Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 45
Filter
Add more filters

Country/Region as subject
Affiliation country
Publication year range
1.
Nat Immunol ; 23(1): 40-49, 2022 01.
Article in English | MEDLINE | ID: mdl-34937928

ABSTRACT

SARS-CoV-2 infection is generally mild or asymptomatic in children but a biological basis for this outcome is unclear. Here we compare antibody and cellular immunity in children (aged 3-11 years) and adults. Antibody responses against spike protein were high in children and seroconversion boosted responses against seasonal Beta-coronaviruses through cross-recognition of the S2 domain. Neutralization of viral variants was comparable between children and adults. Spike-specific T cell responses were more than twice as high in children and were also detected in many seronegative children, indicating pre-existing cross-reactive responses to seasonal coronaviruses. Importantly, children retained antibody and cellular responses 6 months after infection, whereas relative waning occurred in adults. Spike-specific responses were also broadly stable beyond 12 months. Therefore, children generate robust, cross-reactive and sustained immune responses to SARS-CoV-2 with focused specificity for the spike protein. These findings provide insight into the relative clinical protection that occurs in most children and might help to guide the design of pediatric vaccination regimens.


Subject(s)
Antibodies, Viral/immunology , Coronavirus 229E, Human/immunology , Coronavirus OC43, Human/immunology , Cross Protection/immunology , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Adaptive Immunity/immunology , Adult , Antibodies, Neutralizing/immunology , COVID-19/immunology , COVID-19 Vaccines/immunology , Child , Child, Preschool , Cross Reactions/immunology , Humans
2.
Nat Immunol ; 22(5): 620-626, 2021 05.
Article in English | MEDLINE | ID: mdl-33674800

ABSTRACT

The immune response to SARS-CoV-2 is critical in controlling disease, but there is concern that waning immunity may predispose to reinfection. We analyzed the magnitude and phenotype of the SARS-CoV-2-specific T cell response in 100 donors at 6 months following infection. T cell responses were present by ELISPOT and/or intracellular cytokine staining analysis in all donors and characterized by predominant CD4+ T cell responses with strong interleukin (IL)-2 cytokine expression. Median T cell responses were 50% higher in donors who had experienced a symptomatic infection, indicating that the severity of primary infection establishes a 'set point' for cellular immunity. T cell responses to spike and nucleoprotein/membrane proteins were correlated with peak antibody levels. Furthermore, higher levels of nucleoprotein-specific T cells were associated with preservation of nucleoprotein-specific antibody level although no such correlation was observed in relation to spike-specific responses. In conclusion, our data are reassuring that functional SARS-CoV-2-specific T cell responses are retained at 6 months following infection.


Subject(s)
Antigens, Viral/immunology , CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , COVID-19/immunology , Immunity, Cellular , SARS-CoV-2/immunology , Adult , Aged , Antibodies, Viral/blood , CD4-Positive T-Lymphocytes/metabolism , CD4-Positive T-Lymphocytes/virology , CD8-Positive T-Lymphocytes/metabolism , CD8-Positive T-Lymphocytes/virology , COVID-19/blood , COVID-19/virology , Female , Host-Pathogen Interactions , Humans , Interleukin-2/blood , Male , Middle Aged , Phenotype , SARS-CoV-2/pathogenicity , Time Factors , Young Adult
4.
N Engl J Med ; 386(13): 1207-1220, 2022 03 31.
Article in English | MEDLINE | ID: mdl-35172051

