ABSTRACT
Retinoic acid receptor responder protein-1 (RARRES1) is a podocyte-enriched transmembrane protein whose increased expression correlates with human glomerular disease progression. RARRES1 promotes podocytopenia and glomerulosclerosis via p53-mediated podocyte apoptosis. Importantly, the cytopathic actions of RARRES1 are entirely dependent on its proteolytic cleavage into a soluble protein (sRARRES1) and subsequent podocyte uptake by endocytosis, as a cleavage mutant RARRES1 exerted no effects in vitro or in vivo. As RARRES1 expression is upregulated in human glomerular diseases, here we investigated the functional consequence of podocyte-specific overexpression of RARRES1 in mice in the experimental focal segmental glomerulosclerosis and diabetic kidney disease. We also examined the effects of long-term RARRES1 overexpression on slowly developing aging-induced kidney injury. As anticipated, the induction of podocyte overexpression of RARRES1 (Pod-RARRES1WT) significantly worsened glomerular injuries and worsened kidney function in all three models, while overexpression of RARRES1 cleavage mutant (Pod-RARRES1MT) did not. Remarkably, direct uptake of sRARRES1 was also seen in proximal tubules of injured Pod-RARRES1WT mice and associated with exacerbated tubular injuries, vacuolation, and lipid accumulation. Single-cell RNA sequence analysis of mouse kidneys demonstrated RARRES1 led to a marked deregulation of lipid metabolism in proximal tubule subsets. We further identified matrix metalloproteinase 23 (MMP23) as a highly podocyte-specific metalloproteinase and responsible for RARRES1 cleavage in disease settings, as adeno-associated virus 9-mediated knockdown of MMP23 abrogated sRARRES1 uptake in tubular cells in vivo. Thus, our study delineates a previously unrecognized mechanism by which a podocyte-derived protein directly facilitates podocyte and tubular injury in glomerular diseases and suggests that podocyte-specific functions of RARRES1 and MMP23 may be targeted to ameliorate glomerular disease progression in vivo.
Subject(s)
Diabetic Nephropathies , Disease Progression , Glomerulosclerosis, Focal Segmental , Kidney Tubules, Proximal , Podocytes , Animals , Humans , Male , Mice , Apoptosis , Diabetic Nephropathies/pathology , Diabetic Nephropathies/metabolism , Diabetic Nephropathies/genetics , Diabetic Nephropathies/etiology , Disease Models, Animal , Endocytosis , Glomerulosclerosis, Focal Segmental/pathology , Glomerulosclerosis, Focal Segmental/metabolism , Glomerulosclerosis, Focal Segmental/genetics , Kidney Tubules, Proximal/metabolism , Kidney Tubules, Proximal/pathology , Membrane Proteins/metabolism , Membrane Proteins/genetics , Mice, Inbred C57BL , Mice, Transgenic , Podocytes/metabolism , Podocytes/pathologyABSTRACT
BACKGROUND: Chronic kidney disease (CKD) is highly prevalent worldwide, and its global burden is substantial and growing. CKD displays a number of features of accelerated senescence. Tubular cell senescence is a common biological process that contributes to CKD progression. Tubulointerstitial inflammation is a driver of tubular cell senescence and a common characteristic of CKD. However, the mechanism by which the interstitial inflammation drives tubular cell senescence remains unclear. This paper aims to explore the role of exosomal miRNAs derived from macrophages in the development of tubular cell senescence. METHODS: Among the identified inflammation-related miRNAs, miR-155 is considered to be one of the most important miRNAs involved in the inflammatory response. Macrophages, the primary immune cells that mediate inflammatory processes, contain a high abundance of miR-155 in their released exosomes. We assessed the potential role of miR-155 in tubular cell senescence and renal fibrosis. We subjected miR-155-/- mice and wild-type controls, as well as tubular epithelial cells (TECs), to angiotensin II (AngII)-induced kidney injury. We assessed kidney function and injury using standard techniques. TECs were evaluated for cell senescence and telomere dysfunction in vivo and in vitro. Telomeres were measured by the fluorescence in situ hybridization. RESULTS: Compared with normal controls, miR-155 was up-regulated in proximal renal tubule cells in CKD patients and mouse models of CKD. Moreover, the expression of miR-155 was positively correlated with the extent of renal fibrosis, eGFR decline and p16INK4A expression. The overexpression of miR-155 exacerbated tubular senescence, evidenced by increased detection of p16INK4A/p21expression and senescence-associated ß-galactosidase activity. Notably, miR-155 knockout attenuates renal fibrosis and tubule cell senescence in vivo. Interestingly, once released, macrophages-derived exosomal miR-155 was internalized by TECs, leading to telomere shortening and dysfunction through targeting TRF1. A dual-luciferase reporter assay confirmed that TRF1 was the direct target of miR-155. Thus, our study clearly demonstrates that exosomal miR-155 may mediate communication between macrophages and TECs, subsequently inducing telomere dysfunction and senescence in TECs. CONCLUSIONS: Our work suggests a new mechanism by which macrophage exosomes are involved in the development of tubule senescence and renal fibrosis, in part by delivering miR-155 to target TRF1 to promote telomere dysfunction. Our study may provide novel strategies for the treatment of AngII-induced kidney injury.
