ABSTRACT
Asian pika species are morphologically â¼similar and have overlapping ranges. This leads to uncertainty and species misidentification in the field. Phylogenetic analyses of such misidentified samples leads to taxonomic ambiguity. The ecology of many pika species remains understudied, particularly in the Himalaya, where sympatric species could be separated by elevation and/or substrate. We sampled, measured, and acquired genetic data from pikas in the Sikkim Himalaya. Our analyses revealed a cryptic lineage, Ochotona sikimaria, previously reported as a subspecies of O. thibetana. The results support the elevation of this lineage to the species level, as it is genetically divergent from O. thibetana, as well as sister species, O. cansus (endemic to central China) and O. curzoniae (endemic to the Tibetan plateau). The Sikkim lineage diverged from its sister species' about 1.7-0.8myrago, coincident with uplift events in the Himalaya. Our results add to the recent spate of cryptic diversity identified from the eastern Himalaya and highlight the need for further study within the Ochotonidae.
Subject(s)
Lagomorpha/classification , Animals , Cytochromes b/classification , Cytochromes b/genetics , DNA/chemistry , DNA/isolation & purification , DNA/metabolism , Lagomorpha/genetics , Phylogeny , Sequence Analysis, DNA , SikkimABSTRACT
The clarification of the systematics of pikas (genus Ochotona) has been hindered by largely overlapping morphological characters among species and the lack of a comprehensive molecular phylogeny. Here we estimate the first multilocus phylogeny of the genus to date, by analysing 12 nuclear DNA markers (total of 7.5Kb) in 11 species of pikas from the four classified subgenera (Pika, Ochotona, Lagotona and Conothoa) using a multispecies coalescent-based framework. The species-tree confirmed the subgeneric classification by retrieving as monophyletic the subgenera represented here by more than one species. Contrary to previous phylogenies based on mtDNA alone, Lagotona was found to be sister to Pika. Also, support for the monophyly of the alpina group was not strong, thus caution should be used in future analyses of this group. A relaxed molecular clock calibrated using the Ochotonidae-Leporidae divergence resulted in more recent estimates of divergence times relative to previous studies. Strong concordance with inferences based on fossil records was found, suggesting that the initial diversification of the genus took place by the end of late Miocene. Finally, this work sets up methodologies and gathers molecular markers that can be used to extend the understanding of the evolutionary history of the genus.
Subject(s)
Biological Evolution , Lagomorpha/classification , Phylogeny , Animals , Bayes Theorem , Cell Nucleus/genetics , DNA, Mitochondrial/genetics , Fossils , Models, Genetic , Sequence Analysis, DNA/methodsABSTRACT
Palaeogenomics is contributing to refine our understanding of many major evolutionary events at an unprecedented resolution, with relevant impacts in several fields, including phylogenetics of extinct species. Few extant and extinct animal species from Mediterranean regions have been characterised at the DNA level thus far. The Sardinian pika, Prolagus sardus (Wagner, 1829), was an iconic lagomorph species that populated Sardinia and Corsica and became extinct during the Holocene. There is a certain scientific debate on the phylogenetic assignment of the extinct genus Prolagus to the family Ochotonidae (one of the only two extant families of the order Lagomorpha) or to a separated family Prolagidae, or to the subfamily Prolaginae within the family Ochotonidae. In this study, we successfully reconstructed a portion of the mitogenome of a Sardinian pika dated to the Neolithic period and recovered from the Cabaddaris cave, an archaeological site in Sardinia. Our calibrated phylogeny may support the hypothesis that the genus Prolagus is an independent sister group to the family Ochotonidae that diverged from the Ochotona genus lineage about 30 million years ago. These results may contribute to refine the phylogenetic interpretation of the morphological peculiarities of the Prolagus genus already described by palaeontological studies.
Subject(s)
DNA, Ancient , Lagomorpha , Animals , Phylogeny , Biological Evolution , ArchaeologyABSTRACT
A dataset comprising 6806 records is presented of 17 (of total 24) rodent and insectivore species from the Crimean Peninsula collected during a 35-year period. All records are stored in the Public Mammal Database (Mammals of Russia; http://rusmam.ru/). The density of occurrence points allows visual evaluation of species distribution, even on large-scale maps. Each record contains the species name, locality description, and geographic coordinates, coordinate accuracy, date and author of the record, data source, and the method of species identification.
ABSTRACT
Twenty-five chipmunk species occur in the world, of which only the Siberian chipmunk, Tamias sibiricus, inhabits Asia. To investigate mitochondrial cytochrome b sequence variations and population structure of the Siberian chipmunk in northeastern Asia, we examined mitochondrial cytochrome b sequences (1140 bp) from 3 countries. Analyses of 41 individuals from South Korea and 33 individuals from Russia and northeast China resulted in 37 haplotypes and 27 haplotypes, respectively. There were no shared haplotypes between South Korea and Russia--northeast China. Phylogenetic trees and network analysis showed 2 major maternal lineages for haplotypes, referred to as the S and R lineages. Haplotype grouping in each cluster was nearly coincident with its geographic affinity. In particular, 3 distinct groups were found that mostly clustered in the northern, central and southern parts of South Korea. Nucleotide diversity of the S lineage was twice that of lineage R. The divergence between S and R lineages was estimated to be 2.98-0.98 Myr. During the ice age, there may have been at least 2 refuges in South Korea and Russia--northeast China. The sequence variation between the S and R lineages was 11.3% (K2P), which is indicative of specific recognition in rodents. These results suggest that T. sibiricus from South Korea could be considered a separate species. However, additional information, such as details of distribution, nuclear genes data or morphology, is required to strengthen this hypothesis.