ABSTRACT

BACKGROUND: The duration and effectiveness of immunity from infection with and vaccination against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are relevant to pandemic policy interventions, including the timing of vaccine boosters. METHODS: We investigated the duration and effectiveness of immunity in a prospective cohort of asymptomatic health care workers in the United Kingdom who underwent routine polymerase-chain-reaction (PCR) testing. Vaccine effectiveness (≤10 months after the first dose of vaccine) and infection-acquired immunity were assessed by comparing the time to PCR-confirmed infection in vaccinated persons with that in unvaccinated persons, stratified according to previous infection status. We used a Cox regression model with adjustment for previous SARS-CoV-2 infection status, vaccine type and dosing interval, demographic characteristics, and workplace exposure to SARS-CoV-2. RESULTS: Of 35,768 participants, 27% (9488) had a previous SARS-CoV-2 infection. Vaccine coverage was high: 95% of the participants had received two doses (78% had received BNT162b2 vaccine [Pfizer-BioNTech] with a long interval between doses, 9% BNT162b2 vaccine with a short interval between doses, and 8% ChAdOx1 nCoV-19 vaccine [AstraZeneca]). Between December 7, 2020, and September 21, 2021, a total of 2747 primary infections and 210 reinfections were observed. Among previously uninfected participants who received long-interval BNT162b2 vaccine, adjusted vaccine effectiveness decreased from 85% (95% confidence interval [CI], 72 to 92) 14 to 73 days after the second dose to 51% (95% CI, 22 to 69) at a median of 201 days (interquartile range, 197 to 205) after the second dose; this effectiveness did not differ significantly between the long-interval and short-interval BNT162b2 vaccine recipients. At 14 to 73 days after the second dose, adjusted vaccine effectiveness among ChAdOx1 nCoV-19 vaccine recipients was 58% (95% CI, 23 to 77) - considerably lower than that among BNT162b2 vaccine recipients. Infection-acquired immunity waned after 1 year in unvaccinated participants but remained consistently higher than 90% in those who were subsequently vaccinated, even in persons infected more than 18 months previously. CONCLUSIONS: Two doses of BNT162b2 vaccine were associated with high short-term protection against SARS-CoV-2 infection; this protection waned considerably after 6 months. Infection-acquired immunity boosted with vaccination remained high more than 1 year after infection. (Funded by the U.K. Health Security Agency and others; ISRCTN Registry number, ISRCTN11041050.).


Subject(s)
Adaptive Immunity , COVID-19 Vaccines , COVID-19 , SARS-CoV-2 , Adaptive Immunity/immunology , Asymptomatic Diseases , BNT162 Vaccine/therapeutic use , COVID-19/diagnosis , COVID-19/immunology , COVID-19/prevention & control , COVID-19 Nucleic Acid Testing , COVID-19 Vaccines/immunology , COVID-19 Vaccines/therapeutic use , ChAdOx1 nCoV-19/therapeutic use , Health Personnel , Humans , Prospective Studies , United Kingdom , Vaccination/methods , Vaccine Efficacy
5.
Euro Surveill ; 27(1)2022 01.
Article in English | MEDLINE | ID: mdl-34991777

ABSTRACT

Serum samples were collected pre- and post-booster vaccination with Comirnaty in 626 participants (aged ≥ 50 years) who had received two Comirnaty doses < 30 days apart, two Comirnaty doses ≥ 30 days apart or two Vaxzevria doses ≥ 30 days apart. Irrespective of primary vaccine type or schedule, spike antibody GMTs peaked 2-4 weeks after second dose, fell significantly ≤ 38 weeks later and rose above primary immunisation GMTs 2-4 weeks post-booster. Higher post-booster responses were observed with a longer interval between primary immunisation and boosting.


Subject(s)
COVID-19 Vaccines , COVID-19 , Humans , London , SARS-CoV-2 , United Kingdom
6.
Emerg Infect Dis ; 27(7): 1795-1801, 2021 07.
Article in English | MEDLINE | ID: mdl-34152947

ABSTRACT

We describe results of testing blood donors in London, UK, for severe acute respiratory disease coronavirus 2 (SARS-CoV-2) IgG before and after lockdown measures. Anonymized samples from donors 17-69 years of age were tested using 3 assays: Euroimmun IgG, Abbott IgG, and an immunoglobulin receptor-binding domain assay developed by Public Health England. Seroprevalence increased from 3.0% prelockdown (week 13, beginning March 23, 2020) to 10.4% during lockdown (weeks 15-16) and 12.3% postlockdown (week 18) by the Abbott assay. Estimates were 2.9% prelockdown, 9.9% during lockdown, and 13.0% postlockdown by the Euroimmun assay and 3.5% prelockdown, 11.8% during lockdown, and 14.1% postlockdown by the receptor-binding domain assay. By early May 2020, nearly 1 in 7 donors had evidence of past SARS-CoV-2 infection. Combining results from the Abbott and Euroimmun assays increased seroprevalence by 1.6%, 2.3%, and 0.6% at the 3 timepoints compared with Euroimmun alone, demonstrating the value of using multiple assays.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Viral , Blood Donors , Communicable Disease Control , England , Humans , Immunoglobulin G , London/epidemiology , Public Health , Sensitivity and Specificity , Seroepidemiologic Studies , United Kingdom
7.
Sex Transm Infect ; 97(5): 382-386, 2021 08.
Article in English | MEDLINE | ID: mdl-33361466

