Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 942
Filter
Add more filters

Publication year range
1.
Blood ; 141(6): 609-619, 2023 02 09.
Article in English | MEDLINE | ID: mdl-36351239

ABSTRACT

Children living in poverty experience excessive relapse and death from newly diagnosed acute lymphoblastic leukemia (ALL). The influence of household poverty and neighborhood social determinants on outcomes from chimeric antigen receptor (CAR) T-cell therapy for relapsed/refractory (r/r) leukemia is poorly described. We identified patients with r/r CD19+ ALL/lymphoblastic lymphoma treated on CD19-directed CAR T-cell clinical trials or with commercial tisagenlecleucel from 2012 to 2020. Socioeconomic status (SES) was proxied at the household level, with poverty exposure defined as Medicaid-only insurance. Low-neighborhood opportunity was defined by the Childhood Opportunity Index. Among 206 patients aged 1 to 29, 35.9% were exposed to household poverty, and 24.9% had low-neighborhood opportunity. Patients unexposed to household poverty or low-opportunity neighborhoods were more likely to receive CAR T-cell therapy with a high disease burden (>25%), a disease characteristic associated with inferior outcomes, as compared with less advantaged patients (38% vs 30%; 37% vs 26%). Complete remission (CR) rate was 93%, with no significant differences by household poverty (P = .334) or neighborhood opportunity (P = .504). In multivariate analysis, patients from low-opportunity neighborhoods experienced an increased hazard of relapse as compared with others (P = .006; adjusted hazard ratio [HR], 2.3; 95% confidence interval [CI], 1.3-4.1). There was no difference in hazard of death (P = .545; adjusted HR, 1.2; 95% CI, 0.6-2.4). Among children who successfully receive CAR T-cell therapy, CR and overall survival are equitable regardless of proxied SES and neighborhood opportunity. Children from more advantaged households and neighborhoods receive CAR T-cell therapy with a higher disease burden. Investigation of multicenter outcomes and access disparities outside of clinical trial settings is warranted.


Subject(s)
Precursor Cell Lymphoblastic Leukemia-Lymphoma , Receptors, Chimeric Antigen , Humans , Child , Immunotherapy, Adoptive , Receptors, Chimeric Antigen/therapeutic use , Precursor Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Recurrence , Antigens, CD19 , Poverty
2.
Plant J ; 115(4): 910-925, 2023 08.
Article in English | MEDLINE | ID: mdl-37133286

ABSTRACT

Mesocotyl length (ML) is a crucial factor in determining the establishment and yield of rice planted through dry direct seeding, a practice that is increasingly popular in rice production worldwide. ML is determined by the endogenous and external environments, and inherits as a complex trait. To date, only a few genes have been cloned, and the mechanisms underlying mesocotyl elongation remain largely unknown. Here, through a genome-wide association study using sequenced germplasm, we reveal that natural allelic variations in a mitochondrial transcription termination factor, OsML1, predominantly determined the natural variation of ML in rice. Natural variants in the coding regions of OsML1 resulted in five major haplotypes with a clear differentiation between subspecies and subpopulations in cultivated rice. The much-reduced genetic diversity of cultivated rice compared to the common wild rice suggested that OsML1 underwent selection during domestication. Transgenic experiments and molecular analysis demonstrated that OsML1 contributes to ML by influencing cell elongation primarily determined by H2 O2 homeostasis. Overexpression of OsML1 promoted mesocotyl elongation and thus improved the emergence rate under deep direct seeding. Taken together, our results suggested that OsML1 is a key positive regulator of ML, and is useful in developing varieties for deep direct seeding by conventional and transgenic approaches.


Subject(s)
Oryza , Oryza/genetics , Genome-Wide Association Study , Base Sequence , Genetic Variation
3.
BMC Plant Biol ; 24(1): 321, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38654179