Subject(s)
Cytochromes b/genetics , Sciuridae/genetics , Animals , China , DNA, Mitochondrial/chemistry , DNA, Mitochondrial/genetics , Genetics, Population , Geography , Korea , Phylogeny , RussiaABSTRACT
The interaction between chemokines and their receptors is crucial for inflammatory cell trafficking. CCL14 binds with high affinity to CCR5. In leporids, CCR5 underwent gene conversion with CCR2. The study of CCR5 ligands in leporid species showed that CCL8 is pseudogenized, while CCL3, CCL4 and CCL5 are functional. Here, we study the evolution of CCL14 in mammals with emphasis in the order Lagomorpha. By employing maximum likelihood methods we detected six sites under positive selection. Some of these sites are located in regions crucial for CCL14 activation and binding to receptors. Sequencing of CCL14 in Ochotona species showed that O. princeps, O. pallasi, O. alpina and O. turuchanensis have a mutation at the start codon (Met > Thr), while O. hoffmanni, O. mantchurica, O. dauurica and O. rufescens present the mammalian conserved Met. Ochotona hyperborea has the two alleles. In O. pusilla, CCL14 is a pseudogene due to a seven base pair insertion. Like CCL3, CCL4 and CCL5, CCL14 is functional in all leporids but in the Ochotonidae family it underwent a pseudogenization process. This suggests that CCL14 has an important biological role in other mammals by evolving under positive selection that has been lost in Ochotonidae (subgenera Pika and Lagotona).
Subject(s)
Chemokines, CC/genetics , Gene Conversion , Lagomorpha , Receptors, CCR2/genetics , Receptors, CCR5/genetics , Animals , Biological Evolution , Cell Movement/genetics , Likelihood Functions , Mammals , Mutation/genetics , Phylogeny , Pseudogenes/genetics , Selection, GeneticABSTRACT
Despite the finding in European rabbit and other leporid genomes of the first ever described endogenous lentivirus and of a European rabbit exclusive endogenous gammaretrovirus, until now no exogenous retroviruses have been isolated in Lagomorpha species. Nevertheless, looking for the presence of endogenous retroviruses (ERVs) in the species genomes could lead to the discovery of retroviral lineages yet to be found in Lagomorpha. Different mammalian genomes harbor endogenous viral sequences phylogenetically close to the betaretrovirus mouse mammary tumor virus (MMTV), propelling us to look for such retroviral "fossil" in American pika (Ochotona princeps) and European rabbit (Oryctolagus cuniculus) genomes. By performing genomic mining using MMTV gag and LTR as query sequences, we found that such viral elements were absent from the European rabbit genome. Oppositely, significant matches were found in American pika, and more importantly, a nearly complete MMTV-like virus (Pika-BERV) was identified. Using Pika-BERV gag and LTR as templates, we found similar sequences endogenized in different pika (Ochotona sp.) species. The orthology of the LTR flanking region between some pika species supported shared ancestry of specific endogenous betaretroviruses, while in other pika species similar sequences, but not orthologous, should have resulted from independent insertions. Our study supports the possible existence of infecting exogenous betaretroviruses for a long term, after the divergence of Ochotonidae from Leporidae, but yet to be identified.
Subject(s)
Endogenous Retroviruses/genetics , Endogenous Retroviruses/isolation & purification , Lagomorpha/virology , Mammary Tumor Virus, Mouse/genetics , Animals , Endogenous Retroviruses/classification , Mammary Tumor Virus, Mouse/classification , Rabbits/virologyABSTRACT
T-complex testis expressed protein 1 domain containing 4 (TCTEX1D4) contains the canonical phosphoprotein phosphatase 1 (PPP1) binding motif, composed by the amino acid sequence RVSF. We identified and validated the binding of TCTEX1D4 to PPP1 and demonstrated that indeed this protein is a novel PPP1 interacting protein. Analyses of twenty-one mammalian species available in public databases and seven Lagomorpha sequences obtained in this work showed that the PPP1 binding motif 90RVSF93 is present in all of them and is flanked by a palindromic sequence, PLGS, except in three species of pikas (Ochotona princeps, O. dauurica and O. pusilla). Furthermore, for the Ochotona species an extra glycosylation site, motif 96NLS98, and the loss of the palindromic sequence were observed. Comparison with other lagomorphs suggests that this event happened before the Ochotona radiation. The dN/dS for the sequence region comprising the PPP1 binding motif and the flanking palindrome highly supports the hypothesis that for Ochotona species this region has been evolving under positive selection. In addition, mutational screening shows that the ability of pikas TCTEX1D4 to bind to PPP1 is maintained, although the PPP1 binding motif is disrupted, and the N- and C-terminal surrounding residues are also abrogated. These observations suggest pika as an ideal model to study novel PPP1 complexes regulatory mechanisms.