Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Journal subject
Publication year range
1.
BMC Genomics ; 21(1): 376, 2020 May 29.
Article in English | MEDLINE | ID: mdl-32471448

ABSTRACT

BACKGROUND: Parasitoid wasps have fascinating life cycles and play an important role in trophic networks, yet little is known about their genome content and function. Parasitoids that infect aphids are an important group with the potential for biological control. Their success depends on adapting to develop inside aphids and overcoming both host aphid defenses and their protective endosymbionts. RESULTS: We present the de novo genome assemblies, detailed annotation, and comparative analysis of two closely related parasitoid wasps that target pest aphids: Aphidius ervi and Lysiphlebus fabarum (Hymenoptera: Braconidae: Aphidiinae). The genomes are small (139 and 141 Mbp) and the most AT-rich reported thus far for any arthropod (GC content: 25.8 and 23.8%). This nucleotide bias is accompanied by skewed codon usage and is stronger in genes with adult-biased expression. AT-richness may be the consequence of reduced genome size, a near absence of DNA methylation, and energy efficiency. We identify missing desaturase genes, whose absence may underlie mimicry in the cuticular hydrocarbon profile of L. fabarum. We highlight key gene groups including those underlying venom composition, chemosensory perception, and sex determination, as well as potential losses in immune pathway genes. CONCLUSIONS: These findings are of fundamental interest for insect evolution and biological control applications. They provide a strong foundation for further functional studies into coevolution between parasitoids and their hosts. Both genomes are available at https://bipaa.genouest.org.


Subject(s)
Aphids/genetics , Genomics , Wasps/genetics , Animals , Aphids/immunology , DNA Methylation/genetics , GC Rich Sequence , Insect Proteins/genetics , Sex Determination Processes/genetics , Venoms/genetics , Wasps/immunology
2.
Yale J Biol Med ; 91(4): 399-408, 2018 12.
Article in English | MEDLINE | ID: mdl-30588207

ABSTRACT

The accessory gland (AG) produces seminal fluid proteins that are transferred to the female upon mating in many insects. These seminal fluid proteins often promote a male's post-copulatory reproductive success. Despite its crucial function many males eclose with a small gland not yet containing the full set of proteins. Thus, they need a physiological maturation period. Using Drosophila melanogaster, we tested whether this physiological maturation is linked to behavioral maturation in males and to what extent seminal fluid allocation patterns are influenced by physiological maturation. To that end, we measured AG protein content (as a proxy for physiological maturation) of young, immature males that were either successful in gaining a mating, but prevented from transferring seminal fluid proteins, or unsuccessful, thus using mating success as a proxy for behavioral maturation. Furthermore, we compared ejaculate allocation in immature and mature males in a single mating. Though mating success and gland maturation increase with male age, we found no evidence for a fine-tuned synchronization of behavioral and physiological maturation in males. This is especially surprising since we found reduced ejaculate allocation in very young, immature males, hinting at reduced fitness benefits from early matings in D. melanogaster.


Subject(s)
Drosophila Proteins/metabolism , Drosophila melanogaster/growth & development , Drosophila melanogaster/metabolism , Animals , Male
SELECTION OF CITATIONS
SEARCH DETAIL