ABSTRACT

OBJECTIVES: Men who have sex with men (MSM) have an increased risk of human papillomavirus (HPV) infection and related diseases compared with men who have sex exclusively with women. From April 2018, there has been a phased roll-out of HPV vaccination offered to MSM aged up to 45 years old who are attending sexual health clinics and HIV clinics in England. The vaccine is most effective if delivered prior to HPV infection. We estimated the proportion of MSM with no current vaccine-type infection and no serological evidence of prior infection, in a study undertaken prior to vaccine introduction. METHODS: We conducted a cross-sectional study among 484 MSM aged 18-40 years old who attended a sexual health clinic in London between 2010 and 2012. We estimated the prevalence of current and past infection by testing for HPV DNA in anogenital samples and for serum antibodies to HPV16 and HPV18. RESULTS: The median age was 30 years (IQR 25-35). The prevalence of HPV16 and HPV18 DNA was 13.2% and 6.2%, respectively. Seropositivity for HPV16 and HPV18 was 28.5% and 17.1%, respectively, with 11.4% seropositive for both types. Seropositivity for the same HPV type was strongly associated with anogenital DNA detection. 279 MSM (57.6%) tested negative for both HPV16 and HPV18 serology and were DNA negative for these two types; only 5 MSM (1.0%) were seropositive and DNA positive for both HPV types. CONCLUSIONS: This is the first study to determine both the prevalence of HPV DNA in anogenital samples and HPV seroprevalence among MSM attending a sexual health clinic in the UK. Over half of MSM in this study had no evidence of a previous or current infection with either of the high-risk HPV types included in the quadrivalent vaccine, which supports the rationale for opportunistic HPV vaccination of MSM attending sexual health clinics.


Subject(s)
Homosexuality, Male , Human papillomavirus 16 , Human papillomavirus 18 , Papillomavirus Infections/epidemiology , Sexual and Gender Minorities , Adult , Ambulatory Care Facilities , Cross-Sectional Studies , Human Papillomavirus DNA Tests , Humans , London/epidemiology , Male , Papillomavirus Infections/blood , Papillomavirus Infections/diagnosis , Seroepidemiologic Studies , Serologic Tests , Sexual Health , Young Adult
8.
Emerg Infect Dis ; 26(1)2020 01.
Article in English | MEDLINE | ID: mdl-31855527

ABSTRACT

In recent years, serosurveillance has gained momentum as a way of determining disease transmission and immunity in populations, particularly with respect to vaccine-preventable diseases. At the end of 2017, the Oxford University Clinical Research Unit and the National Institute of Hygiene and Epidemiology held a meeting in Vietnam with national policy makers, researchers, and international experts to discuss current seroepidemiologic projects in Vietnam and future needs and plans for nationwide serosurveillance. This report summarizes the meeting and the plans that were discussed to set up nationwide serosurveillance in Vietnam.


Subject(s)
Population Surveillance/methods , Seroepidemiologic Studies , Humans , Vietnam/epidemiology
9.
Euro Surveill ; 24(1)2019 Jan.
Article in English | MEDLINE | ID: mdl-30621818

ABSTRACT

BackgroundIn 1999, the United Kingdom (UK) was the first country to introduce meningococcal group C (MenC) conjugate vaccination. This vaccination programme has evolved with further understanding, new vaccines and changing disease epidemiology.AimTo characterise MenC disease and population protection against MenC disease in England.MethodsBetween 1998/99-2015/16, surveillance data from England for laboratory-confirmed MenC cases were collated; using the screening method, we updated vaccine effectiveness (VE) estimates. Typing data and genomes were obtained from the Meningitis Research Foundation Meningococcus Genome Library and PubMLST Neisseria database. Phylogenetic network analysis of MenC cc11 isolates was undertaken. We compared bactericidal antibody assay results using anonymised sera from 2014 to similar data from 1996-1999, 2000-2004 and 2009.ResultsMenC cases fell from 883 in 1998/99 (1.81/100,000 population) to 42 cases (0.08/100,000 population) in 2015/16. Lower VE over time since vaccination was observed after infant immunisation (p = 0.009) and a single dose at 1-4 years (p = 0.03). After vaccination at 5-18 years, high VE was sustained for ≥ 8 years; 95.0% (95% CI: 76.0- 99.5%). Only 25% (75/299) children aged 1-14 years were seroprotected against MenC disease in 2014. Recent case isolates mostly represented two cc11 strains.ConclusionHigh quality surveillance has furthered understanding of MenC vaccines and improved schedules, maximising population benefit. The UK programme provides high direct and indirect protection despite low levels of seroprotection in some age groups. High-resolution characterisation supports ongoing surveillance of distinct MenC cc11 lineages.