Subject(s)
Cellular Senescence , Epithelial Cells , Exosomes , Kidney Tubules , Macrophages , MicroRNAs , Telomere , MicroRNAs/genetics , MicroRNAs/metabolism , Cellular Senescence/genetics , Exosomes/metabolism , Exosomes/genetics , Animals , Epithelial Cells/metabolism , Epithelial Cells/pathology , Macrophages/metabolism , Kidney Tubules/pathology , Kidney Tubules/metabolism , Mice , Telomere/genetics , Telomere/metabolism , Humans , Mice, Inbred C57BL , Male , Renal Insufficiency, Chronic/genetics , Renal Insufficiency, Chronic/pathology , Fibrosis/genetics , Angiotensin IIABSTRACT
BACKGROUND: Postoperative acute kidney injury (AKI) is a common condition after surgery, however, the available data about nationwide epidemiology of postoperative AKI in China from large and high-quality studies are limited. This study aimed to determine the incidence, risk factors and outcomes of postoperative AKI among patients undergoing surgery in China. METHODS: This was a large, multicentre, retrospective study performed in 16 tertiary medical centres in China. Adult patients (≥18 years of age) who underwent surgical procedures from 1 January 2013 to 31 December 2019 were included. Postoperative AKI was defined by the Kidney Disease: Improving Global Outcomes creatinine criteria. The associations of AKI and in-hospital outcomes were investigated using logistic regression models adjusted for potential confounders. RESULTS: Among 520 707 patients included in our study, 25 830 (5.0%) patients developed postoperative AKI. The incidence of postoperative AKI varied by surgery type, which was highest in cardiac (34.6%), urologic (8.7%) and general (4.2%) surgeries. A total of 89.2% of postoperative AKI cases were detected in the first 2 postoperative days. However, only 584 (2.3%) patients with postoperative AKI were diagnosed with AKI on discharge. Risk factors for postoperative AKI included older age, male sex, lower baseline kidney function, pre-surgery hospital stay ≤3 days or >7 days, hypertension, diabetes mellitus and use of proton pump inhibitors or diuretics. The risk of in-hospital death increased with the stage of AKI. In addition, patients with postoperative AKI had longer lengths of hospital stay (12 versus 19 days) and were more likely to require intensive care unit care (13.1% versus 45.0%) and renal replacement therapy (0.4% versus 7.7%). CONCLUSIONS: Postoperative AKI was common across surgery type in China, particularly for patients undergoing cardiac surgery. Implementation and evaluation of an alarm system is important for the battle against postoperative AKI.
Subject(s)
Acute Kidney Injury , Postoperative Complications , Humans , Acute Kidney Injury/etiology , Acute Kidney Injury/epidemiology , Male , Female , China/epidemiology , Incidence , Retrospective Studies , Risk Factors , Middle Aged , Postoperative Complications/epidemiology , Postoperative Complications/etiology , Aged , Adult , Hospital MortalityABSTRACT
A sporadic occurrence of Fanconi syndrome associated with adefovir dipivoxil (ADV) has been reported, particularly when confirmed by renal biopsy. This study presents the case of a 53-year-old man who had been taking ADV 10 mg daily for 10 years to treat chronic hepatitis B (CHB) and subsequently developed Fanconi syndrome. The clinical manifestations included hypophosphatemic osteomalacia, glucosuria, renal tubular acidosis, low-molecular-weight proteinuria, and renal insufficiency. Renal biopsy revealed significant injury to proximal tubular epithelial cells, including vacuolar degeneration and regeneration of tubular epithelial cells. The ultrastructural pathology indicated severe morphological abnormalities of mitochondria, such as densely packed and enlarged mitochondria, with loss, blunting, and disordered arrangement of cristae. Following discontinuation of ADV and supplementation with oral phosphate, hypophosphatemia, glucosuria, and proteinuria were resolved. These findings support the previous hypothesis that ADV-induced nephrotoxicity may involve mitochondrial injury.
Subject(s)
Adenine/analogs & derivatives , Fanconi Syndrome , Glycosuria , Hepatitis B, Chronic , Hypophosphatemia , Organophosphonates , Osteomalacia , Renal Insufficiency , Male , Humans , Middle Aged , Fanconi Syndrome/chemically induced , Fanconi Syndrome/diagnosis , Fanconi Syndrome/complications , Hepatitis B, Chronic/drug therapy , Kidney , Hypophosphatemia/chemically induced , Glycosuria/chemically induced , Proteinuria/drug therapy , Osteomalacia/etiology , Antiviral Agents/adverse effectsABSTRACT
Tubular epithelial cells (TECs) exposed to hypoxia incite tubulointerstitial inflammation (TII), while the exact mechanism is unclear. In this study, we identified that hypoxia evoked tubule injury as evidenced by tubular hypoxia-inducible factor-1α and kidney injury molecule-1 (KIM-1) expression and that renal small extracellular vesicle (sEV) production was increased with the development of TII after ischemia-reperfusion injury (IRI). Intriguingly, KIM-1-positive tubules were surrounded by macrophages and co-localized with sEVs. In vitro, KIM-1 expression and sEV release were increased in hypoxic TECs and the hypoxia-induced inflammatory response was ameliorated when KIM-1 or Rab27a, a master regulator of sEV secretion, was silenced. Furthermore, KIM-1 was identified to mediate hypoxic TEC-derived sEV (Hypo-sEV) uptake by TECs. Phosphatidylserine (PS), a ligand of KIM-1, was present in Hypo-sEVs as detected by nanoflow cytometry. Correspondingly, the inflammatory response induced by exogenous Hypo-sEVs was attenuated when KIM-1 was knocked down. In vivo, exogenous-applied Hypo-sEVs localized to KIM-1-positive tubules and exacerbated TII in IRI mice. Our study demonstrated that KIM-1 expressed by injured tubules mediated sEV uptake via recognizing PS, which participated in the amplification of tubule inflammation induced by hypoxia, leading to the development of TII in ischemic acute kidney injury.