ABSTRACT

BACKGROUND: pOsNAR2.1:OsNAR2.1 expression could significantly increase nitrogen uptake efficiency and grain yield of rice. RESULT: This study reported the effects of overexpression of OsNAR2.1 by OsNAR2.1 promoter on physiological and agronomic traits associated with drought tolerance. In comparison to the wild-type (WT), the pOsNAR2.1:OsNAR2.1 transgenic lines exhibited a significant improvement in survival rate when subjected to drought stress and then irrigation. Under limited water supply conditions, compared with WT, the photosynthesis and water use efficiency (WUE) of transgenic lines were increased by 39.2% and 28.8%, respectively. Finally, the transgenic lines had 25.5% and 66.4% higher grain yield than the WT under full watering and limited water supply conditions, respectively. Compared with the WT, the agronomic nitrogen use efficiency (NUE) of transgenic lines increased by 25.5% and 66.4% under full watering and limited water supply conditions, and the N recovery efficiency of transgenic lines increased by 29.3% and 50.2%, respectively. The interaction between OsNAR2.1 protein and OsPLDα1 protein was verified by yeast hybrids. After drought treatment, PLDα activity on the plasma membrane of the transgenic line increased 85.0% compared with WT. CONCLUSION: These results indicated that pOsNAR2.1:OsNAR2.1 expression could improve the drought resistance of rice by increasing nitrogen uptake and regulating the expression of OsPLDα1.


Subject(s)
Droughts , Gene Expression Regulation, Plant , Oryza , Plant Proteins , Promoter Regions, Genetic , Drought Resistance , Nitrogen/metabolism , Oryza/genetics , Oryza/physiology , Plant Proteins/genetics , Plant Proteins/metabolism , Plants, Genetically Modified
4.
BMC Plant Biol ; 24(1): 64, 2024 Jan 23.
Article in English | MEDLINE | ID: mdl-38262910

ABSTRACT

BACKGROUND: Corynespora leaf spot is a common leaf disease occurring in sesame, and the disease causes leaf yellowing and even shedding, which affects the growth quality of sesame. At present, the mechanism of sesame resistance to this disease is still unclear. Understanding the resistance mechanism of sesame to Corynespora leaf spot is highly important for the control of infection. In this study, the leaves of the sesame resistant variety (R) and the sesame susceptible variety (S) were collected at 0-48 hpi for transcriptome sequencing, and used a combined third-generation long-read and next-generation short-read technology approach to identify some key genes and main pathways related to resistance. RESULTS: The gene expression levels of the two sesame varieties were significantly different at 0, 6, 12, 24, 36 and 48 hpi, indicating that the up-regulation of differentially expressed genes in the R might enhanced the resistance. Moreover, combined with the phenotypic observations of sesame leaves inoculated at different time points, we found that 12 hpi was the key time point leading to the resistance difference between the two sesame varieties at the molecular level. The WGCNA identified two modules significantly associated with disease resistance, and screened out 10 key genes that were highly expressed in R but low expressed in S, which belonged to transcription factors (WRKY, AP2/ERF-ERF, and NAC types) and protein kinases (RLK-Pelle_DLSV, RLK-Pelle_SD-2b, and RLK-Pelle_WAK types). These genes could be the key response factors in the response of sesame to infection by Corynespora cassiicola. GO and KEGG enrichment analysis showed that specific modules could be enriched, which manifested as enrichment in biologically important pathways, such as plant signalling hormone transduction, plant-pathogen interaction, carbon metabolism, phenylpropanoid biosynthesis, glutathione metabolism, MAPK and other stress-related pathways. CONCLUSIONS: This study provides an important resource of genes contributing to disease resistance and will deepen our understanding of the regulation of disease resistance, paving the way for further molecular breeding of sesame.


Subject(s)
Ascomycota , Sesamum , Disease Resistance , RNA-Seq , Transcriptome , Plant Growth Regulators
5.
Magn Reson Med ; 92(1): 226-235, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38326909

ABSTRACT

PURPOSE: To demonstrate the feasibility and robustness of the Magnetic Resonance Spin TomogrAphy in Time-domain (MR-STAT) framework for fast, high SNR relaxometry at 7T. METHODS: To deploy MR-STAT on 7T-systems, we designed optimized flip-angles using the BLAKJac-framework that incorporates the SAR-constraints. Transmit RF-inhomogeneities were mitigated by including a measured B 1 + $$ {B}_1^{+} $$ -map in the reconstruction. Experiments were performed on a gel-phantom and on five volunteers to explore the robustness of the sequence and its sensitivity to B 1 + $$ {B}_1^{+} $$ inhomogeneities. The SNR-gain at 7T was explored by comparing phantom and in vivo results to MR-STAT at 3T in terms of SNR-efficiency. RESULTS: The higher SNR at 7T enabled two-fold acceleration with respect to current 2D MR-STAT protocols at lower field strengths. The resulting scan had whole-brain coverage, with 1 x 1 x 3 mm3 resolution (1.5 mm slice-gap) and was acquired within 3 min including the B 1 + $$ {B}_1^{+} $$ -mapping. After B 1 + $$ {B}_1^{+} $$ -correction, the estimated T1 and T2 in a phantom showed a mean relative error of, respectively, 1.7% and 4.4%. In vivo, the estimated T1 and T2 in gray and white matter corresponded to the range of values reported in literature with a variation over the subjects of 1.0%-2.1% (WM-GM) for T1 and 4.3%-5.3% (WM-GM) for T2. We measured a higher SNR-efficiency at 7T (R = 2) than at 3T for both T1 and T2 with, respectively, a 4.1 and 2.3 times increase in SNR-efficiency. CONCLUSION: We presented an accelerated version of MR-STAT tailored to high field (7T) MRI using a low-SAR flip-angle train and showed high quality parameter maps with an increased SNR-efficiency compared to MR-STAT at 3T.