Subject(s)
Meningitis, Meningococcal/epidemiology , Meningococcal Infections/epidemiology , Meningococcal Vaccines/immunology , Neisseria meningitidis, Serogroup C/immunology , Adolescent , Adult , Child , Child, Preschool , England/epidemiology , Female , Humans , Immunization Programs , Incidence , Infant , Male , Meningitis, Meningococcal/prevention & control , Meningococcal Infections/prevention & control , Meningococcal Vaccines/administration & dosage , Neisseria meningitidis, Serogroup C/isolation & purification , Seroepidemiologic Studies , Vaccination , Young Adult
10.
Vaccine ; 42(26): 126453, 2024 Oct 18.
Article in English | MEDLINE | ID: mdl-39426286

ABSTRACT

BACKGROUND: The 2022 Monkeypox virus (MPXV) global outbreak boosted development of multiple serological assays to aid understanding of Mpox immunology. OBJECTIVES: The study aimed to assess a multiplexed solid-phase electrochemiluminescence immunoassay (Meso Scale Discovery (MSD)) for simultaneous detection of antibodies against MPXV, including A35, E8 and M1 antigens, along with corresponding Vaccina Virus (VACV) homologues and demonstrate its accuracy in assessing antibody titres post-vaccination and infection. METHODS: Assay performance was assessed for simultaneous detection of antibodies against MPXV and corresponding VACV antigens. Sensitivity and specificity were evaluated with paediatric negatives (n = 215), pre- and post-IMVANEX vaccinated (n = 80), and MPXV (Clade IIb, n = 39) infected serum samples. RESULTS: The assay demonstrated high specificity (75.68 % (CI: 69.01-81.29) - 95.98 % (CI:92.54-97.87)) and sensitivity (62.11 % (CI:52.06-71.21) - 98.59 % (CI:92.44 %-99.93 %)) depending on the Orthopoxvirus antigen. Preferential binding was observed between MPXV-infected individuals and MPXV antigens, while vaccinated individuals exhibited increased binding to VACV antigens. These results highlight differential binding patterns between antigen homologues in related viruses. CONCLUSION: Overall, this assay demonstrates high sensitivities in detecting antibodies for multiple relevant MPXV and VACV antigens post-infection and post-vaccination, indicating its utility in understanding immune responses to Orthopoxviruses in current and future outbreaks and evaluating the immunogenicity of new-generation Mpox-specific vaccinations.

11.
Vaccine ; 42(7): 1656-1664, 2024 Mar 07.
Article in English | MEDLINE | ID: mdl-38342716

ABSTRACT

We present England 2021/22 end-of-season adjusted vaccine effectiveness (aVE) against laboratory confirmed influenza related emergency care use in children aged 1-17 and in adults aged 50+, and serological findings in vaccinated vs unvaccinated adults by hemagglutination inhibition assay. Influenza vaccination has been routinely offered to all children aged 2-10 years and adults aged 65 years + in England. In 2021/22, the offer was extended to children to age 15 years, and adults aged 50-64 years. Influenza activity rose during the latter half of the 2021/22 season, while remaining comparatively low due to COVID-19 pandemic control measures. Influenza A(H3N2) strains predominated. A test negative design was used to estimate aVE by vaccine type. Cases and controls were identified within a sentinel laboratory surveillance system. Vaccine histories were obtained from the National Immunisation Management Service (NIMS), an influenza and COVID-19 vaccine registry. These were linked to emergency department presentations (excluding accidents) with respiratory swabbing ≤ 14 days before or ≤ 7 days after presentation. Amongst adults, 423 positive and 32,917 negative samples were eligible for inclusion, and 145 positive and 6,438 negative samples among children. Those admitted to hospital were further identified. In serology against the circulating A(H3N2) A/Bangladesh/4005/2020-like strain, 61 % of current season adult vaccinees had titres ≥ 1:40 compared to 17 % of those unvaccinated in 2020/21 or 2021/22 (p < 0.001). We found good protection from influenza vaccination against influenza requiring emergency care in children (72.7 % [95 % CI 52.7, 84.3 %]) and modest effectiveness in adults (26.1 % [95 % CI 4.5, 42.8 %]). Adult VE was higher for A(H1N1) (81 % [95 % CI 50, 93 %]) than A(H3N2) (33 % [95 % CI 6, 53 %]). Consistent protection was observable across preschool, primary and secondary school aged children. Imperfect test specificity combined with very low prevalence may have biased estimates towards null. With limited influenza circulation, the study could not determine differences by vaccine types.


