Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 90
Filter
Add more filters

Country/Region as subject
Affiliation country
Publication year range
1.
Cell Commun Signal ; 22(1): 376, 2024 Jul 25.
Article in English | MEDLINE | ID: mdl-39061070

ABSTRACT

Acute kidney injury (AKI) is closely related to lysosomal dysfunction and ferroptosis in renal tubular epithelial cells (TECs), for which effective treatments are urgently needed. Although selenium nanoparticles (SeNPs) have emerged as promising candidates for AKI therapy, their underlying mechanisms have not been fully elucidated. Here, we investigated the effect of SeNPs on hypoxia/reoxygenation (H/R)-induced ferroptosis and lysosomal dysfunction in TECs in vitro and evaluated their efficacy in a murine model of ischemia/reperfusion (I/R)-AKI. We observed that H/R-induced ferroptosis was accompanied by lysosomal Fe2+ accumulation and dysfunction in TECs, which was ameliorated by SeNPs administration. Furthermore, SeNPs protected C57BL/6 mice against I/R-induced inflammation and ferroptosis. Mechanistically, we found that lysosomal Fe2+ accumulation and ferroptosis were associated with the excessive activation of NCOA4-mediated ferritinophagy, a process mitigated by SeNPs through the upregulation of X-box binding protein 1 (XBP1). Downregulation of XBP1 promoted ferritinophagy and partially counteracted the protective effects of SeNPs on ferroptosis inhibition in TECs. Overall, our findings revealed a novel role for SeNPs in modulating ferritinophagy, thereby improving lysosomal function and attenuating ferroptosis of TECs in I/R-AKI. These results provide evidence for the potential application of SeNPs as therapeutic agents for the prevention and treatment of AKI.


Subject(s)
Ferroptosis , Nanoparticles , Reperfusion Injury , Selenium , X-Box Binding Protein 1 , Animals , Humans , Male , Mice , Acute Kidney Injury/pathology , Acute Kidney Injury/metabolism , Acute Kidney Injury/drug therapy , Autophagy/drug effects , Ferritins/metabolism , Ferroptosis/drug effects , Lysosomes/metabolism , Lysosomes/drug effects , Mice, Inbred C57BL , Nanoparticles/chemistry , Nuclear Receptor Coactivators/metabolism , Nuclear Receptor Coactivators/genetics , Reperfusion Injury/drug therapy , Reperfusion Injury/metabolism , Reperfusion Injury/pathology , Selenium/pharmacology , Selenium/administration & dosage , Signal Transduction/drug effects , X-Box Binding Protein 1/metabolism , X-Box Binding Protein 1/genetics
2.
Int J Mol Sci ; 24(3)2023 Feb 03.
Article in English | MEDLINE | ID: mdl-36769347

ABSTRACT

Cisplatin, a widely used anticancer agent, can cause nephrotoxicity, including both acute kidney injury (AKI) and chronic kidney diseases, by accumulating in renal tubular epithelial cells (TECs). Mitochondrial pathology plays an important role in the pathogenesis of AKI. Based on the regulatory role of transcription factor EB (TFEB) in mitochondria, we investigated whether TFEB is involved in cisplatin-induced TEC damage. The results show that the expression of TFEB decreased in a concentration-dependent manner in both mouse kidney tissue and HK-2 cells when treated with cisplatin. A knockdown of TFEB aggravated cisplatin-induced renal TEC injury, which was partially reversed by TFEB overexpression in HK-2 cells. It was further observed that the TFEB knockdown also exacerbated cisplatin-induced mitochondrial damage in vitro, and included the depolarization of membrane potential, mitochondrial fragmentation and swelling, and the production of reactive oxygen species. In contrast, TFEB overexpression alleviated cisplatin-induced mitochondrial damage in TECs. These findings suggest that decreased TFEB expression may be a key mechanism of mitochondrial dysfunction in cisplatin-induced AKI, and that upregulation of TFEB has the potential to act as a therapeutic target to alleviate mitochondrial dysfunction and cisplatin-induced TEC injury. This study is important for developing therapeutic strategies to manipulate mitochondria through TFEB to delay AKI progression.


Subject(s)
Acute Kidney Injury , Cisplatin , Mice , Animals , Cisplatin/toxicity , Cisplatin/metabolism , Apoptosis , Acute Kidney Injury/chemically induced , Acute Kidney Injury/genetics , Mitochondria/metabolism , Transcription Factors/metabolism , Mice, Inbred C57BL
3.
Int J Mol Sci ; 24(10)2023 May 11.
Article in English | MEDLINE | ID: mdl-37239937

ABSTRACT

The accumulation of protein aggregates is the hallmark of many neurodegenerative diseases. The dysregulation of protein homeostasis (or proteostasis) caused by acute proteotoxic stresses or chronic expression of mutant proteins can lead to protein aggregation. Protein aggregates can interfere with a variety of cellular biological processes and consume factors essential for maintaining proteostasis, leading to a further imbalance of proteostasis and further accumulation of protein aggregates, creating a vicious cycle that ultimately leads to aging and the progression of age-related neurodegenerative diseases. Over the long course of evolution, eukaryotic cells have evolved a variety of mechanisms to rescue or eliminate aggregated proteins. Here, we will briefly review the composition and causes of protein aggregation in mammalian cells, systematically summarize the role of protein aggregates in the organisms, and further highlight some of the clearance mechanisms of protein aggregates. Finally, we will discuss potential therapeutic strategies that target protein aggregates in the treatment of aging and age-related neurodegenerative diseases.