Subject(s)
Brain , Magnetic Resonance Imaging , Phantoms, Imaging , Signal-To-Noise Ratio , Humans , Magnetic Resonance Imaging/methods , Brain/diagnostic imaging , Algorithms , Image Processing, Computer-Assisted/methods , Adult , Male , Female
6.
Blood ; 139(14): 2173-2185, 2022 04 07.
Article in English | MEDLINE | ID: mdl-34871373

ABSTRACT

Chimeric antigen receptor (CAR) T-cell therapy can induce durable remissions of relapsed/refractory B-acute lymphoblastic leukemia (ALL). However, case reports suggested differential outcomes mediated by leukemia cytogenetics. We identified children and young adults with relapsed/refractory CD19+ ALL/lymphoblastic lymphoma treated on 5 CD19-directed CAR T-cell (CTL019 or humanized CART19) clinical trials or with commercial tisagenlecleucel from April 2012 to April 2019. Patients were hierarchically categorized according to leukemia cytogenetics: High-risk lesions were defined as KMT2A (MLL) rearrangements, Philadelphia chromosome (Ph+), Ph-like, hypodiploidy, or TCF3/HLF; favorable as hyperdiploidy or ETV6/RUNX1; and intermediate as iAMP21, IKZF1 deletion, or TCF3/PBX1. Of 231 patients aged 1 to 29, 74 (32%) were categorized as high risk, 28 (12%) as intermediate, 43 (19%) as favorable, and 86 (37%) as uninformative. Overall complete remission rate was 94%, with no difference between strata. There was no difference in relapse-free survival (RFS; P = .8112), with 2-year RFS for the high-risk group of 63% (95% confidence interval [CI], 52-77). There was similarly no difference seen in overall survival (OS) (P = .5488), with 2-year OS for the high-risk group of 70% (95% CI, 60-82). For patients with KMT2A-rearranged infant ALL (n = 13), 2-year RFS was 67% (95% CI, 45-99), and OS was 62% (95% CI, 40-95), with multivariable analysis demonstrating no increased risk of relapse (hazard ratio, 0.70; 95% CI, 0.21-2.90; P = .7040) but a higher proportion of relapses associated with myeloid lineage switch and a 3.6-fold increased risk of all-cause death (95% CI, 1.04-12.75; P = .0434). CTL019/huCART19/tisagenlecleucel are effective at achieving durable remissions across cytogenetic categories. Relapsed/refractory patients with high-risk cytogenetics, including KMT2A-rearranged infant ALL, demonstrated high RFS and OS probabilities at 2 years.


Subject(s)
Immunotherapy, Adoptive , Precursor Cell Lymphoblastic Leukemia-Lymphoma , Antigens, CD19 , Child , Cytogenetic Analysis , Humans , Infant , Philadelphia Chromosome , Precursor Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Precursor Cell Lymphoblastic Leukemia-Lymphoma/therapy , Receptors, Antigen, T-Cell/therapeutic use , Recurrence , Young Adult
7.
Opt Express ; 32(8): 13574-13582, 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38859324

ABSTRACT

The vortex electromagnetic wave has shown great prospects of radar applications, due to the orbital angular momentum (OAM) degree of freedom. However, the radiation energy convergence of the OAM beam remains a hard problem to be solved for radar target imaging in realistic scenario. In this paper, an OAM beam generation method is developed exploiting the OAM and waveform degrees of freedom simultaneously, which can collimate the beams with different OAM modes. Furthermore, the echo demodulation and the imaging methods are proposed to reconstruct the target profiles in the range and azimuth domain. Simulation and experimental results both validate that the OAM-based radar imaging can achieve azimuthal super-resolution beyond the diffraction limit of the array aperture. This work can advance the system design of vortex electromagnetic wave radar and its real-world applications.