Subject(s)
Emergency Medical Services , Influenza A Virus, H1N1 Subtype , Influenza Vaccines , Influenza, Human , Adult , Child , Child, Preschool , Humans , Influenza, Human/epidemiology , Influenza, Human/prevention & control , Case-Control Studies , Seasons , Influenza A Virus, H3N2 Subtype , COVID-19 Vaccines , Pandemics/prevention & control , Influenza Vaccines/therapeutic use , England/epidemiology , Vaccination , Primary Health Care
12.
JMIR Public Health Surveill ; 10: e52047, 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38569175

ABSTRACT

BACKGROUND: Prepandemic sentinel surveillance focused on improved management of winter pressures, with influenza-like illness (ILI) being the key clinical indicator. The World Health Organization (WHO) global standards for influenza surveillance include monitoring acute respiratory infection (ARI) and ILI. The WHO's mosaic framework recommends that the surveillance strategies of countries include the virological monitoring of respiratory viruses with pandemic potential such as influenza. The Oxford-Royal College of General Practitioner Research and Surveillance Centre (RSC) in collaboration with the UK Health Security Agency (UKHSA) has provided sentinel surveillance since 1967, including virology since 1993. OBJECTIVE: We aim to describe the RSC's plans for sentinel surveillance in the 2023-2024 season and evaluate these plans against the WHO mosaic framework. METHODS: Our approach, which includes patient and public involvement, contributes to surveillance objectives across all 3 domains of the mosaic framework. We will generate an ARI phenotype to enable reporting of this indicator in addition to ILI. These data will support UKHSA's sentinel surveillance, including vaccine effectiveness and burden of disease studies. The panel of virology tests analyzed in UKHSA's reference laboratory will remain unchanged, with additional plans for point-of-care testing, pneumococcus testing, and asymptomatic screening. Our sampling framework for serological surveillance will provide greater representativeness and more samples from younger people. We will create a biomedical resource that enables linkage between clinical data held in the RSC and virology data, including sequencing data, held by the UKHSA. We describe the governance framework for the RSC. RESULTS: We are co-designing our communication about data sharing and sampling, contextualized by the mosaic framework, with national and general practice patient and public involvement groups. We present our ARI digital phenotype and the key data RSC network members are requested to include in computerized medical records. We will share data with the UKHSA to report vaccine effectiveness for COVID-19 and influenza, assess the disease burden of respiratory syncytial virus, and perform syndromic surveillance. Virological surveillance will include COVID-19, influenza, respiratory syncytial virus, and other common respiratory viruses. We plan to pilot point-of-care testing for group A streptococcus, urine tests for pneumococcus, and asymptomatic testing. We will integrate test requests and results with the laboratory-computerized medical record system. A biomedical resource will enable research linking clinical data to virology data. The legal basis for the RSC's pseudonymized data extract is The Health Service (Control of Patient Information) Regulations 2002, and all nonsurveillance uses require research ethics approval. CONCLUSIONS: The RSC extended its surveillance activities to meet more but not all of the mosaic framework's objectives. We have introduced an ARI indicator. We seek to expand our surveillance scope and could do more around transmissibility and the benefits and risks of nonvaccine therapies.


Subject(s)
COVID-19 , Influenza Vaccines , Influenza, Human , Respiratory Tract Infections , Virus Diseases , Humans , Influenza, Human/epidemiology , Influenza, Human/prevention & control , Sentinel Surveillance , Respiratory Tract Infections/epidemiology , World Health Organization , Primary Health Care
13.
Vaccine ; 2023 Oct 09.
Article in English | MEDLINE | ID: mdl-37821313