Subject(s)
Neurodegenerative Diseases , Proteostasis Deficiencies , Animals , Humans , Protein Aggregates , Proteostasis , Proteostasis Deficiencies/metabolism , Neurodegenerative Diseases/metabolism , Proteins/genetics , Proteins/metabolism , Proteasome Endopeptidase Complex/metabolism , Mammals/metabolism
4.
Int J Mol Sci ; 24(9)2023 Apr 24.
Article in English | MEDLINE | ID: mdl-37175493

ABSTRACT

Transcription factors can affect autophagy activity by promoting or inhibiting the expression of autophagic and lysosomal genes. As a member of the zinc finger family DNA-binding proteins, ZKSCAN3 has been reported to function as a transcriptional repressor of autophagy, silencing of which can induce autophagy and promote lysosomal biogenesis in cancer cells. However, studies in Zkscan3 knockout mice showed that the deficiency of ZKSCAN3 did not induce autophagy or increase lysosomal biogenesis. In order to further explore the role of ZKSCAN3 in the transcriptional regulation of autophagic genes in human cancer and non-cancer cells, we generated ZKSCAN3 knockout HK-2 (non-cancer) and Hela (cancer) cells via the CRISPR/Cas9 system and analyzed the differences in gene expression between ZKSCAN3 deleted cells and non-deleted cells through fluorescence quantitative PCR, western blot and transcriptome sequencing, with special attention to the differences in expression of autophagic and lysosomal genes. We found that ZKSCAN3 may be a cancer-related gene involved in cancer progression, but not an essential transcriptional repressor of autophagic or lysosomal genes, as the lacking of ZKSCAN3 cannot significantly promote the expression of autophagic and lysosomal genes.


Subject(s)
Autophagy , Gene Expression Regulation , Animals , Mice , Humans , Autophagy/genetics , HeLa Cells , Lysosomes/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism
5.
J Cell Mol Med ; 25(12): 5729-5743, 2021 06.
Article in English | MEDLINE | ID: mdl-33949118

ABSTRACT

Cyclosporine A (CsA) is an immunosuppressor widely used for the prevention of acute rejection during solid organ transplantation. However, severe nephrotoxicity has substantially limited its long-term usage. Recently, an impaired autophagy pathway was suggested to be involved in the pathogenesis of chronic CsA nephrotoxicity. However, the underlying mechanisms of CsA-induced autophagy blockade in tubular cells remain unclear. In the present study, we observed that CsA suppressed the activation and expression of transcription factor EB (TFEB) by increasing the activation of mTOR, in turn promoting lysosomal dysfunction and autophagy flux blockade in tubular epithelial cells (TECs) in vivo and in vitro. Restoration of TFEB activation by Torin1-mediated mTOR inhibition significantly improved lysosomal function and rescued autophagy pathway activity, suppressing TEC injury. In summary, targeting TFEB-mediated autophagy flux represents a potential therapeutic strategy for CsA-induced nephrotoxicity.


Subject(s)
Autophagy , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/metabolism , Cyclosporine/toxicity , Epithelial Cells/pathology , Kidney Tubules/pathology , Lysosomes/pathology , TOR Serine-Threonine Kinases/metabolism , Animals , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/genetics , Epithelial Cells/drug effects , Epithelial Cells/metabolism , Immunosuppressive Agents/toxicity , Kidney Tubules/drug effects , Kidney Tubules/metabolism , Lysosomes/drug effects , Lysosomes/metabolism , Male , Mice , Mice, Inbred BALB C , TOR Serine-Threonine Kinases/genetics
6.
J Cell Mol Med ; 24(20): 12044-12053, 2020 10.
Article in English | MEDLINE | ID: mdl-32918534