Subject(s)
Extracellular Vesicles , Reperfusion Injury , Animals , Mice , Epithelial Cells/metabolism , Extracellular Vesicles/metabolism , Hypoxia/metabolism , Inflammation/metabolism , Kidney/metabolism , Reperfusion Injury/metabolismABSTRACT
SIGNIFICANCE STATEMENT: Serum creatinine is not a sensitive biomarker for neonatal AKI because it is confounded by maternal creatinine level, gestational age, and neonatal muscle mass. In this multicenter cohort study of 52,333 hospitalized Chinese neonates, the authors proposed serum cystatin C-related criteria (CyNA) for neonatal AKI. They found that cystatin C (Cys-C) is a robust and sensitive biomarker for identifying AKI in neonates who are at an elevated risk of in-hospital mortality and that CyNA detects 6.5 times as many cases as the modified Kidney Disease Improving Global Outcomes creatinine criteria. They also show that AKI can be detected using a single test of Cys-C. These findings suggest that CyNA shows promise as a powerful and easily applicable tool for detecting AKI in neonates. BACKGROUND: Serum creatinine is not a sensitive biomarker for AKI in neonates. A better biomarker-based criterion for neonatal AKI is needed. METHODS: In this large multicenter cohort study, we estimated the upper normal limit (UNL) and reference change value (RCV) of serum cystatin C (Cys-C) in neonates and proposed cystatin C-based criteria (CyNA) for detecting neonatal AKI using these values as the cutoffs. We assessed the association of CyNA-detected AKI with the risk of in-hospital death and compared CyNA performance versus performance of modified Kidney Disease Improving Global Outcomes (KDIGO) creatinine criteria. RESULTS: In this study of 52,333 hospitalized neonates in China, Cys-C level did not vary with gestational age and birth weight and remained relatively stable during the neonatal period. CyNA criteria define AKI by a serum Cys-C of ≥2.2 mg/L (UNL) or an increase in Cys-C of ≥25% (RCV) during the neonatal period. Among 45,839 neonates with measurements of both Cys-C and creatinine, 4513 (9.8%) had AKI detected by CyNA only, 373 (0.8%) by KDIGO only, and 381 (0.8%) by both criteria. Compared with neonates without AKI by both criteria, neonates with AKI detected by CyNA alone had an increased risk of in-hospital mortality (hazard ratio [HR], 2.86; 95% confidence interval [95% CI], 2.02 to 4.04). Neonates with AKI detected by both criteria had an even higher risk of in-hospital mortality (HR, 4.86; 95% CI, 2.84 to 8.29). CONCLUSIONS: Serum Cys-C is a robust and sensitive biomarker for detecting neonatal AKI. Compared with modified KDIGO creatinine criteria, CyNA is 6.5 times more sensitive in identifying neonates at elevated risk of in-hospital mortality.
Subject(s)
Acute Kidney Injury , Cystatin C , Infant, Newborn , Humans , Cohort Studies , Creatinine , Prospective Studies , Hospital Mortality , BiomarkersABSTRACT
The burden of chronic kidney disease (CKD) is increasing, posing a serious threat to human health. Cardiovascular calcification (CVC) is one of the most common manifestations of CKD, which significantly influences the morbidity and mortality of patients. The manifestation of CVC is an unusual accumulation of mineral substances containing calcium and phosphate. The main component is hydroxyapatite. Many cells are involved in this process, such as smooth muscle cells (SMCs) and endothelial cells. CVC is an osteogenic process initiated by complex mechanisms such as metabolic disorders of calcium and phosphorus minerals, inflammation, extracellular vesicles, autophagy, and micro-RNAs with a variety of signaling pathways like Notch, STAT, and JAK. Although drug therapy and dialysis technology continue to advance, the survival time and quality of life of CVC patients still face challenges. Therefore, early diagnosis and prevention of CKD-related CVC, reducing its mortality rate, and improving patients' quality of life have become urgent issues in the field of public health. In this review, we try to summarize the state-of-the-art understanding of the progression of CVC and hope that it will help in the prevention and treatment of CVC in CKD.