ABSTRACT

BACKGROUND: Diphtheria is rare in England because of an effective national immunisation schedule that includes 5 doses of a diphtheria-containing vaccine at 2, 3, 4 months, preschool and adolescent boosters. However, in recent years there has been a notable increase in cases due to Corynebacterium ulcerans among older adults and evidence of endemic transmission of C. diphtheriae (normally associated with travel to endemic countries). We aimed to update 2009 estimates of diphtheria immunity considering the evolving epidemiology. METHODS: Residual sera collected from diagnostic laboratories and general practitioners in England in 2021 were randomly selected and tested for diphtheria antibody, to estimate proportions protected per age group. Diphtheria antibody levels were defined as susceptible (<0.01 IU/mL), basic protection (0.01-0.099 IU/mL) and full protection (≥0.1 IU/mL). Immunity estimates were standardised to the England population and compared to 2009. RESULTS: Based on 3,745 residual sera tested, 89% (95%CI: 87%-90%) of the 2021 England population had at least basic diphtheria protection (vs. 90% [88%-92%] in 2009) and 50% (48%-52%) full protection (vs. 41% [38%-44%]). Higher antibody levels were observed in those aged 1 and under, 10-11, 12-15, 25-34 and 35-44 years compared to 2009. The largest proportion susceptible were observed in those aged 70+, 26% (21%-31%) vs 12% (7%-18%) in 2009. CONCLUSIONS: Basic diphtheria protection is comparable between 2021 and 2009. The increase in immunity in working age adults is likely due to the school leaver booster introduced in 1994. The current vaccination schedule is maintaining sufficient population immunity. However, we recommend clinicians remain vigilant to severe diphtheria outcomes in older adults, because of their observed susceptibility.

14.
J Infect ; 87(5): 420-427, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37689394

ABSTRACT

OBJECTIVES: To investigate serological correlates of protection against SARS-CoV-2 B.1.617.2 (Delta) infection after two vaccinations. METHODS: We performed a case-control study, where cases were Delta infections after the second vaccine dose and controls were vaccinated, never infected participants, matched by age, gender and region. Sera were tested for anti-SARS-CoV-2 Spike antibody levels (anti-S) and neutralising antibody titres (nAbT), using live virus microneutralisation against Ancestral, Delta and Omicron (BA.1, B.1.1.529). We modelled the decay of anti-S and nAbT for both groups, inferring levels at matched calendar times since the second vaccination. We assessed differences in inferred antibody titres between groups and used conditional logistic regression to explore the relationship between titres and odds of infection. RESULTS: In total, 130 sequence-confirmed Delta cases and 318 controls were included. Anti-S and Ancestral nAbT decayed similarly between groups, but faster in cases for Delta nAbT (p = 0.02) and Omicron nAbT (p = 0.002). At seven days before infection, controls had higher anti-S levels (p < 0.0001) and nAbT (p < 0.0001; all variants) at matched calendar time. A two-fold increase in anti-S levels was associated with a 29% ([95% CI 14-42%]; p = 0.001) reduction in odds of Delta infection. Delta nAbT>40 were associated with reduced odds of Delta infection (89%, [69-96%]; p < 0.0001), with additional benefits for titres >100 (p = 0.009) and >400 (p = 0.007). CONCLUSIONS: We have identified correlates of protection against SARS-CoV-2 Delta, with potential implications for vaccine deployment, development, and public health response.


Subject(s)
Hepatitis D , Vaccines , Humans , Case-Control Studies , Antibodies, Neutralizing , Vaccination , Antibodies, Viral , United Kingdom/epidemiology
15.
Pediatr Infect Dis J ; 42(6): 496-502, 2023 06 01.
Article in English | MEDLINE | ID: mdl-36916856

ABSTRACT

BACKGROUND: Antibodies are a measure of immunity after primary infection, which may help protect against further SARS-CoV-2 infections. They may also provide some cross-protection against SARS-CoV-2 variants. There are limited data on antibody persistence and, especially, cross-reactivity against different SARS-CoV-2 variants after primary infection in children. METHODS: We initiated enhanced surveillance in 18 secondary schools to monitor SARS-CoV-2 infection and transmission in September 2020. Students and Staff provided longitudinal blood samples to test for variant-specific SARS-CoV-2 antibodies using in-house receptor binding domain assays. We recruited 1189 students and 1020 staff; 160 (97 students, 63 staff) were SARS-CoV-2 nucleocapsid-antibody positive at baseline and had sufficient serum for further analysis. RESULTS: Most participants developed sustained antibodies against their infecting [wild-type (WT)] strain as well as cross-reactive antibodies against the Alpha, Beta and Delta variants but at lower titers than WT. Staff had significantly lower antibodies titers against WT as cross-reactive antibodies against the Alpha, Beta and Delta variants than students (all P < 0.01). In participants with sufficient sera, only 2.3% (1/43) students and 17.2% (5/29) staff had cross-reactive antibodies against the Omicron variant; they also had higher antibody titers against WT (3042.5; 95% confidence interval: 769.0-12,036.2) than those who did not have cross-reactive antibodies against the Omicron variant (680.7; 534.2-867.4). CONCLUSIONS: We found very high rates of antibody persistence after primary infection with WT in students and staff. Infection with WT induced cross-reactive antibodies against Alpha, Beta and Delta variants, but not Omicron. Primary infection with WT may not be cross-protective against the Omicron variant.