ABSTRACT

Alternations of peripheral B-cell subsets are closely related to disease activity in systemic lupus erythematosus (SLE) and may also predict the relapse of SLE. In this study, we aimed to comprehensively analyse the frequency of peripheral B-cell subsets, and their correlation with disease activity in patients with SLE. The results showed that for B-cell subsets in the antigen-independent differentiation stage, the frequency of the peripheral hematopoietic stem cell (HSC) subset in all patients with SLE was significantly higher than that of control patients. Surprisingly, several significant correlations were noted in newly diagnosed patients with SLE including a positive correlation in the frequency of the common lymphoid progenitor cell (CLP) with cholesterol serum levels. For B-cell subsets in the antigen-dependent differentiation stage, the frequency of naïve B-cell (N-B) subsets in all patients with SLE was significantly higher than that in the control patients. Moreover, the frequency of plasmablasts positively correlated with the SLEDAI score in the newly diagnosed patients. For memory B-cell (M-B) subtypes in the antigen-dependent differentiation stage, the frequency of the class-switched memory B-cell (CSM-B) subsets was positively correlated with the serum levels of complement C3. Notably, the frequency of the CSM-B subset also negatively correlated with the SLEDAI score, whereas the non-class-switched memory B-cell (NSM-B) subset was positively correlated with the serum levels of haemoglobin. Collectively, these findings may contribute to a better understanding of the role played by different B-cell subsets in the pathogenesis of SLE.


Subject(s)
B-Lymphocyte Subsets/immunology , Lupus Erythematosus, Systemic/immunology , Adult , Antigens/metabolism , Case-Control Studies , Cell Differentiation , Female , Humans , Lupus Erythematosus, Systemic/blood , Lupus Erythematosus, Systemic/diagnosis , Lupus Erythematosus, Systemic/pathology , Lymphocyte Count , Male , Middle Aged , Statistics, Nonparametric , Young Adult
7.
J Cell Mol Med ; 24(14): 7841-7849, 2020 07.
Article in English | MEDLINE | ID: mdl-32510738

ABSTRACT

Nowadays, the pathogenesis of minimal change disease (MCD) is still not well-known, and the current understanding on MCD is mainly based on data derived from children, and very few adults. Here, we comprehensively analysed the correlation between the changes of peripheral basophils and the incidence rate and relapse of adult-onset MCD. The results showed that in patients at the onset of MCD, the ratio and activation of basophils were all higher than those of healthy controls (all P < .05). In vitro test results showed that basophils from healthy controls can be activated by the serum taken from patients with MCD. Among 62 patients at the onset of MCD, with complete remission after treatment and 1 year of follow-up, the relative and absolute basophil counts before treatment were higher in the long-term remission group (n = 33) than that of the relapse group (n = 29). The basophil counts were significantly higher in the infrequent relapse group (n = 13) than that of the frequent relapse group (n = 16; P < .05). These findings suggested that basophil may play a pathogenic role in adult-onset MCD, and the increased number and activation of peripheral basophils could predict recurrence in adult MCD.


Subject(s)
Basophils/pathology , Leukocyte Count , Nephrosis, Lipoid/blood , Nephrosis, Lipoid/diagnosis , Adult , Age of Onset , Basophils/immunology , Biomarkers , Case-Control Studies , Disease Progression , Female , Humans , Immunophenotyping , Male , Nephrosis, Lipoid/etiology , Nephrosis, Lipoid/therapy , Recurrence
8.
Med Sci Monit ; 26: e922673, 2020 Jun 07.
Article in English | MEDLINE | ID: mdl-32555132

ABSTRACT

BACKGROUND Cell cycle arrest and autophagy have been demonstrated to be involved in various transforming growth factor (TGF)-ß-mediated phenotype alterations of tubular epithelial cells (TECs) and tubulointerstitial fibrosis. But the relationship between cell cycle arrest and the autophagy induced by TGF-ß has not been explored well. MATERIAL AND METHODS The effects of autophagy inhibition on TGF-ß-induced cell cycle arrest in TECs were explored in vitro. Human kidney-2 (HK-2) cells were stimulated by TGF-ß with or without a combined treatment of autophagy inhibitor chloroquine (CQ) or bafilomycin A1 (Baf). RESULTS Autophagy inhibition by CQ or Baf promotes the suppression of growth in TGF-ß-treated HK-2 cells, as detected by the Cell Counting Kit-8 (CCK-8) method. In addition, CQ or Baf stimulation enhances G1 arrest in TGF-ß treated HK-2 cells, as investigated using propidium iodide (PI) staining and flow cytometry, which was further confirmed by a decrease in the expression of phosphorylated retinoblastoma protein (p-RB) and cyclin-dependent kinase 4 (CDK4). The upregulation of p21 induced by CQ or Baf may mediate an enhanced G1 arrest in TGF-ß treated HK-2 cells. Western blot analysis showed that TGF-ß-induced expression of extracellular matrix fibronectin was notably upregulated in the presence of autophagy inhibitors. CONCLUSIONS Inhibition of autophagy sensitizes the TECs to G1 arrest and proliferation suppression induced by TGF-ß that contributes to the induction of tubulointerstitial fibrosis.