Subject(s)
Renal Insufficiency, Chronic , Vascular Calcification , Humans , Renal Insufficiency, Chronic/metabolism , Renal Insufficiency, Chronic/complications , Renal Insufficiency, Chronic/pathology , Vascular Calcification/etiology , Vascular Calcification/metabolism , Cardiovascular Diseases/etiology , Cardiovascular Diseases/metabolism , Quality of Life , AnimalsABSTRACT
Objective Variations are present in common clinical practices regarding best practice in managing hyperkalaemia (HK), there is therefore a need to establish a multi-specialty approach to optimal renin-angiotension-aldosterone system inhibitors (RAASi) usage and HK management in patients with chronic kidney disease (CKD) & heart failure (HF).This study aimed to establish a multi-speciality approach to the optimal use of RAASi and the management of HK in patients with CKD and HF. Methods A steering expert group of cardiology and nephrology experts across China were convened to discuss challenges to HK management through a nominal group technique. The group then created a list of 41 statements for a consensus questionnaire, which was distributed for a further survey in extended panel group of cardiologists and nephrologists across China. Consensus was assessed using a modified Delphi technique, with agreement defined as "strong" (≥75% and <90%) and "very strong" (≥90%). The steering group, data collection, and analysis were aided by an independent facilitator. Results A total of 150 responses from 21 provinces across China were recruited in the survey. Respondents were comprised of an even split (n=75, 50%) between cardiologists and nephrologists. All 41 statements achieved the 75% consensus agreement threshold, of which 27 statements attained very strong consensus (≥90% agreement) and 14 attained strong consensus (agreement between 75% and 90%). Conclusion Based on the agreement levels from respondents, the steering group agreed a set of recommendations intended to improve patient outcomes in the use of RAASi therapy and HK management in China.
Subject(s)
Heart Failure , Hyperkalemia , Renal Insufficiency, Chronic , Humans , Angiotensin-Converting Enzyme Inhibitors/therapeutic use , China , Consensus , Delphi Technique , Heart Failure/drug therapy , Hyperkalemia/drug therapy , Renal Insufficiency, Chronic/therapy , Renal Insufficiency, Chronic/drug therapy , Renal Insufficiency, Chronic/complications , Renin-Angiotensin System/drug effects , Surveys and QuestionnairesABSTRACT
BACKGROUND: Tubulointerstitial inflammation (TII) is a critical pathological feature of kidney disease leading to renal fibrosis, and its treatment remains a major clinical challenge. We sought to explore the role of quercetin, a potential exosomes inhibitor, in exosomes release and TII. METHODS: The effects of quercetin on exosomes release and TII were examined by two TII mouse models: the unilateral ureteral obstruction (UUO) models and the LPS-induced mouse models. In vitro, exosomes-mediated crosstalk between tubular epithelial cells (TECs) and macrophages was performed to investigate the mechanisms by which quercetin inhibited exosomes and TII. RESULTS: In this study, we found that exosomes-mediated crosstalk between TECs and macrophages contributed to the development of TII. In vitro, exosomes released from LPS-stimulated TECs induced increased expression of inflammatory cytokines and fibrotic markers in Raw264·7 cells and vice versa. Interestingly, heat shock protein 70 (Hsp70) or Hsp90 proteins could control exosomes release from TECs and macrophages both in vivo and in vitro. Importantly, quercetin, a previously recognized heat shock protein inhibitor, could significantly reduce exosomes release in TII models by down-regulating Hsp70 or Hsp90. Quercetin abrogated exosomes-mediated intercellular communication, which attenuated TII and renal fibrosis accordingly. CONCLUSION: Quercetin could serve as a novel strategy for treatment of tubulointerstitial inflammation by inhibiting the exosomes-mediated crosstalk between tubules and macrophages.
Subject(s)
Exosomes , Quercetin , Mice , Animals , Quercetin/pharmacology , Quercetin/therapeutic use , Exosomes/metabolism , Lipopolysaccharides/pharmacology , Inflammation/metabolism , Macrophages/metabolism , Fibrosis , Epithelial Cells/metabolism , Kidney Tubules/metabolism , Kidney Tubules/pathologyABSTRACT
OBJECTIVE: This study aimed to explore the clinical significance of fatty acid transport-related protein (FATRP) in patients with clear cell renal cell carcinoma(ccRCC). METHODS: RNA-seq data and corresponding clinical data of ccRCC were obtained from TCGA data portal. Seventeen key FATRP genes were comprehensively investigated using bioinformatics approaches to systematically investigate their expression patterns in ccRCC. In addition, the correlation between the expression levels of these genes and clinicopathological features in ccRCC was further explored. RESULTS: Among the 17 key FATRP genes, only FABP5, FABP6, and FABP7 could be regarded as ideal biomarkers for ccRCC, as they were highly expressed in ccRCC tumor tissues, and positively correlates with tumor progression and poor prognosis. FABP6 had the highest copy number variations (CNV) events (63.07 %), and ccRCC patients with FABP6 amplification had a better prognosis than the unaltered group. DNA methylation levels of FABP6 and FABP7 were downregulated in ccRCC tumor tissues compared to those in normal tissues. FABP5 showed the opposite results. Moreover, a novel four FATRP gene (FABP1, FABP5, FABP7, FATP2) and three clinical parameter (age, stage, and grade) prediction model was constructed and that comprised a significant independent prognostic signature. CONCLUSIONS: Only a few FATRP genes are upregulated in ccRCC tumor tissue, and positively correlate with tumor progression and poor prognosis. The accuracy of a single gene of these FATRP genes as predictors of progression and prognosis of ccRCC is limited. The performance of the novel prediction model proposed by this study was much better than that of any single gene.