8.
NMR Biomed ; 37(1): e5044, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37772434

ABSTRACT

In quantitative measurement of the T 2 value of tissues, the diffusion of water molecules has been recognized as a confounder. This is most notably so for transient-state quantitative mapping techniques, which allow simultaneous estimation of T 1 and T 2 . In prior work, apparently conflicting conclusions are presented on the level of diffusion-induced bias on the T2 estimate. So far there is a lack of studies on the effect of the RF pulse angle sequence on the level of diffusion-induced bias. In this work, we show that the specific transient-state RF pulse sequence has a large effect on this level of bias. In particular, the bias level is strongly influenced by the mean value of the RF pulse angles. Also, for realistic values of the spoiling gradient area, we infer that the diffusion-induced bias is negligible for non-liquid human tissues; yet, for phantoms, the effect can be substantial (15% of the true T 2 value) for some RF pulse sequences. This should be taken into account in validation procedures.


Subject(s)
Brain , Magnetic Resonance Imaging , Humans , Magnetic Resonance Imaging/methods , Phantoms, Imaging , Diffusion , Algorithms
9.
NMR Biomed ; 37(2): e5050, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37857335

ABSTRACT

Magnetic Resonance Spin TomogrAphy in Time-domain (MR-STAT) is a multiparametric quantitative MR framework, which allows for simultaneously acquiring quantitative tissue parameters such as T1, T2, and proton density from one single short scan. A typical two-dimensional (2D) MR-STAT acquisition uses a gradient-spoiled, gradient-echo sequence with a slowly varying RF flip-angle train and Cartesian readouts, and the quantitative tissue maps are reconstructed by an iterative, model-based optimization algorithm. In this work, we design a three-dimensional (3D) MR-STAT framework based on previous 2D work, in order to achieve better image signal-to-noise ratio, higher though-plane resolution, and better tissue characterization. Specifically, we design a 7-min, high-resolution 3D MR-STAT sequence, and the corresponding two-step reconstruction algorithm for the large-scale dataset. To reduce the long acquisition time, Cartesian undersampling strategies such as SENSE are adopted in our transient-state quantitative framework. To reduce the computational burden, a data-splitting scheme is designed for decoupling the 3D reconstruction problem into independent 2D reconstructions. The proposed 3D framework is validated by numerical simulations, phantom experiments, and in vivo experiments. High-quality knee quantitative maps with 0.8 × 0.8 × 1.5 mm3 resolution and bilateral lower leg maps with 1.6 mm isotropic resolution can be acquired using the proposed 7-min acquisition sequence and the 3-min-per-slice decoupled reconstruction algorithm. The proposed 3D MR-STAT framework could have wide clinical applications in the future.


Subject(s)
Imaging, Three-Dimensional , Multiparametric Magnetic Resonance Imaging , Imaging, Three-Dimensional/methods , Magnetic Resonance Imaging/methods , Algorithms , Magnetic Resonance Spectroscopy , Phantoms, Imaging , Image Processing, Computer-Assisted/methods , Brain
10.
Glob Chang Biol ; 30(1): e17038, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37987223

ABSTRACT

The frequency, intensity, and duration of extreme droughts, with devastating impacts on tree growth and survival, have increased with climate change over the past decades. Assessing growth resistance and resilience to drought is a crucial prerequisite for understanding the responses of forest functioning to drought events. However, the responses of growth resistance and resilience to extreme droughts with different durations across different climatic zones remain unclear. Here, we investigated the spatiotemporal patterns in growth resistance and resilience in response to extreme droughts with different durations during 1901-2015, relying on tree-ring chronologies from 2389 forest stands over the mid- and high-latitudinal Northern Hemisphere, species-specific plant functional traits, and diverse climatic factors. The findings revealed that growth resistance and resilience under 1-year droughts were higher in humid regions than in arid regions. Significant higher growth resistance was observed under 2-year droughts than under 1-year droughts in both arid and humid regions, while growth resilience did not show a significant difference. Temporally, tree growth became less resistant and resilient to 1-year droughts in 1980-2015 than in 1901-1979 in both arid and humid regions. As drought duration lengthened, the predominant impacts of climatic factors on growth resistance and resilience weakened and instead foliar economic traits, plant hydraulic traits, and soil properties became much more important in both climatic regions; in addition, such trends were also observed temporally. Finally, we found that most of the Earth system models (ESMs) used in this study overestimated growth resistance and underestimated growth resilience under both 1-year and 2-year droughts. A comprehensive ecophysiological understanding of tree growth responses to longer and intensified drought events is urgently needed, and a specific emphasis should be placed on improving the performance of ESMs.