Subject(s)
Autophagy/drug effects , Chloroquine/pharmacology , Enzyme Inhibitors/pharmacology , Epithelial Cells/drug effects , G1 Phase Cell Cycle Checkpoints/drug effects , Macrolides/pharmacology , Renal Insufficiency, Chronic/pathology , Transforming Growth Factor beta/pharmacology , Cell Line , Cell Proliferation/drug effects , Cyclin-Dependent Kinase 4/drug effects , Cyclin-Dependent Kinase 4/metabolism , Cyclin-Dependent Kinase Inhibitor p21/drug effects , Cyclin-Dependent Kinase Inhibitor p21/metabolism , Fibronectins/drug effects , Fibronectins/metabolism , Fibrosis , Humans , In Vitro Techniques , Kidney Tubules/cytology , Renal Insufficiency, Chronic/metabolism , Retinoblastoma Protein/drug effects , Retinoblastoma Protein/metabolism
9.
Cell Physiol Biochem ; 45(4): 1700-1706, 2018.
Article in English | MEDLINE | ID: mdl-29490294

ABSTRACT

BACKGROUND/AIMS: Massive proteinuria, a significant sign of nephrotic syndrome (NS), has the potential to injure tubular epithelial cells (TECs). Furosemide is widely used for the treatment of edema, a common manifestation of NS. However, whether furosemide treatment affects massive proteinuria-induced TEC injury in patients with NS is unknown. METHODS: The effect of furosemide on TEC damage was investigated in vitro. In addition, a clinical study was conducted to study whether the short-term treatment of nephrotic edema with furosemide could exacerbate TEC injury. RESULTS: The proliferation of in vitro human kidney-2 (HK-2) cells exposed to massive urinary protein (8 mg/mL) significantly decreased (P<0.05), while the levels of kidney injury molecule-1 (Kim-1) and neutrophil gelatinase associated lipocalin (NGAL) in the supernatants significantly increased (P<0.05). Importantly, furosemide treatment did not further increase the expression of Kim-1 and NGAL in HK-2 cells upregulated by massive proteinuria. For the clinical study, 26 patients with NS, all prescribed the recommended dosage of prednisone (1 mg/kg/day), were randomly assigned to two groups. One group (n=13) received furosemide (60-120 mg/day, intravenously) for 1 week; the remaining participants (control group) did not receive furosemide or any other diuretics. The results showed that the 24-h urine volume in the furosemide-treated group was slightly, but not significantly, higher than that in the control group (P>0.05). In addition, serum levels of BUN, Scr, Cys C, and urinary Kim-1 and NGAL were not significantly different between the two groups (all P>0.05). Twenty-three patients underwent a renal biopsy. Of these, 22 patients exhibited vacuolar degeneration of the TECs; 8 patients showed brush border membrane shedding of the TECs; and 12 patients showed protein casts. However, there were no significant differences between the two groups (all P>0.05). CONCLUSION: In summary, massive proteinuria induced the injury of TECs in patients with NS, and furosemide treatment did not aggravate this injury.


Subject(s)
Furosemide/therapeutic use , Nephrotic Syndrome/prevention & control , Proteinuria/pathology , Adolescent , Adult , Biomarkers/analysis , Biomarkers/blood , Case-Control Studies , Cell Line , Cell Survival/drug effects , Child , Epithelial Cells/cytology , Epithelial Cells/drug effects , Epithelial Cells/metabolism , Female , Furosemide/pharmacology , Humans , Kidney Diseases/complications , Kidney Diseases/pathology , Kidney Tubules/drug effects , Kidney Tubules/metabolism , Kidney Tubules/pathology , Lipocalin-2/analysis , Male , Middle Aged , Nephrotic Syndrome/complications , Prednisone/therapeutic use , Proteinuria/complications , Single-Blind Method , Young Adult
10.
Med Sci Monit ; 24: 6882-6891, 2018 Sep 28.
Article in English | MEDLINE | ID: mdl-30265659

ABSTRACT

BACKGROUND The aim of this study was to determine whether senescence in renal glomeruli is involved in lupus nephritis (LN); the expression of senescence-associated ß-galactosidase (SA-ß-Gal) and its association with glomerular lesions were investigated in a mouse model of LN. MATERIAL AND METHODS Eighteen MRL/lpr mice with severe proteinuria were randomly divided into 2 equal groups and intraperitoneally injected with dexamethasone (DEX) or saline; 4 age-matched mice with mild proteinuria served as controls. Serum creatinine and urinary protein levels were analyzed, and kidney histological changes were observed by periodic acid-Schiff and Sirius Red staining. SA-ß-Gal was detected via histochemistry. Glomerular expression of collagen IV, α-SMA, and nephrin was analyzed by immunohistochemistry, and glomerular complement C3 deposition was tested by immunofluorescence. The relationships between SA-ß-Gal expression and renal function or glomerular lesion markers were determined by Spearman's correlation analysis. RESULTS Mice with severe proteinuria exhibited glomerular segmental sclerosis and endothelial cell proliferation. DEX administration suppressed these lesions but had no significant effect on 24-hour urinary protein levels. The elevated glomerular expression of SA-ß-Gal in proteinuric mice was attenuated by DEX treatment. In addition, DEX treatment markedly downregulated glomerular C3 deposition and collagen IV and α-SMA expression, while significantly increasing nephrin expression. Furthermore, SA-ß-Gal expression was positively correlated with urinary protein levels and expression of α-SMA. CONCLUSIONS Accelerated senescence of glomerular cells may contribute to glomerular injury in LN.