Subject(s)
COVID-19 , SARS-CoV-2 , Child , Adolescent , Humans , Prospective Studies , Antibodies, Viral , Antibodies, Neutralizing
16.
Nat Commun ; 14(1): 5948, 2023 Sep 23.
Article in English | MEDLINE | ID: mdl-37741831

ABSTRACT

In early 2022, a cluster of monkeypox virus (MPXV) infection (mpox) cases were identified within the UK with no prior travel history to MPXV-endemic regions. Subsequently, case numbers exceeding 80,000 were reported worldwide, primarily affecting gay, bisexual, and other men who have sex with men (GBMSM). Public health agencies worldwide have offered the IMVANEX Smallpox vaccination to these individuals at high-risk to provide protection and limit the spread of MPXV. We have developed a comprehensive array of ELISAs to study poxvirus-induced antibodies, utilising 24 MPXV and 3 Vaccinia virus (VACV) recombinant antigens. Panels of serum samples from individuals with differing Smallpox-vaccine doses and those with prior MPXV infection were tested on these assays, where we observed that one dose of Smallpox vaccination induces a low number of antibodies to a limited number of MPXV antigens but increasing with further vaccination doses. MPXV infection induced similar antibody responses to diverse poxvirus antigens observed in Smallpox-vaccinated individuals. We identify MPXV A27 as a serological marker of MPXV-infection, whilst MPXV M1 (VACV L1) is likely IMVANEX-specific. Here, we demonstrate analogous humoral antigen recognition between both MPXV-infected or Smallpox-vaccinated individuals, with binding to diverse yet core set of poxvirus antigens, providing opportunities for future vaccine (e.g., mRNA) and therapeutic (e.g., mAbs) design.


Subject(s)
Sexual and Gender Minorities , Smallpox Vaccine , Smallpox , Male , Humans , Monkeypox virus/genetics , Smallpox/prevention & control , Immunity, Humoral , Homosexuality, Male
17.
J Infect ; 87(4): 315-327, 2023 10.
Article in English | MEDLINE | ID: mdl-37579793

ABSTRACT

BACKGROUND: COVID-19 vaccines have been shown to be highly effective against hospitalisation and death following COVID-19 infection. COVID-19 vaccine effectiveness estimates against severe endpoints among individuals with clinical conditions that place them at increased risk of critical disease are limited. METHODS: We used English primary care medical record data from the Oxford-Royal College of General Practitioners Research and Surveillance Centre sentinel network (N > 18 million). Data were linked to the National Immunisation Management Service database, Second Generation Surveillance System for virology test data, Hospital Episode Statistics, and death registry data. We estimated adjusted vaccine effectiveness (aVE) against COVID-19 infection followed by hospitalisation and death among individuals in specific clinical risk groups using a cohort design during the delta-dominant period. We also report mortality statistics and results from our antibody surveillance in this population. FINDINGS: aVE against severe endpoints was high, 14-69d following a third dose aVE was 96.4% (95.1%-97.4%) and 97.9% (97.2%-98.4%) for clinically vulnerable people given a Vaxzevria and Comirnaty primary course respectively. Lower aVE was observed in the immunosuppressed group: 88.6% (79.1%-93.8%) and 91.9% (85.9%-95.4%) for Vaxzevria and Comirnaty respectively. Antibody levels were significantly lower among the immunosuppressed group than those not in this risk group across all vaccination types and doses. The standardised case fatality rate within 28 days of a positive test was 3.9/1000 in people not in risk groups, compared to 12.8/1000 in clinical risk groups. Waning aVE with time since 2nd dose was also demonstrated, for example, Comirnaty aVE against hospitalisation reduced from 96.0% (95.1-96.7%) 14-69days post-dose 2-82.9% (81.4-84.2%) 182days+ post-dose 2. INTERPRETATION: In all clinical risk groups high levels of vaccine effectiveness against severe endpoints were seen. Reduced vaccine effectiveness was noted among the immunosuppressed group.


