cell Culture Techniques/methods , Microfluidics/methods
15.
Small Methods ; 6(7): e2200402, 2022 07.
Article in English | MEDLINE | ID: mdl-35595684

ABSTRACT

In this study, transmission electron microscopy atomic force microscopy, and surface enhanced Raman spectroscopy are combined through a direct imaging approach, to gather structural and chemical information of complex molecular systems such as ion channels in their original plasma membrane. Customized microfabricated sample holder allows to characterize Nav channels embedded in the original plasma membrane extracted from neuronal cells that are derived from healthy human induced pluripotent stem cells. The identification of the channels is accomplished by using two different approaches, one of them widely used in cryo-EM (the particle analysis method) and the other based on a novel Zernike Polynomial expansion of the images bitmap. This approach allows to carry out a whole series of investigations, one complementary to the other, on the same sample, preserving its state as close as possible to the original membrane configuration.


Subject(s)
Induced Pluripotent Stem Cells , Voltage-Gated Sodium Channels , Cell Membrane/metabolism , Humans , Induced Pluripotent Stem Cells/metabolism , Neurons/metabolism , Spectrum Analysis , Voltage-Gated Sodium Channels/chemistry
16.
Materials (Basel) ; 14(23)2021 Nov 28.
Article in English | MEDLINE | ID: mdl-34885442

ABSTRACT

The current Special Issue entitled "Metal and Metal Oxide Nanoparticles: Design, Characterization, and Biomedical Applications" aims to present contributions from all scientists producing and/or applying metal and metal oxide nanoparticles in a diagnostic, therapeutic or theranostics context [...].

17.
Nanomaterials (Basel) ; 11(12)2021 Dec 14.
Article in English | MEDLINE | ID: mdl-34947740

ABSTRACT

In designing a new drug, considering the preferred route of administration, various requirements must be fulfilled. Active molecules pharmacokinetics should be reliable with a valuable drug profile as well as well-tolerated. Over the past 20 years, nanotechnologies have provided alternative and complementary solutions to those of an exclusively pharmaceutical chemical nature since scientists and clinicians invested in the optimization of materials and methods capable of regulating effective drug delivery at the nanometer scale. Among the many drug delivery carriers, lipid nano vesicular ones successfully support clinical candidates approaching such problems as insolubility, biodegradation, and difficulty in overcoming the skin and biological barriers such as the blood-brain one. In this review, the authors discussed the structure, the biochemical composition, and the drug delivery applications of lipid nanovesicular carriers, namely, niosomes, proniosomes, ethosomes, transferosomes, pharmacosomes, ufasomes, phytosomes, catanionic vesicles, and extracellular vesicles.

18.
Membranes (Basel) ; 11(11)2021 Nov 18.
Article in English | MEDLINE | ID: mdl-34832115

ABSTRACT

Cellular communications take place thanks to a well-connected network of chemical-physical signals, biomolecules, growth factors, and vesicular messengers that travel inside or between cells. A deep knowledge of the extracellular vesicle (EV) system allows for a better understanding of the whole series of phenomena responsible for cell proliferation and death. To this purpose, here, a thorough immuno-phenotypic characterization of B-cell EV membranes is presented. Furthermore, the cellular membrane of B lymphocytes, Burkitt lymphoma, and human myeloid leukemic cells were characterized through cytofluorimetry assays and fluorescent microscopy analysis. Through cytotoxicity and internalization tests, the tropism of B lymphocyte-derived EVs was investigated toward the parental cell line and two different cancer cell lines. In this study, an innate capability of passive targeting of the native EVs was distinguished from the active targeting capability of monoclonal antibody-engineered EVs, able to selectively drive the vesicles, enhancing their internalization into the target cancer cells. In particular, the specific targeting ability of anti-CD20 engineered EVs towards Daudi cells, highly expressing CD20 marker on their cell membrane, was proved, while almost no internalization events were observed in HL60 cells, since they did not express an appreciable amount of the CD20 marker on their plasma membranes.

19.
Micromachines (Basel) ; 12(9)2021 Sep 11.
Article in English | MEDLINE | ID: mdl-34577737

ABSTRACT

This review looks at the different approaches, techniques, and materials devoted to DNA studies. In the past few decades, DNA nanotechnology, micro-fabrication, imaging, and spectroscopies have been tailored and combined for a broad range of medical-oriented applications. The continuous advancements in miniaturization of the devices, as well as the continuous need to study biological material structures and interactions, down to single molecules, have increase the interdisciplinarity of emerging technologies. In the following paragraphs, we will focus on recent sensing approaches, with a particular effort attributed to cutting-edge techniques for structural and mechanical studies of nucleic acids.

20.
Micromachines (Basel) ; 12(12)2021 Nov 30.
Article in English | MEDLINE | ID: mdl-34945349

ABSTRACT

Superhydrophobic surfaces display an extraordinary repulsion to water and water-based solutions. This effect emerges from the interplay of intrinsic hydrophobicity of the surface and its morphology. These surfaces have been established for a long time and have been studied for decades. The increasing interest in recent years has been focused towards applications in many different fields and, in particular, biomedical applications. In this paper, we review the progress achieved in the last years in the fabrication of regularly patterned superhydrophobic surfaces in many different materials and their exploitation for the manipulation and characterization of biomaterial, with particular emphasis on the issues affecting the yields of the fabrication processes and the quality of the manufactured devices.

SELECTION OF CITATIONS
SEARCH DETAIL