Subject(s)
Carcinoma, Renal Cell , Kidney Neoplasms , Humans , Carcinoma, Renal Cell/metabolism , Kidney Neoplasms/metabolism , DNA Copy Number Variations , Prognosis , Fatty Acids , Fatty Acid-Binding Proteins/geneticsABSTRACT
BACKGROUND: The role of statin therapy in the development of kidney disease in patients with type 2 diabetes mellitus (DM) remains uncertain. We aimed to determine the relationships between statin initiation and kidney outcomes in patients with type 2 DM. METHODS: Through a new-user design, we conducted a multicentre retrospective cohort study using the China Renal Data System database (which includes inpatient and outpatient data from 19 urban academic centres across China). We included patients with type 2 DM who were aged 40 years or older and admitted to hospital between Jan. 1, 2000, and May 26, 2021, and excluded those with pre-existing chronic kidney disease and those who were already on statins or without follow-up at an affiliated outpatient clinic within 90 days after discharge. The primary exposure was initiation of a statin. The primary outcome was the development of diabetic kidney disease (DKD), defined as a composite of the occurrence of kidney dysfunction (estimated glomerular filtration rate [eGFR] < 60 mL/min/1.73 m2 and > 25% decline from baseline) and proteinuria (a urinary albumin-to-creatinine ratio ≥ 30 mg/g and > 50% increase from baseline), sustained for at least 90 days; secondary outcomes included development of kidney function decline (a sustained > 40% decline in eGFR). We used Cox proportional hazards regression to evaluate the relationships between statin initiation and kidney outcomes, as well as to conduct subgroup analyses according to patient characteristics, presence or absence of dyslipidemia, and pattern of dyslipidemia. For statin initiators, we explored the association between different levels of lipid control and outcomes. We conducted analyses using propensity overlap weighting to balance the participant characteristics. RESULTS: Among 7272 statin initiators and 12 586 noninitiators in the weighted cohort, statin initiation was associated with lower risks of incident DKD (hazard ratio [HR] 0.72, 95% confidence interval [CI] 0.62-0.83) and kidney function decline (HR 0.60, 95% CI 0.44-0.81). We obtained similar results to the primary analyses for participants with differing patterns of dyslipidemia, those prescribed different statins, and after stratification according to participant characteristics. Among statin initiators, those with intensive control of high-density lipoprotein cholesterol (LDL-C) (< 1.8 mmol/L) had a lower risk of incident DKD (HR 0.51, 95% CI 0.32-0.81) than those with inadequate lipid control (LDL-C ≥ 3.4 mmol/L). INTERPRETATION: For patients with type 2 DM admitted to and followed up in academic centres, statin initiation was associated with a lower risk of kidney disease development, particularly in those with intensive control of LDL-C. These findings suggest that statin initiation may be an effective and reasonable approach for preventing kidney disease in patients with type 2 DM.
Subject(s)
Diabetes Mellitus, Type 2 , Dyslipidemias , Hydroxymethylglutaryl-CoA Reductase Inhibitors , Renal Insufficiency, Chronic , Humans , Hydroxymethylglutaryl-CoA Reductase Inhibitors/adverse effects , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/epidemiology , Cholesterol, LDL , Retrospective Studies , Renal Insufficiency, Chronic/epidemiology , Dyslipidemias/drug therapy , Dyslipidemias/epidemiologyABSTRACT
Cyclin-dependent kinase 12 (CDK12) plays a critical role in regulating gene transcription. CDK12 inhibition is a potential anticancer therapeutic strategy. However, several clinical trials have shown that CDK inhibitors might cause renal dysfunction and electrolyte disorders. CDK12 is abundant in renal tubular epithelial cells (RTECs), but the exact role of CDK12 in renal physiology remains unclear. Genetic knockout of CDK12 in mouse RTECs causes polydipsia, polyuria, and hydronephrosis. This phenotype is caused by defects in water reabsorption that are the result of reduced Na-K-2Cl cotransporter 2 (NKCC2) levels in the kidney. In addition, CKD12 knockout causes an increase in Slc12a1 (which encodes NKCC2) intronic polyadenylation events, which results in Slc12a1 truncated transcript production and NKCC2 downregulation. These findings provide novel insight into CDK12 being necessary for maintaining renal homeostasis by regulating NKCC2 transcription, which explains the critical water and electrolyte disturbance that occurs during the application of CDK12 inhibitors for cancer treatment. Therefore, there are safety concerns about the clinical use of these new anticancer drugs.
Subject(s)
Antineoplastic Agents , Symporters , Animals , Cyclin-Dependent Kinases/genetics , Cyclin-Dependent Kinases/metabolism , Electrolytes , Kidney/metabolism , Mice , Solute Carrier Family 12, Member 1 , Symporters/genetics , WaterABSTRACT
OBJECTIVE: Coronary artery calcification (CAC) is positively and independently associated with cardiovascular disease (CVD) in patients undergoing maintenance hemodialysis (MHD). Insulin resistance is independently associated with CAC and is an important risk factor for CVD. The triglyceride-glucose (TyG) index is a reliable biomarker of insulin resistance. This cross-sectional, observational study aimed to investigate the relationship between the TyG index and CAC in asymptomatic non-diabetic patients undergoing MHD. METHODS: The quantitative coronary artery calcification score (CACS) was calculated and expressed using the Agatston score. The TyG index was calculated as ln [fasting triglyceride (mg/dL) × fasting glucose (mg/dL)/2]. Multiple Poisson regression analysis, Spearman correlation analysis, and receiver operating characteristic (ROC) curves were used to investigate the relationship between the TyG index and CAC. RESULTS: The 151 patients were divided into three groups according to the tertiles of the TyG index. With an increase in the TyG index, the CACS significantly increased (Spearman's rho = 0.414, p < 0.001). Poisson regression analysis indicated that the TyG index was independently related to the presence of CAC (prevalence ratio, 1.281 [95% confidence interval, 1.121-1.465], p < 0.001). Furthermore, ROC curve analysis showed that the TyG index was of value in predicting the CAC in asymptomatic non-diabetic patients undergoing MHD, with an area under the curve of 0.667 (p = 0.010). CONCLUSION: The TyG index is independently related to the presence of CAC in asymptomatic, non-diabetic patients undergoing MHD.