Subject(s)
Droughts , Resilience, Psychological , Forests , Trees , Species Specificity , Climate Change
11.
Glob Chang Biol ; 30(4): e17260, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38563236

ABSTRACT

The impact of anthropogenic global warming has induced significant upward dispersal of trees to higher elevations at alpine treelines. Assessing vertical deviation from current uppermost tree distributions to potential treeline positions is crucial for understanding ecosystem responses to evolving global climate. However, due to data resolution constraints and research scale limitation, comprehending the global pattern of alpine treeline elevations and driving factors remains challenging. This study constructed a comprehensive quasi-observational dataset of uppermost tree distribution across global mountains using Google Earth imagery. Validating the isotherm of mean growing-season air temperature at 6.6 ± 0.3°C as the global indicator of thermal treeline, we found that around two-thirds of uppermost tree distribution records significantly deviated from it. Drought conditions constitute the primary driver in 51% of cases, followed by mountain elevation effect which indicates surface heat (27%). Our analyses underscore the multifaceted determinants of global patterns of alpine treeline, explaining divergent treeline responses to climate warming. Moisture, along with temperature and disturbance, plays the most fundamental roles in understanding global variation of alpine treeline elevation and forecasting alpine treeline response to ongoing global warming.


Subject(s)
Ecosystem , Trees , Trees/physiology , Temperature , Cold Temperature , Climate , Altitude
12.
Respir Res ; 25(1): 324, 2024 Aug 24.
Article in English | MEDLINE | ID: mdl-39182083

ABSTRACT

BACKGROUND: Cobalt (Co) is a metal which is widely used in the industrial production. The previous studies found the toxic effects of environmental Co exposure on multiple organs. However, the correlation of blood Co concentration with lung function was inconsistent in patients with chronic obstructive pulmonary disease (COPD). METHODS: All 771 stable COPD patients were recruited. Peripheral blood and clinical information were collected. The levels of blood Co and serum CC16 were measured. RESULTS: Cross-sectional study suggested that the level of blood Co was inversely and dose-dependently related to lung function parameters. Each 1 ppm elevation of blood Co was related to 0.598 L decline in FVC, 0.465 L decline in FEV1, 6.540% decline in FEV1/FVC%, and 14.013% decline in FEV1%, respectively. Moreover, higher age, enrolled in winter, current-smoking, higher smoking amount, and inhaled corticosteroids prominently exacerbated the negative correlation between blood Co and lung function. Besides, serum CC16 content was gradually reduced with blood Co elevation in COPD patients. Besides, serum CC16 was positively correlated with lung function, and inversely related to blood Co. Additionally, decreased CC16 substantially mediated 11.45% and 6.37% Co-triggered downregulations in FEV1 and FEV1%, respectively. CONCLUSION: Blood Co elevation is closely related to the reductions of pulmonary function and serum CC16. CC16 exerts a significantly mediating role of Co-related to pulmonary function decrease among COPD patients.


Subject(s)
Cobalt , Pulmonary Disease, Chronic Obstructive , Uteroglobin , Humans , Pulmonary Disease, Chronic Obstructive/blood , Pulmonary Disease, Chronic Obstructive/physiopathology , Pulmonary Disease, Chronic Obstructive/drug therapy , Pulmonary Disease, Chronic Obstructive/diagnosis , Male , Uteroglobin/blood , Female , Cobalt/blood , Aged , Middle Aged , Cross-Sectional Studies , Lung/drug effects , Lung/physiopathology , Lung/metabolism , Forced Expiratory Volume/physiology , Respiratory Function Tests/methods , Biomarkers/blood , Vital Capacity/physiology
13.
Respir Res ; 25(1): 91, 2024 Feb 17.
Article in English | MEDLINE | ID: mdl-38368333

