Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 247
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Anal Chem ; 96(1): 471-479, 2024 01 09.
Article in English | MEDLINE | ID: mdl-38116615

ABSTRACT

The application of selenium nanoparticle (SeNP)-based fertilizers can cause SeNPs to enter the soil environment. Considering the possible transformation of SeNPs and the species-dependent toxicity of selenium (Se), accurate analysis of SeNPs and other Se species present in the soil would help rationally assess the potential hazards of SeNPs to soil organisms. Herein, a novel method for speciation of SeNPs and other Se species in soil was established. Under the optimized conditions, SeNPs, selenite, selenate, and seleno amino acid could be simultaneously extracted from the soil with mixtures of tetrasodium pyrophosphate (5 mM) and potassium dihydrogen phosphate (1.2 µM), while inert Se species (mainly metal selenide) remained in the soil. Then, extracted SeNPs can be effectively captured by a nylon membrane (0.45 µm) and quantified by inductively coupled plasma mass spectrometry (ICP-MS). Other extracted Se species can be separated and quantified by high-performance liquid chromatography coupled with ICP-MS. Based on the difference between the total Se contents and extracted Se contents, the amount of metal selenide can be calculated. The limits of detection of the method were 0.02 µg/g for SeNPs, 0.05 µg/g for selenite, selenate, and selenocystine, and 0.25 µg/g for selenomethionine, respectively. Spiking experiments also showed that our method was applicable to real soil sample analysis. The present method contributes to understanding the speciation of Se in the soil environment and further estimating the occurrence and application risks of SeNPs.


Subject(s)
Nanoparticles , Selenium Compounds , Selenium , Selenium/analysis , Selenic Acid , Soil/chemistry , Selenium Compounds/chemistry , Selenious Acid
2.
Environ Sci Technol ; 2024 Feb 05.
Article in English | MEDLINE | ID: mdl-38315819

ABSTRACT

The increasing global attention on micro(nano)plastics (MNPs) is a result of their ubiquity in the water, air, soil, and biosphere, exposing humans to MNPs on a daily basis and threatening human health. However, crucial data on MNPs in the human body, including the sources, occurrences, behaviors, and health risks, are limited, which greatly impedes any systematic assessment of their impact on the human body. To further understand the effects of MNPs on the human body, we must identify existing knowledge gaps that need to be immediately addressed and provide potential solutions to these issues. Herein, we examined the current literature on the sources, occurrences, and behaviors of MNPs in the human body as well as their potential health risks. Furthermore, we identified key knowledge gaps that must be resolved to comprehensively assess the effects of MNPs on human health. Additionally, we addressed that the complexity of MNPs and the lack of efficient analytical methods are the main barriers impeding current investigations on MNPs in the human body, necessitating the development of a standard and unified analytical method. Finally, we highlighted the need for interdisciplinary studies from environmental, biological, medical, chemical, computer, and material scientists to fill these knowledge gaps and drive further research. Considering the inevitability and daily occurrence of human exposure to MNPs, more studies are urgently required to enhance our understanding of their potential negative effects on human health.