Subject(s)
Calcinosis , Cardiovascular Diseases , Coronary Artery Disease , Insulin Resistance , Humans , Glucose , Blood Glucose , Triglycerides , Cross-Sectional Studies , Coronary Artery Disease/diagnostic imaging , Coronary Artery Disease/etiology , Risk Factors , Biomarkers , Renal Dialysis/adverse effectsABSTRACT
Background: Chronic kidney disease-associated pruritus (CKD-aP) is very common and sometimes refractory to treatment in hemodialysis patients. In a trial conducted in Japan, nalfurafine, effectively reduced itching of treatment-resistant CKD-aP. Our present bridging study aimed to evaluate the efficacy and safety of nalfurafine in Chinese cohort with refractory CKD-aP.Methods: In this phase III, multicenter bridging study conducted at 22 sites in China, 141 Chinese cases with refractory CKD-aP were randomly (2:2:1) assigned to receive 5 µg, 2.5 µg of nalfurafine or a placebo orally for 14 days in a double-blind manner. The primary end point was the mean decrease in the mean visual analogue scale (VAS) from baseline.Results: A total of 141 patients were included. The primary endpoint analysis based on full analysis set (FAS), the difference of mean VAS decrease between 5 µg nalfurafine and placebo group was 11.37 mm (p = .041); the difference of mean VAS decrease between 2.5 µg and placebo group was 8.81 mm, but not statistically significantly different. Both differences were greater than 4.13 mm, which met its predefined success criterion of at least 50% efficacy of the key Japanese clinical trial. The per protocol set (PPS) analysis got similar results. The incidence of adverse drug reactions (ADRs) was 49.1% in 5µg, 38.6% in 2.5 µg and 33.3% in placebo group. The most common ADR was insomnia, seen in 21 of the 114 nalfurafine patients.Conclusions: Oral nalfurafine effectively reduced itching with few significant ADRs in Chinese hemodialysis patients with refractory pruritus.
Subject(s)
Drug-Related Side Effects and Adverse Reactions , Renal Insufficiency, Chronic , Humans , Renal Dialysis/adverse effects , Kidney , Renal Insufficiency, Chronic/complications , Pruritus/drug therapy , Pruritus/etiologyABSTRACT
Introduction: We explored the relationship and the predictive value of serum fibroblast growth factor 21 (FGF21) with all-cause mortality, major adverse cardiovascular events (MACEs) and pneumonia in hemodialysis (HD) patients.Methods: A total of 388 Chinese HD patients from two HD centers were finally enrolled in this prospective cohort study (registration number: ChiCTR 1900028249) between January 2018 and December 2018. Serum FGF21 was detected. Patients were followed up with a median period of 47 months to record the MACEs and pneumonia until death or 31 December 2022.Results: The incidence of all-cause mortality, MACEs and pneumonia in HD patients were 20.6%, 29.6%, and 34.8%, respectively. The optimal cutoffs for FGF21 to predict all-cause mortality, MACEs and pneumonia were 437.57 pg/mL, 216.99 pg/mL and 112.79 pg/mL. Multivariate Cox regression analyses showed that FGF21, as a categorical variable, was an independent predictor for all-cause mortality, MACEs and pneumonia (HR, 3.357, 95% CI, 2.128-5.295, p < 0.001; HR, 1.575, 95% CI, 1.046-2.371, p = 0.029; HR, 1.784; 95% CI, 1.124-2.830; p = 0.014, respectively). The survival nomogram, MACEs-free survival nomogram and pneumonia-free survival nomogram based on FGF21 constructed for individualized assessment of HD patients had a high C-index with 0.841, 0.706 and 0.734.Conclusion: Higher serum FGF21 is an independent predictor of all-cause mortality, MACEs and pneumonia in HD patients.
