Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters

Database
Language
Publication year range
1.
Phys Rev E Stat Nonlin Soft Matter Phys ; 71(2 Pt 2): 026606, 2005 Feb.
Article in English | MEDLINE | ID: mdl-15783440

ABSTRACT

We study the propagation of solitons along the hydrogen bonds of an alpha helix. Modeling the hydrogen and peptide bonds with Lennard-Jones potentials, we show that the solitons can appear spontaneously and have long lifetimes. Remarkably, even if no explicit solution is known for the Lennard-Jones potential, the solitons can be characterized analytically with a good quantitative agreement using formulas for a Toda potential with parameters fitted to the Lennard-Jones potential. We also discuss and show the robustness of the family of periodic solutions called cnoidal waves, corresponding to phonons. The soliton phenomena described in the simulations of alpha helices may help to explain recent x-ray experiments on long alpha helices in Rhodopsin where a long lifetime of the vibrational modes has been observed.

2.
J Phys Condens Matter ; 21(47): 474225, 2009 Nov 25.
Article in English | MEDLINE | ID: mdl-21832504

ABSTRACT

The switching behaviour, under reversal of an external field, of a simple, ideal magnetic nanoparticle is studied and the interplay between antiferromagnets and ferromagnets elucidated. It is found that the switching between various multi- q ordering in fcc antiferromagnets (as found theoretically in NiO nanoparticles (Kodama and Berkowitz 1999 Phys. Rev. B 59 6321 and Lindgård 2003 J. Magn. Magn. Mater. 266 88)) in a field severely limits the exchange biasing potential. The interface between the different magnets is found to be that originally assumed by Meiklejohn and Bean (1956 Phys. Rev. 102 1413).

3.
Phys Rev Lett ; 95(21): 217001, 2005 Nov 18.
Article in English | MEDLINE | ID: mdl-16384170

ABSTRACT

An effective spiral spin phase ground state provides a new paradigm for the high-temperature superconducting cuprates. It accounts for the recent neutron scattering observations of spin excitations regarding both the energy dispersion and the intensities, including the "universal" rotation by 45 degrees around the resonance energy . The intensity has a 2D character even in a single twin crystal. The value of is related to the nesting properties of the Fermi surface. The excitations above are shown to be due to in-plane spin fluctuations, a testable difference from the stripe model. The form of the exchange interaction function reveals the effects of the Fermi surface, and the unique shape predicts large quantum spin fluctuations in the ground state.

4.
Phys Rev Lett ; 94(12): 128101, 2005 Apr 01.
Article in English | MEDLINE | ID: mdl-15903964

ABSTRACT

The amide I and II bands in myoglobin show a heterogeneous temperature dependence, with bands at 6.17 and 6.43 microm which are more intense at low temperatures. The amide I band temperature dependence is on the long wavelength edge of the band, while the short wavelength side has almost no temperature dependence. We compare concepts of anharmonic solid-state crystal physics and chemical physics for the origins of these bands. We suggest that the long wavelength side is composed of those amino acids which hydrogen bond to the hydration shell of the protein, and that temperature dependent bands can be used to determine the time it takes vibrational energy to flow into the hydration shell. We determine that vibrational energy flow to the hydration shell from the amide I takes approximately 20 ps to occur.


Subject(s)
Myoglobin/chemistry , Spectrophotometry, Infrared/methods , Amides/chemistry , Animals , Hydrogen Bonding , Temperature , Thermodynamics , Whales
SELECTION OF CITATIONS
SEARCH DETAIL