Subject(s)
Kidney Glomerulus/pathology , Lupus Nephritis/pathology , Actins/blood , Animals , Cellular Senescence/physiology , Collagen Type IV/blood , Creatinine/blood , Dexamethasone/pharmacology , Disease Models, Animal , Female , Immunohistochemistry , Kidney Glomerulus/drug effects , Kidney Glomerulus/metabolism , Lupus Nephritis/blood , Lupus Nephritis/chemically induced , Lupus Nephritis/metabolism , Membrane Proteins/blood , Mice , Mice, Inbred MRL lpr , Proteinuria/pathology , beta-Galactosidase/metabolism
11.
Cell Physiol Biochem ; 44(1): 412-422, 2017.
Article in English | MEDLINE | ID: mdl-29141242

ABSTRACT

BACKGROUND: Imbalanced cellular immunity is critical to the pathogenesis of systemic lupus erythematosus (SLE). Recently, autophagy has emerged as a key homeostatic mechanism in T lymphocytes. This study was conducted to explore the impact of autophagy on the Th17/ regulatory T (Treg) immune imbalance in SLE. METHODS: Peripheral Th17 and Treg cells from newly diagnosed patients with SLE and healthy controls were detected by flow cytometry. Additionally, the effects of chloroquine (CQ) autophagic inhibition on the Th17/Treg immune response were investigated in vitro. In addition, hydroxychloroquine (HCQ) treatment of the Th17/Treg immune response and the disease progression of lupus MRL/lpr mice were studied in vivo. RESULTS: Compared with healthy controls, both peripheral Th17 and Treg cells of patients with SLE exhibited activated autophagy, resulting in a heightened Th17 proinflammatory response and diminished Treg immunosuppression. Furthermore, in vitro experiments indicated that CQ autophagic inhibition effectively rebalanced the Th17/Treg immune responses in patients with SLE. In vivo studies of MRL/lpr mice similarly confirmed that HCQ treatment decisively inhibited the autophagy of Th17/Treg cellular subsets, restoring the immune balance, lowering the serum levels of inflammatory cytokines and autoantibodies, and improving renal histopathology. CONCLUSION: Activated autophagy contributed to the Th17/Treg immune imbalance in SLE, and chloroquine autophagic inhibition rebalanced Th17/ Treg-mediated immunity and ameliorated SLE.


Subject(s)
Autophagy/drug effects , Chloroquine/pharmacology , Lupus Erythematosus, Systemic/immunology , T-Lymphocytes, Regulatory/immunology , Th17 Cells/immunology , Adult , Animals , Antimalarials/pharmacology , Cells, Cultured , Female , Humans , Hydroxychloroquine/pharmacology , Interferon-gamma/blood , Interleukin-17/blood , Leukocytes, Mononuclear/cytology , Leukocytes, Mononuclear/drug effects , Leukocytes, Mononuclear/metabolism , Lupus Erythematosus, Systemic/therapy , Male , Mice , Mice, Inbred MRL lpr , Microtubule-Associated Proteins/genetics , Microtubule-Associated Proteins/metabolism , T-Lymphocytes, Regulatory/drug effects , T-Lymphocytes, Regulatory/metabolism , Th17 Cells/drug effects , Th17 Cells/metabolism , Transforming Growth Factor beta/blood , Young Adult
12.
Cell Physiol Biochem ; 43(2): 832-839, 2017.
Article in English | MEDLINE | ID: mdl-28954264

ABSTRACT

BACKGROUND/AIMS: Basophils have been reported to infiltrate skin lesions in various skin diseases, but not in systemic lupus erythematosus (SLE). This study investigated basophil infiltration in SLE and its mechanism. METHODS: Twenty newly diagnosed SLE patients and twenty healthy controls were enrolled. Nine SLE patients underwent skin biopsies. Flow cytometric analysis the phenotype of peripheral basophils and their migration rate toward RANTES and MCP-1 were analyzed with the transwell culture system, also the expression of these two chemokines in skin tissue were analyzed with immunohistochemistry. RESULTS: Increased activation and decreased numbers of peripheral basophils were observed in SLE patients compared with controls. Basophil migration into skin lesions of SLE patients were observed, but not in normal skin tissue. This migration was related to the upregulation of chemokine receptors CCR1 and CCR2 on basophils. In vitro studies showed that migration rate toward RANTES and MCP-1 increased significantly in basophils from SLE patients compared with those from controls. Consistently, high levels of RANTES and MCP-1 expression were observed in skin lesions from SLE patients but not in normal skin tissue. CONCLUSION: Basophil recruitment to skin lesions of SLE patients mediated by CCR1 and CCR2, which may contribute to tissue damage in SLE.