ABSTRACT

BACKGROUND: Prior studies in patients with chronic obstructive pulmonary disease (COPD) had indicated a potential correlation between cadmium (Cd) exposure and reduction in lung function. Nevertheless, the influence of Cd exposure on the progression of COPD remained unknown. Exploring the relationship between Cd exposure and the progression of COPD was the aim of this investigation. METHODS: Stable COPD patients were enrolled. Blood samples were collected and lung function was evaluated. Regular professional follow-ups were conducted through telephone communications, outpatient services, and patients' hospitalization records. RESULTS: Each additional unit of blood Cd was associated with upward trend in acute exacerbation, hospitalization, longer hospital stay, and death within 2 years. Even after adjusting for potential confounding factors, each 1 unit rise in blood Cd still correlated with a rise in the frequencies of acute exacerbation, longer hospital stay, and death. Moreover, COPD patients with less smoking amount, lower lung function and without comorbidities were more vulnerable to Cd-induced disease deterioration. CONCLUSION: Patients with COPD who have higher blood Cd concentration are susceptible to worse disease progression.


Subject(s)
Cadmium , Pulmonary Disease, Chronic Obstructive , Humans , Prospective Studies , Disease Progression , Pulmonary Disease, Chronic Obstructive/diagnosis , Pulmonary Disease, Chronic Obstructive/epidemiology , Pulmonary Disease, Chronic Obstructive/complications , Hospitalization
14.
Am J Nephrol ; 55(3): 345-360, 2024.
Article in English | MEDLINE | ID: mdl-38330925

ABSTRACT

INTRODUCTION: The aim of this study was to explore the renoprotective effects of Klotho on podocyte injury mediated by complement activation and autoantibodies in idiopathic membranous nephropathy (IMN). METHODS: Rat passive Heymann nephritis (PHN) was induced as an IMN model. Urine protein levels, serum biochemistry, kidney histology, and podocyte marker levels were assessed. In vitro, sublytic podocyte injury was induced by C5b-9. The expression of Klotho, transient receptor potential channel 6 (TRPC6), and cathepsin L (CatL); its substrate synaptopodin; and the intracellular Ca2+ concentration were detected via immunofluorescence. RhoA/ROCK pathway activity was measured by an activity quantitative detection kit, and the protein expression of phosphorylated-LIMK1 (p-LIMK1) and p-cofilin in podocytes was detected via Western blotting. Klotho knockdown and overexpression were performed to evaluate its role in regulating the TRPC6/CatL pathway. RESULTS: PHN rats exhibited proteinuria, podocyte foot process effacement, decreased Klotho and Synaptopodin levels, and increased TRPC6 and CatL expression. The RhoA/ROCK pathway was activated by the increased phosphorylation of LIMK1 and cofilin. Similar changes were observed in C5b-9-injured podocytes. Klotho knockdown exacerbated podocyte injury, while Klotho overexpression partially ameliorated podocyte injury. CONCLUSION: Klotho may protect against podocyte injury in IMN patients by inhibiting the TRPC6/CatL pathway. Klotho is a potential target for reducing proteinuria in IMN patients.


Subject(s)
Actin Cytoskeleton , Cathepsin L , Glomerulonephritis, Membranous , Glucuronidase , Klotho Proteins , Podocytes , Signal Transduction , TRPC6 Cation Channel , Podocytes/metabolism , Podocytes/pathology , Glomerulonephritis, Membranous/metabolism , Glomerulonephritis, Membranous/pathology , Animals , Glucuronidase/metabolism , Rats , TRPC6 Cation Channel/metabolism , Male , Actin Cytoskeleton/metabolism , Cathepsin L/metabolism , rhoA GTP-Binding Protein/metabolism , Humans , Disease Models, Animal , Microfilament Proteins/metabolism , Proteinuria/metabolism , Rats, Sprague-Dawley , rho-Associated Kinases/metabolism , TRPC Cation Channels/metabolism , Complement Membrane Attack Complex/metabolism
15.
Theor Appl Genet ; 137(10): 221, 2024 Sep 13.
Article in English | MEDLINE | ID: mdl-39271558