Subject(s)
Fibroblast Growth Factors , Renal Dialysis , Humans , Fibroblast Growth Factors/blood , Prospective Studies , Renal Dialysis/adverse effects , East Asian PeopleABSTRACT
BACKGROUND: Roxadustat (FG-4592) is an oral inhibitor of hypoxia-inducible factor (HIF) prolyl hydroxylase that stimulates erythropoiesis and regulates iron metabolism. In phase 2 studies involving patients with chronic kidney disease, roxadustat increased levels of endogenous erythropoietin to within or near the physiologic range, along with increasing hemoglobin levels and improving iron homeostasis. Additional data are needed regarding the efficacy and safety of roxadustat for the treatment of anemia in patients with chronic kidney disease who are not undergoing dialysis. METHODS: In this phase 3 trial conducted at 29 sites in China, we randomly assigned 154 patients with chronic kidney disease in a 2:1 ratio to receive roxadustat or placebo three times a week for 8 weeks in a double-blind manner. All the patients had a hemoglobin level of 7.0 to 10.0 g per deciliter at baseline. The randomized phase of the trial was followed by an 18-week open-label period in which all the patients received roxadustat; parenteral iron was withheld. The primary end point was the mean change from baseline in the hemoglobin level, averaged over weeks 7 through 9. RESULTS: During the primary-analysis period, the mean (±SD) change from baseline in the hemoglobin level was an increase of 1.9±1.2 g per deciliter in the roxadustat group and a decrease of 0.4±0.8 g per deciliter in the placebo group (P<0.001). The mean reduction from baseline in the hepcidin level (associated with greater iron availability) was 56.14±63.40 ng per milliliter in the roxadustat group and 15.10±48.06 ng per milliliter in the placebo group. The reduction from baseline in the total cholesterol level was 40.6 mg per deciliter in the roxadustat group and 7.7 mg per deciliter in the placebo group. Hyperkalemia and metabolic acidosis occurred more frequently in the roxadustat group than in the placebo group. The efficacy of roxadustat in hemoglobin correction and maintenance was maintained during the 18-week open-label period. CONCLUSIONS: In Chinese patients with chronic kidney disease who were not undergoing dialysis, those in the roxadustat group had a higher mean hemoglobin level than those in the placebo group after 8 weeks. During the 18-week open-label phase of the trial, roxadustat was associated with continued efficacy. (Funded by FibroGen and FibroGen [China] Medical Technology Development; ClinicalTrials.gov number, NCT02652819.).
Subject(s)
Anemia/drug therapy , Glycine/analogs & derivatives , Hemoglobins/analysis , Hypoxia-Inducible Factor-Proline Dioxygenases/antagonists & inhibitors , Isoquinolines/therapeutic use , Renal Insufficiency, Chronic/complications , Acidosis/chemically induced , Adult , Aged , Anemia/etiology , Cholesterol/blood , Double-Blind Method , Female , Glycine/adverse effects , Glycine/therapeutic use , Hematinics/adverse effects , Hematinics/therapeutic use , Humans , Hyperkalemia/chemically induced , Isoquinolines/adverse effects , Male , Middle Aged , Renal Insufficiency, Chronic/bloodABSTRACT
BACKGROUND: Roxadustat is an oral hypoxia-inducible factor prolyl hydroxylase inhibitor that stimulates erythropoiesis and regulates iron metabolism. Additional data are needed regarding the effectiveness and safety of roxadustat as compared with standard therapy (epoetin alfa) for the treatment of anemia in patients undergoing dialysis. METHODS: In a trial conducted in China, we randomly assigned (in a 2:1 ratio) patients who had been undergoing dialysis and erythropoiesis-stimulating agent therapy with epoetin alfa for at least 6 weeks to receive roxadustat or epoetin alfa three times per week for 26 weeks. Parenteral iron was withheld except as rescue therapy. The primary end point was the mean change in hemoglobin level from baseline to the average level during weeks 23 through 27. Noninferiority of roxadustat would be established if the lower boundary of the two-sided 95% confidence interval for the difference between the values in the roxadustat group and epoetin alfa group was greater than or equal to -1.0 g per deciliter. Patients in each group had doses adjusted to reach a hemoglobin level of 10.0 to 12.0 g per deciliter. Safety was assessed by analysis of adverse events and clinical laboratory values. RESULTS: A total of 305 patients underwent randomization (204 in the roxadustat group and 101 in the epoetin alfa group), and 256 patients (162 and 94, respectively) completed the 26-week treatment period. The mean baseline hemoglobin level was 10.4 g per deciliter. Roxadustat led to a numerically greater mean (±SD) change in hemoglobin level from baseline to weeks 23 through 27 (0.7±1.1 g per deciliter) than epoetin alfa (0.5±1.0 g per deciliter) and was statistically noninferior (difference, 0.2±1.2 g per deciliter; 95% confidence interval [CI], -0.02 to 0.5). As compared with epoetin alfa, roxadustat increased the transferrin level (difference, 0.43 g per liter; 95% CI, 0.32 to 0.53), maintained the serum iron level (difference, 25 µg per deciliter; 95% CI, 17 to 33), and attenuated decreases in the transferrin saturation (difference, 4.2 percentage points; 95% CI, 1.5 to 6.9). At week 27, the decrease in total cholesterol was greater with roxadustat than with epoetin alfa (difference, -22 mg per deciliter; 95% CI, -29 to -16), as was the decrease in low-density lipoprotein cholesterol (difference, -18 mg per deciliter; 95% CI, -23 to -13). Roxadustat was associated with a mean reduction in hepcidin of 30.2 ng per milliliter (95% CI, -64.8 to -13.6), as compared with 2.3 ng per milliliter (95% CI, -51.6 to 6.2) in the epoetin alfa group. Hyperkalemia and upper respiratory infection occurred at a higher frequency in the roxadustat group, and hypertension occurred at a higher frequency in the epoetin alfa group. CONCLUSIONS: Oral roxadustat was noninferior to parenteral epoetin alfa as therapy for anemia in Chinese patients undergoing dialysis. (Funded by FibroGen and FibroGen [China] Medical Technology Development; ClinicalTrials.gov number, NCT02652806.).
