Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Appl Environ Microbiol ; 83(17)2017 09 01.
Article in English | MEDLINE | ID: mdl-28667115

ABSTRACT

Candida glabrata is a promising microorganism for organic acid production. The present study aimed to investigate the role of C. glabrata Mediator complex subunit 3 (CgMed3p) in protecting C. glabrata under low-pH conditions. To this end, genes CgMED3A and CgMED3B were deleted, resulting in the double-deletion Cgmed3ABΔ strain. The final biomass and cell viability levels of Cgmed3ABΔ decreased by 64.5% and 35.8%, respectively, compared to the wild-type strain results at pH 2.0. In addition, lack of CgMed3ABp resulted in selective repression of a subset of genes in the lipid biosynthesis and metabolism pathways. Furthermore, C18:1, lanosterol, zymosterol, fecosterol, and ergosterol were 13.2%, 80.4%, 40.4%, 78.1%, and 70.4% less abundant, respectively, in the Cgmed3ABΔ strain. In contrast, the concentration of squalene increased by about 44.6-fold. As a result, membrane integrity, rigidity, and H+-ATPase activity in the Cgmed3ABΔ strain were reduced by 62.7%, 13.0%, and 50.3%, respectively. In contrast, overexpression of CgMED3AB increased the levels of C18:0, C18:1, and ergosterol by 113.2%, 5.9%, and 26.4%, respectively. Moreover, compared to the wild-type results, dry cell weight and pyruvate production increased, irrespective of pH buffering. These results suggest that CgMED3AB regulates membrane composition, which in turn enables cells to tolerate low-pH stress. We propose that regulation of CgMed3ABp may provide a novel strategy for enhancing low-pH tolerance and increasing organic acid production by C. glabrataIMPORTANCE The objective of this study was to investigate the role of Candida glabrata Mediator complex subunit 3 (CgMed3ABp) and its regulation of gene expression at low pH in C. glabrata We found that CgMed3ABp was critical for cellular survival and pyruvate production during low-pH stress. Measures of the levels of plasma membrane fatty acids and sterol composition indicated that CgMed3ABp could play an important role in regulating homeostasis in C. glabrata We propose that controlling membrane lipid composition may enhance the robustness of C. glabrata for the production of organic acids.


Subject(s)
Candida glabrata/metabolism , Cell Membrane/metabolism , Fungal Proteins/metabolism , Mediator Complex/metabolism , Sterols/metabolism , Candida glabrata/chemistry , Candida glabrata/genetics , Cell Membrane/chemistry , Fungal Proteins/genetics , Hydrogen-Ion Concentration , Mediator Complex/genetics , Sterols/chemistry
2.
Appl Environ Microbiol ; 82(23): 6920-6929, 2016 Dec 01.
Article in English | MEDLINE | ID: mdl-27663025

ABSTRACT

The asexual facultative aerobic haploid yeast Candida glabrata is widely used in the industrial production of various organic acids. To elucidate the physiological function of the C. glabrata transcription factor Crz1p (CgCrz1p) and its role in tolerance to acid stress, we deleted or overexpressed the corresponding gene, CgCRZ1 Deletion of CgCRZ1 resulted in a 60% decrease in the dry weight of cells (DCW) and a 50% drop in cell viability compared with those of the wild type at pH 2.0. Expression of lipid metabolism-associated genes was also significantly downregulated. Consequently, the proportion of C18:1 fatty acids, the ratio of unsaturated to saturated fatty acids, and the ergosterol content decreased by 30%, 46%, and 30%, respectively. Additionally, membrane integrity, fluidity, and H+-ATPase activity were reduced by 45%, 9%, and 50%, respectively. In contrast, overexpression of CgCrz1p increased C18:1 and ergosterol contents by 16% and 40%, respectively. Overexpression also enhanced membrane integrity, fluidity, and H+-ATPase activity by 31%, 6%, and 20%, respectively. Moreover, in the absence of pH buffering, the DCW and pyruvate titers increased by 48% and 60%, respectively, compared to that of the wild type. Together, these results suggest that CgCrz1p regulates tolerance to acidic conditions by altering membrane lipid composition in C. glabrataIMPORTANCE This study provides insight into the metabolism of Candida glabrata under acidic conditions, such as those encountered during the industrial production of organic acids. We found that overexpression of the transcription factor CgCrz1p improved viability, biomass, and pyruvate yields at a low pH. Analysis of plasma membrane lipid composition indicated that CgCrz1p might play an important role in its integrity and fluidity and that it enhanced the pumping of protons in acidic environments. We propose that altering the structure of the cell membrane may provide a successful strategy for increasing C. glabrata productivity at a low pH.

SELECTION OF CITATIONS
SEARCH DETAIL