Subject(s)
Basophils/pathology , Lupus Erythematosus, Systemic/pathology , Receptors, CCR1/immunology , Receptors, CCR2/immunology , Skin/pathology , Adult , Basophils/immunology , Cell Movement , Chemokine CCL2/analysis , Chemokine CCL2/immunology , Chemokine CCL5/analysis , Chemokine CCL5/immunology , Female , Humans , Lupus Erythematosus, Systemic/immunology , Male , Receptors, CCR1/analysis , Receptors, CCR2/analysis , Skin/immunology
13.
J Biol Chem ; 290(33): 20499-510, 2015 Aug 14.
Article in English | MEDLINE | ID: mdl-26100632

ABSTRACT

It has been suggested that autophagy protects renal tubular epithelial cells (TECs) from injury in diabetic nephropathy (DN). However, the manner in which the autophagy-lysosome pathway is changed in this state remains unclear. In this study of DN, we investigated the autophagic activity and lysosomal alterations in vivo and in vitro. We found that autophagic vacuoles and SQSTM1-positive proteins accumulated in TECs from patients with DN and in human renal tubular epithelial cell line (HK-2 cells) treated with advanced glycation end products (AGEs), the important factors that involved in the pathogenesis of DN. In HK-2 cells, exposure to AGEs caused a significant increase in autophagosomes but a marked decrease in autolysosomes, and the lysosomal turnover of LC3-II was not observed, although LC3-II puncta were co-localized with the irregular lysosomal-associated membrane protein1 granules after AGEs treatment. Furthermore, lysosomal membrane permeabilization was triggered by AGEs, which likely resulted in a decrease in the enzymatic activities of cathepsin B and cathepsin L, the defective acidification of lysosomes, and suppression of the lysosomal degradation of DQ-ovalbumin. Oxidative stress evoked by AGEs-receptor for AGE interaction likely played an important role in the lysosomal dysfunction. Additionally, ubiquitinated proteins were co-localized with SQSTM1-positive puncta and accumulated in HK-2 cells after exposure to AGEs, indicating blocked degradation of SQSTM1-positive and ubiquitinated aggregates. Taken together, the results show that lysosomal membrane permeabilization and lysosomal dysfunction are triggered by AGEs, which induce autophagic inactivation in TECs from patients with DN. Disruption of the autophagy-lysosome pathway should be focused when studying the mechanisms underlying DN.


Subject(s)
Autophagy , Diabetic Nephropathies/metabolism , Glycation End Products, Advanced/metabolism , Kidney Tubules/metabolism , Lysosomes/metabolism , Adult , Aged , Aged, 80 and over , Cell Membrane Permeability , Diabetic Nephropathies/pathology , Epithelial Cells/immunology , Epithelial Cells/metabolism , Female , Humans , Kidney Tubules/immunology , Kidney Tubules/pathology , Male , Middle Aged
14.
Cell Mol Biol Lett ; 21: 29, 2016.
Article in English | MEDLINE | ID: mdl-28536631

ABSTRACT

The ubiquitin-proteasome system (UPS) and autophagy are two distinct and interacting proteolytic systems. They play critical roles in cell survival under normal conditions and during stress. An increasing body of evidence indicates that ubiquitinated cargoes are important markers of degradation. p62, a classical receptor of autophagy, is a multifunctional protein located throughout the cell and involved in many signal transduction pathways, including the Keap1-Nrf2 pathway. It is involved in the proteasomal degradation of ubiquitinated proteins. When the cellular p62 level is manipulated, the quantity and location pattern of ubiquitinated proteins change with a considerable impact on cell survival. Altered p62 levels can even lead to some diseases. The proteotoxic stress imposed by proteasome inhibition can activate autophagy through p62 phosphorylation. A deficiency in autophagy may compromise the ubiquitin-proteasome system, since overabundant p62 delays delivery of the proteasomal substrate to the proteasome despite proteasomal catalytic activity being unchanged. In addition, p62 and the proteasome can modulate the activity of HDAC6 deacetylase, thus influencing the autophagic degradation.