Subject(s)
Anemia/drug therapy , Epoetin Alfa/therapeutic use , Glycine/analogs & derivatives , Hematinics/therapeutic use , Hemoglobins/analysis , Hypoxia-Inducible Factor-Proline Dioxygenases/antagonists & inhibitors , Isoquinolines/therapeutic use , Renal Insufficiency, Chronic/complications , Adult , Aged , Analysis of Variance , Anemia/etiology , Cholesterol/blood , Double-Blind Method , Epoetin Alfa/adverse effects , Female , Glycine/adverse effects , Glycine/therapeutic use , Hematinics/adverse effects , Humans , Hyperkalemia/chemically induced , Hypertension/chemically induced , Isoquinolines/adverse effects , Male , Middle Aged , Renal Dialysis , Renal Insufficiency, Chronic/blood , Renal Insufficiency, Chronic/therapyABSTRACT
Calciphylaxis, also known as calcific uremic arteriolopathy (CUA), is typically characterized by subcutaneous tissue calcification and excruciatingly painful cutaneous lesions with high mortality. It is critical for dermatologists to make early diagnosis and appropriate management, yet currently only 56% of calciphylaxis cases are correctly diagnosed by conventional histological stain1. Specially, the identification of subtle calcium deposits of subcutaneous can be challenging but is believed crucial for early diagnosis of calciphylaxis2. More sensitive calcification staining is in high demand. In this study, Fluo-3 AM was found to be a rapid, sensitive and reliable fluorescent probe for the detection of calcium deposits and could be a promising diagnostic tool for calciphylaxis.
Subject(s)
Calciphylaxis , Kidney Failure, Chronic , Aniline Compounds , Calciphylaxis/diagnostic imaging , Calciphylaxis/pathology , Calcium , Fluorescent Dyes , Humans , Subcutaneous Tissue/diagnostic imaging , Subcutaneous Tissue/pathology , XanthenesABSTRACT
BACKGROUND: Dialysis unit blood pressure (BP) pattern showed superiority in prognostic evaluation and interdialytic BP burden assessment. However previous studies mainly focused on the recurrent BP pattern within a session (intradialytic BP change or intradialytic BP slope), the clinical value of the weekly pattern of dialysis unit BP is unknown. METHODS: We performed a prospective cohort study in adult end stage renal disease (ESRD) patients on thrice weekly hemodialysis (HD). The slope and the change of the postdialysis systolic BP (SBP) in the course of a week (post-SBP slope and post-SBP change) were used to characterize the weekly pattern of dialysis unit BP. Outcomes included all-cause mortality, cardiovascular mortality, and first cardiovascular event. We also measured the home BP in our cohort. RESULTS: One hundred and twenty-nine subjects were followed over a median of 31 months. Higher post-SBP slope (≥0.185) was independently associated with increased risk of all-cause mortality, cardiovascular mortality, and first cardiovascular event. Results were similar for increased post-SBP change. HD patients with a higher post-SBP slope or an increased post-SBP change also had significant increased interdialytic BP burden measured by home SBP on both dialysis days and non-dialysis days. CONCLUSIONS: Post-SBP slope and post-SBP change might be promising dialysis unit BP markers for prognostic evaluation and interdialytic BP burden assessment.
Subject(s)
Hypertension , Kidney Failure, Chronic , Adult , Blood Pressure/physiology , Female , Humans , Hypertension/etiology , Kidney Failure, Chronic/complications , Kidney Failure, Chronic/diagnosis , Kidney Failure, Chronic/therapy , Male , Prognosis , Prospective Studies , Renal Dialysis/adverse effectsABSTRACT
BACKGROUND: AKI is a significant public health problem with high morbidity and mortality. Unfortunately, no definitive treatment is available for AKI. RNA interference (RNAi) provides a new and potent method for gene therapy to tackle this issue. METHODS: We engineered red blood cell-derived extracellular vesicles (REVs) with targeting peptides and therapeutic siRNAs to treat experimental AKI in a mouse model after renal ischemia/reperfusion (I/R) injury and unilateral ureteral obstruction (UUO). Phage display identified peptides that bind to the kidney injury molecule-1 (Kim-1). RNA-sequencing (RNA-seq) characterized the transcriptome of ischemic kidney to explore potential therapeutic targets. RESULTS: REVs targeted with Kim-1-binding LTH peptide (REVLTH) efficiently homed to and accumulated at the injured tubules in kidney after I/R injury. We identified transcription factors P65 and Snai1 that drive inflammation and fibrosis as potential therapeutic targets. Taking advantage of the established REVLTH, siRNAs targeting P65 and Snai1 were efficiently delivered to ischemic kidney and consequently blocked the expression of P-p65 and Snai1 in tubules. Moreover, dual suppression of P65 and Snai1 significantly improved I/R- and UUO-induced kidney injury by alleviating tubulointerstitial inflammation and fibrosis, and potently abrogated the transition to CKD. CONCLUSIONS: A red blood cell-derived extracellular vesicle platform targeted Kim-1 in acutely injured mouse kidney and delivered siRNAs for transcription factors P65 and Snai1, alleviating inflammation and fibrosis in the tubules.