ABSTRACT

KEY MESSAGE: The hybrid rice variety (Hanyou73) exhibits the maternal-like (HH7A) gene expression in roots and parental-like (HH3) gene expression in leaves to obtain both advantages of drought avoidance and drought tolerance from its two parents. BACKGROUND: Rice is one of the most important crops in the world. Rice production consumes lots of water and significantly suffers from the water deficiency and drought stress. The water-saving and drought-resistance rice (WDR) confers good drought resistance and performs well in the water-saving cultivation. MAIN FINDINGS: A hybrid WDR variety Hanyou73 (HY73) exhibited superior drought resistance compared with its parents Hanhui3 (HH3) and Huhan7A (HH7A). Studies on drought resistance related traits revealed that HY73 performed like HH3 and HH7A on drought tolerance and drought avoidance, respectively. Transcriptomes were analyzed for samples with various phytohormone treatments and abiotic stresses, in which HY73 was closer to HH3 in leaf samples while HH7A in root samples. HY73 and its parents differed largely in DEGs and GO analysis for DEGs suggested the different pathways of drought response in HH3 and HH7A. Parent-like expression analysis revealed that the higher-parent-like expression pattern was prevailing in HY73. In addition, patterns of the parent-like expression significantly transformed between abiotic-stressed/phytohormone-treated and control samples, which might help HY73 to adapt to different environments. WGCNA analysis for those parent-like expression genes revealed some drought resistant genes that should contribute to the superior drought resistance of HY73. Genetic variation on the promotor sequence was confirmed as the reason for the flexible parent-like gene expression in HY73. CONCLUSION: Our study uncovered the important roles of complementation of beneficial traits from parents and flexible gene expressions in drought resistance of HY73, which could facilitate the development of new WDR varieties.


Subject(s)
Droughts , Gene Expression Regulation, Plant , Oryza , Oryza/genetics , Oryza/physiology , Stress, Physiological/genetics , Water , Plant Roots/genetics , Plant Roots/physiology , Plant Leaves/genetics , Plant Leaves/physiology , Plant Proteins/genetics , Plant Proteins/metabolism , Phenotype , Genes, Plant , Drought Resistance
16.
Langmuir ; 40(24): 12419-12426, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38836381

ABSTRACT

Recently, polyurethane elastomer (TPU) has attracted more and more attention depending on its excellent optical, mechanical, and retreatment properties. The high strength of polyurethane has always been pursued, which can enable its application in more fields. In this work, an aliphatic polyurethane elastomer membrane (HRPU6) was successfully synthesized, and its strength was obviously improved by solvent annealing technology. The tensile strength and adhesion strength can reach 64.56 and 2.58 MPa, but 36.55 and 1.57 MPa only before solvent annealing, respectively. The impact strength of laminated glass based on HRPU has also been significantly improved after solvent annealing, confirmed through drop ball impact testing. It has been confirmed that the increase in strength of HRPU6 is attributed to the enhancement of hydrogen bonding and the improvement of the phase separation degree.

17.
Prev Med ; 179: 107831, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38145876

ABSTRACT

BACKGROUND: Physical activity (PA) has been linked with cancer incidence. However, the effects and mechanisms underpinning circadian PA trajectories on cancer remain elusive. This study aimed to explore the optimal PA patterns in reducing cancer incidence and the associated potential mediators. METHODS: Between 2006 and 2010, 502,400 participants were recruited from the UK Biobank. Out of these, 102,323 participants wore accelerometers, which allowed for collecting acceleration data continuously over 7 days. After excluding participants with previous cancer history, 96,687 participants were included in K-means cluster analysis to identify PA trajectories. The association between PA and cancer incidence was assessed using Cox regression analysis. Additionally, we investigated the mediating role of inflammation. RESULTS: A total of 5995 cancer cases were recorded during a median follow-up of 7.1 years. Four distinct PA trajectories (persistent low, single peak, double peak, and vigorous) were identified. The ideal PA patterns reduced the risk of 7 out of 17 site-specific cancers, with the lowest hazard ratios and 95% confidence intervals of cancer for bladder (0.59, 0.40-0.86), breast (0.73, 0.60-0.89), kidney (0.45, 0.26-0.78), lung (0.59, 0.41-0.84), myeloma (0.49, 0.27-0.88), and oral & pharynx (0.51, 0.26-0.98) in the vigorous pattern and for colorectal (0.71, 0.54-0.93) in the double peak pattern. Moreover, the mediating effects of inflammation were significant. CONCLUSION: Optimal PA trajectories reduced cancer incidence, especially in double peak and vigorous patterns. The protective effect was associated with both intensity and circadian rhythm. Crucially, this protection was mediated by inflammation regulation.