Subject(s)
Autophagy , Proteasome Endopeptidase Complex , Sequestosome-1 Protein/metabolism , Ubiquitinated Proteins , Animals , Humans , Sequestosome-1 Protein/physiology , Signal Transduction
15.
Mediators Inflamm ; 2016: 2196986, 2016.
Article in English | MEDLINE | ID: mdl-27597802

ABSTRACT

In order to investigate the association between IgG4 autoantibody and complement abnormalities in systemic lupus erythematosus (SLE), 72 newly diagnosed SLE patients, 67 rheumatoid arthritis (RA) patients, and 41 healthy normals were employed. Serum levels of antinuclear IgG4 and IgG4-specific IgM-rheumatoid factor (RF) were measured, and the correlations between serum levels of antinuclear IgG4 and several clinical parameters were analyzed. Also, the levels of IgG subclasses, C1q, and C3 deposition in lupus nephritis (LN) were detected. The results showed that serum levels of antinuclear IgG4 were higher in SLE patients relative to healthy normals (P < 0.01). Serum levels of antinuclear IgG4 in SLE patients were positively correlated with serum levels of total IgG4, albumin, and C3 (r = 0.61, P < 0.05; r = 0.40, P < 0.05; and r = 0.54, P < 0.05, resp.) and negatively correlated with 24-hour urinary protein (r = 0.49, P < 0.05). Serum levels of IgG4-specific IgM-RF were higher in RA patients than in SLE patients (P < 0.001). Also, the ratio of the deposition score for IgG4/(IgG1 + IgG2 + IgG3 + IgG4) was negatively correlated with the score for C1q and C3 deposition in LN (r = 0.34, P < 0.05; r = 0.51, P < 0.01, resp.). In summary, the IgG4 autoantibody may dampen the inflammatory response in SLE, thus maybe providing a novel therapeutic target for SLE.


Subject(s)
Autoantibodies/blood , Immunoglobulin G/blood , Lupus Erythematosus, Systemic/blood , Adolescent , Adult , Aged , Child , Complement C1q/metabolism , Complement C3/metabolism , Female , Humans , Lupus Erythematosus, Systemic/immunology , Lupus Nephritis/blood , Male , Middle Aged , Serum Albumin/metabolism , Young Adult
16.
Am J Physiol Renal Physiol ; 308(6): F639-49, 2015 Mar 15.
Article in English | MEDLINE | ID: mdl-25587119

ABSTRACT

Lysosomal membrane permeabilization (LMP) has been shown to cause the release of cathepsins and other hydrolases from the lysosomal lumen to the cytosol and initiate a cell death pathway. Whether proteinuria triggers LMP in renal tubular epithelial cells (TECs) to accelerate the progression of renal tubulointerstitial injury remains unclear. In the present study, we evaluated TEC injury as well as changes in lysosomal number, volume, activity, and membrane integrity after urinary protein overload in vivo and in vitro. Our results revealed that neutrophil gelatinase-associated lipocalin and kidney injury molecule-1 levels were significantly increased in the urine of patients with minimal change nephrotic syndrome (MCNS) and the culture supernatant of HK-2 cells treated by urinary proteins extracted from MCNS patients. Urinary protein overload also induced apoptotic cell death in HK-2 cells. Importantly, we found that lysosomal volume and number were markedly increased in TECs of patients with MCNS and HK-2 cells overloaded with urinary proteins. However, lysosome function, as assessed by proteolytic degradation of DQ-ovalbumin and cathepsin-B and cathepsin-L activities, was decreased in HK-2 cells overloaded with urinary proteins. Furthermore, urinary protein overload led to a diffuse cytoplasmic immunostaining pattern of cathepsin-B and irregular immunostaining of lysosome-associated membrane protein-1, accompanying a reduction in intracellular acidic components, which could be improved by pretreatment with antioxidant. Taken together, our results indicate that overloading of urinary proteins caused LMP and lysosomal dysfunction at least partly via oxidative stress in TECs.


Subject(s)
Kidney Tubules/physiopathology , Lysosomes/physiology , Proteinuria/physiopathology , Adolescent , Adult , Cathepsins/metabolism , Cell Line , Epithelial Cells/metabolism , Female , Humans , Intracellular Membranes/metabolism , Kidney Tubules/pathology , Lysosomes/ultrastructure , Male , Ovalbumin , Oxidative Stress , Permeability , Proteinuria/metabolism , Proteinuria/pathology , Young Adult
17.
J BUON ; 19(4): 930-6, 2014.
Article in English | MEDLINE | ID: mdl-25536598

ABSTRACT

PURPOSE: The purpose of this study was to evaluate the short- and long-term efficacy and toxicity of the humanized anti-epidermal growth factor receptor (EGFR) monoclonal antibody h-R3 when combined with radiotherapy for the treatment of locally advanced nasopharyngeal carcinoma (NPC). METHODS: 35 patients with stage III-IVb NPC with moderate- or strong-intensity EGFR expression were randomly divided into either a radiotherapy alone group or a group receiving radiotherapy combined with h-R3. RESULTS: The complete remission (CR) rates of the combination group at three time points were significantly higher (p<0.05) than those of the radiotherapy alone group. Overall survival, 3-year local control rate, and no distant metastasis rate did not differ between the two groups. No severe toxicity was noticed. CONCLUSION: h-R3 is an agent with good safety profile which could help enhance the radiation antitumor effect in locally advanced NPC, but it did not seem to exhibit significant long-term efficacy.