Subject(s)
COVID-19 Vaccines , COVID-19 , Humans , COVID-19/prevention & control , BNT162 Vaccine , ChAdOx1 nCoV-19 , Cohort Studies , Vaccine Efficacy , SARS-CoV-2 , Hospitalization , Primary Health Care
18.
iScience ; 26(12): 108500, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-38089581

ABSTRACT

SARS-CoV-2 infections in children are generally asymptomatic or mild and rarely progress to severe disease and hospitalization. Why this is so remains unclear. Here we explore the potential for protection due to pre-existing cross-reactive seasonal coronavirus antibodies and compare the rate of antibody decline for nucleocapsid and spike protein in serum and oral fluid against SARS-CoV-2 within the pediatric population. No differences in seasonal coronaviruses antibody concentrations were found at baseline between cases and controls, suggesting no protective effect from pre-existing immunity against seasonal coronaviruses. Antibodies against seasonal betacoronaviruses were boosted in response to SARS-CoV-2 infection. In serum, anti-nucleocapsid antibodies fell below the threshold of positivity more quickly than anti-spike protein antibodies. These findings add to our understanding of protection against infection with SARS-CoV-2 within the pediatric population, which is important when considering pediatric SARS-CoV-2 immunization policies.

19.
J Antimicrob Chemother ; 67(7): 1589-96, 2012 Jul.
Article in English | MEDLINE | ID: mdl-22532463

ABSTRACT

Hydrogen peroxide is extensively used as a biocide, particularly in applications where its decomposition into non-toxic by-products is important. Although increasing information on the biocidal efficacy of hydrogen peroxide is available, there is still little understanding of its biocidal mechanisms of action. This review aims to combine past and novel evidence of interactions between hydrogen peroxide and the microbial cell and its components, while reflecting on alternative applications that make use of gaseous hydrogen peroxide. It is currently believed that the Fenton reaction leading to the production of free hydroxyl radicals is the basis of hydrogen peroxide action and evidence exists for this reaction leading to oxidation of DNA, proteins and membrane lipids in vivo. Investigations of DNA oxidation suggest that the oxidizing radical is the ferryl radical formed from DNA-associated iron, not hydroxyl. Investigations of protein oxidation suggest that selective oxidation of certain proteins might occur, and that vapour-phase hydrogen peroxide is a more potent oxidizer of protein than liquid-phase hydrogen peroxide. Few studies have investigated membrane damage by hydrogen peroxide, though it is suggested that this is important for the biocidal mechanism. No studies have investigated damage to microbial cell components under conditions commonly used for sterilization. Despite extensive studies of hydrogen peroxide toxicity, the mechanism of its action as a biocide requires further investigation.


Subject(s)
Bacteria/drug effects , Disinfectants/pharmacology , Hydrogen Peroxide/pharmacology , Bacterial Proteins/metabolism , DNA, Bacterial/metabolism , Humans , Lipid Metabolism , Oxidation-Reduction
20.
J Infect ; 84(5): 675-683, 2022 05.
Article in English | MEDLINE | ID: mdl-34990709

ABSTRACT

Background COVID-19 vaccines approved in the UK are highly effective in general population cohorts, however, data on effectiveness amongst individuals with clinical conditions that place them at increased risk of severe disease are limited. Methods We used GP electronic health record data, sentinel virology swabbing and antibody testing within a cohort of 712 general practices across England to estimate vaccine antibody response and vaccine effectiveness against medically attended COVID-19 amongst individuals in clinical risk groups using cohort and test-negative case control designs. Findings There was no reduction in S-antibody positivity in most clinical risk groups, however reduced S-antibody positivity and response was significant in the immunosuppressed group. Reduced vaccine effectiveness against clinical disease was also noted in the immunosuppressed group; after a second dose, effectiveness was moderate (Pfizer: 59.6%, 95%CI 18.0-80.1%; AstraZeneca 60.0%, 95%CI -63.6-90.2%). Interpretation In most clinical risk groups, immune response to primary vaccination was maintained and high levels of vaccine effectiveness were seen. Reduced antibody response and vaccine effectiveness were seen after 1 dose of vaccine amongst a broad immunosuppressed group, and second dose vaccine effectiveness was moderate. These findings support maximising coverage in immunosuppressed individuals and the policy of prioritisation of this group for third doses.


Subject(s)
COVID-19 Vaccines , COVID-19 , BNT162 Vaccine , COVID-19/prevention & control , ChAdOx1 nCoV-19 , Humans , Immunity , SARS-CoV-2 , Vaccine Efficacy
SELECTION OF CITATIONS
SEARCH DETAIL