Subject(s)
Biological Specimen Banks , Neoplasms , Humans , Incidence , UK Biobank , Exercise , Inflammation/epidemiology , Neoplasms/epidemiology , Neoplasms/prevention & control
18.
Bioorg Med Chem Lett ; 112: 129932, 2024 Nov 01.
Article in English | MEDLINE | ID: mdl-39182737

ABSTRACT

Glycogen synthase kinase 3ß (GSK-3ß) is a potential therapeutic target for the treatment of a variety of human diseases. Here, we report the design and synthesis of a series of thieno[3,2-c]pyrazol-urea derivatives and evaluation of their GSK-3ß inhibitory activity. Among these analogues, the compound without substitution on terminal phenyl ring (3a) was found to be the most potent GSK-3ß inhibitor with an IC50 of 74.4 nM, while substitution on the terminal phenyl (3b-3p) led to decreased potency, independent of the position, size, or electronic properties of the substituents. Kinase selectivity assay revealed that 3a showed good selectivity over a panel of kinases, but was less selective over CDK1, CDK2 and CDK5. Additionally, the pharmacological properties of the synthesized compounds were investigated computationally by the SwissADME and the results showed that most of the compounds have good ADME profiles.


Subject(s)
Drug Design , Glycogen Synthase Kinase 3 beta , Protein Kinase Inhibitors , Pyrazoles , Urea , Pyrazoles/chemistry , Pyrazoles/pharmacology , Pyrazoles/chemical synthesis , Humans , Glycogen Synthase Kinase 3 beta/antagonists & inhibitors , Glycogen Synthase Kinase 3 beta/metabolism , Urea/pharmacology , Urea/analogs & derivatives , Urea/chemistry , Urea/chemical synthesis , Structure-Activity Relationship , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/chemistry , Molecular Structure , Glycogen Synthase Kinase 3/antagonists & inhibitors , Glycogen Synthase Kinase 3/metabolism , Dose-Response Relationship, Drug
19.
Inorg Chem ; 63(36): 16605-16609, 2024 Sep 09.
Article in English | MEDLINE | ID: mdl-39193927

ABSTRACT

The development of novel adsorption materials is of significance for the efficient and low-energy purification of acetylene (C2H2). Emerging metal-organic framework (MOF) adsorbents demonstrate great application prospects in the field of gas adsorption and separation. Herein, we synthesized a Eu-MOF asymmetrically modified with cyclopentadienyl cobalt exhibiting two different types of cages, denoted as UPC-119. Adsorption isotherms and dynamic breakthrough curves confirm its potential in C2H2/CO2 separation, which is further evidenced by theoretical simulations. The high adsorption capacity and low adsorption enthalpy render UPC-119 as a promising adsorbent for C2H2/CO2 separation with ease of regeneration.

20.
Arch Virol ; 169(4): 75, 2024 Mar 16.
Article in English | MEDLINE | ID: mdl-38492088

ABSTRACT

Fusarium oxysporum is a widespread plant pathogen that causes fusarium wilt and fusarium root rot in many economically significant crops. Here, a novel dsRNA virus tentatively named "Fusarium oxysporum virus 1" (FoV1) was identified in F. oxysporum strain 3S-18. The genome of FoV1 is 2,944 nucleotides (nt) in length and contains two non-overlapping open reading frames (ORF1 and 2). The larger of these, ORF2, encodes an RNA-dependent RNA polymerase (RdRp) of 590 amino acids with a molecular mass of 67.52 kDa. ORF1 encodes a putative nucleocapsid protein consisting of 134 amino acids with a molecular mass of 34.25 kDa. The RdRp domain of FoV1 shares 60.00% to 84.24% sequence identity with non-segmented dsRNA viruses. Phylogenetic analysis further suggested that FoV1 is a new member of the proposed genus "Unirnavirus" accommodating unclassified monopartite dsRNA viruses.


Subject(s)
Fungal Viruses , Fusarium , RNA Viruses , Fusarium/genetics , Double Stranded RNA Viruses/genetics , Phylogeny , Genome, Viral , Fungal Viruses/genetics , RNA-Dependent RNA Polymerase/genetics , Open Reading Frames , Fungi , Amino Acids/genetics , RNA Viruses/genetics , RNA, Double-Stranded/genetics , RNA, Viral/genetics
SELECTION OF CITATIONS
SEARCH DETAIL