Subject(s)
Combined Modality Therapy , ErbB Receptors/therapeutic use , Nasopharyngeal Neoplasms/drug therapy , Nasopharyngeal Neoplasms/radiotherapy , Antibodies, Monoclonal , Antineoplastic Combined Chemotherapy Protocols , Cisplatin , ErbB Receptors/immunology , Humans , Neoplasm Staging , Remission Induction
18.
Diabetes Metab Syndr Obes ; 17: 2789-2807, 2024.
Article in English | MEDLINE | ID: mdl-39072347

ABSTRACT

Metabolic reprogramming contributes to the progression and prognosis of various kidney diseases. Glutamine is the most abundant free amino acid in the body and participates in more metabolic processes than other amino acids. Altered glutamine metabolism is a prominent feature in different kidney diseases. Glutaminolysis converts glutamine into the TCA cycle metabolite, alpha-ketoglutarate, via a cascade of enzymatic reactions. This metabolic pathway plays pivotal roles in inflammation, maladaptive repair, cell survival and proliferation, redox homeostasis, and immune regulation. Given the crucial role of glutaminolysis in bioenergetics and anaplerotic fluxes in kidney pathogenesis, studies on this cascade could provide a better understanding of kidney diseases, thus inspiring the development of potential methods for targeted therapy. Emerging evidence has shown that targeting glutaminolysis is a promising therapeutic strategy for ameliorating kidney disease. In this narrative review, equation including keywords related to glutamine, glutaminolysis and kidney are subjected to an exhaustive search on Pubmed database, we identified all relevant articles published before 1 April, 2024. Afterwards, we summarize the regulation of glutaminolysis in major kidney diseases and its underlying molecular mechanisms. Furthermore, we highlight therapeutic strategies targeting glutaminolysis and their potential clinical applications.

19.
Pharmaceuticals (Basel) ; 17(5)2024 May 13.
Article in English | MEDLINE | ID: mdl-38794195

ABSTRACT

Chronic kidney disease (CKD) affects more than 10% of the global population, and its incidence is increasing, partially due to an increase in the prevalence of disease risk factors. Acute kidney injury (AKI) is an independent risk factor for CKD and end-stage renal disease (ESRD). The pathogenic mechanisms of CKD provide several potential targets for its treatment. However, due to off-target effects, conventional drugs for CKD typically require high doses to achieve adequate therapeutic effects, leading to long-term organ toxicity. Therefore, ideal treatments that completely cure the different types of kidney disease are rarely available. Several approaches for the drug targeting of the kidneys have been explored in drug delivery system research. Nanotechnology-based drug delivery systems have multiple merits, including good biocompatibility, suitable degradability, the ability to target lesion sites, and fewer non-specific systemic effects. In this review, the development, potential, and limitations of low-molecular-weight protein-lysozymes, polymer nanomaterials, and lipid-based nanocarriers as drug delivery platforms for treating AKI and CKD are summarized.

20.
Autophagy ; 2024 Aug 28.
Article in English | MEDLINE | ID: mdl-39193910

ABSTRACT

Macroautophagy/autophagy activation in renal tubular epithelial cells protects against acute kidney injury (AKI). However, the role of immune cell autophagy, such as that involving macrophages, in AKI remains unclear. In this study, we discovered that macrophage autophagy was an adaptive response during AKI as mice with macrophage-specific autophagy deficiency (atg5-/-) exhibited higher serum creatinine, more severe renal tubule injury, increased infiltration of ADGRE1/F4/80+ macrophages, and elevated expression of inflammatory factors compared to WT mice during AKI induced by either LPS or unilateral ischemia-reperfusion. This was further supported by adoptive transfer of atg5-/- macrophages, but not WT macrophages, to cause more severe AKI in clodronate liposomes-induced macrophage depletion mice. Similar results were also obtained in vitro that bone marrow-derived macrophages (BMDMs) lacking Atg5 largely increased pro-inflammatory cytokine expression in response to LPS and IFNG. Mechanistically, we uncovered that atg5 deletion significantly upregulated the protein expression of TARM1 (T cell-interacting, activating receptor on myeloid cells 1), whereas inhibition of TARM1 suppressed LPS- and IFNG-induced inflammatory responses in atg5-/- RAW 264.7 macrophages. The E3 ubiquitin ligases MARCHF1 and MARCHF8 ubiquitinated TARM1 and promoted its degradation in an autophagy-dependent manner, whereas silencing or mutation of the functional domains of MARCHF1 and MARCHF8 abolished TARM1 degradation. Furthermore, we found that ubiquitinated TARM1 was internalized from plasma membrane into endosomes, and then recruited by the ubiquitin-binding autophagy receptors TAX1BP1 and SQSTM1 into the autophagy-lysosome pathway for degradation. In conclusion, macrophage autophagy protects against AKI by inhibiting renal inflammation through the MARCHF1- and MARCHF8-mediated degradation of TARM1.

SELECTION OF CITATIONS
SEARCH DETAIL