3.
Environ Sci Technol ; 2024 Feb 07.
Article in English | MEDLINE | ID: mdl-38323894

ABSTRACT

Catalyzed reduction processes have been recognized as important and supplementary technologies for water treatment, with the specific aims of resource recovery, enhancement of bio/chemical-treatability of persistent organic pollutants, and safe handling of oxygenate ions. Palladium (Pd) has been widely used as a catalyst/electrocatalyst in these reduction processes. However, due to the limited reserves and high cost of Pd, it is essential to gain a better understanding of the Pd-catalyzed decontamination process to design affordable and sustainable Pd catalysts. This review provides a systematic summary of recent advances in understanding Pd-catalyzed reductive decontamination processes and designing Pd-based nanocatalysts for the reductive treatment of water-borne pollutants, with special focus on the interactions and transformation mechanisms of pollutant molecules on Pd catalysts at the atomic scale. The discussion begins by examining the adsorption of pollutants onto Pd sites from a thermodynamic viewpoint. This is followed by an explanation of the molecular-level reaction mechanism, demonstrating how electron-donors participate in the reductive transformation of pollutants. Next, the influence of the Pd reactive site structure on catalytic performance is explored. Additionally, the process of Pd-catalyzed reduction in facilitating the oxidation of pollutants is briefly discussed. The longevity of Pd catalysts, a crucial factor in determining their practicality, is also examined. Finally, we argue for increased attention to mechanism study, as well as precise construction of Pd sites under batch synthesis conditions, and the use of Pd-based catalysts/electrocatalysts in the treatment of concentrated pollutants to facilitate resource recovery.

4.
Anal Bioanal Chem ; 416(13): 3271-3280, 2024 May.
Article in English | MEDLINE | ID: mdl-38584179

ABSTRACT

Accurate quantification of nano-selenium (nSe) and other ionic Se species in aquatic environments is a prerequisite for reliable estimation of their potential hazards. In this study, a micropore membrane filtration-based method followed by ICP-MS analysis was proposed for the selective concentration and determination of nSe in the water column. Polyvinylidene fluoride (PVDF) and nylon micropore filtration membranes were proven to efficiently capture nSe under optimal conditions (retention > 91.0 ± 0.87%). At the same time, ionic selenite and selenate could escape from the membranes, realizing the isolation of nSe and ionic Se species. The interference of dissolved organic matter (DOM) during separation can be resolved by adding Ca(II) ions, which can induce the formation of DOM aggregates by cation bridging effects. nSe retained on PVDF membranes could be effectively eluted with FL-70 (a powerful alkaline surfactant) aqueous solutions (0.5%, m/v) while maintaining the original size and morphology. Although nSe trapped on nylon membranes could not be easily eluted, quantification can also be achieved after membrane digestion. Speciation of ionic selenite and selenate in the filtrate was further conducted with an anion exchange column by using HPLC coupled with ICP-MS. The developed method was used to analyze Se species in six real water samples. Spiking experiments showed that the recoveries of nSe ranged from 70.2 ± 2.7% to 85.8 ± 1.3% at a spike level of 0.2 µg/L, and the recoveries of Se(IV) and Se(VI) ranged from 83.6 ± 0.5% to 101 ± 1% at a spike level of 0.55 µg/L, verifying the feasibility for the analysis of environmental water samples. This work provides possibilities to investigate the transformation and potential risks of nSe in the environment.

5.
J Environ Sci (China) ; 139: 160-169, 2024 May.
Article in English | MEDLINE | ID: mdl-38105044

ABSTRACT

The effective and affordable separation of oil and water, a crucial process in the safe handling of environmental disasters such as crude oil spills and recovery of valuable resources, is a highly sought-after yet challenging task. Herein, superhydrophobic PU sponge was fabricated for the fast and cost-effective adsorptive separation of oil and different organic solvents from water. Octadecyltrichlorosilane (OTS)-functionalized Fe3O4@SiO2 core-shell microspheres were dip-coated on the surface of porous materials via a dip-coating process, thereby endowing them with superhydrophobicity. Owing to the hydrophobic interaction between OTS molecules and oil and increased capillary force in the micropores, the resulting superhydrophobic sponge served as a selective oil-sorbent scaffold for absorbing oil from oil-water mixtures, including oil-water suspensions and emulsions. Remarkably, after the recovery of the adsorbed oil via mechanical extrusion, these superhydrophobic materials could be reused multiple times and maintain their oil-water separation efficacy even after 10 oil-water separation cycles.


Subject(s)
Petroleum Pollution , Polyurethanes , Silicon Dioxide , Physical Phenomena , Petroleum Pollution/prevention & control , Magnetic Phenomena
6.
J Environ Sci (China) ; 146: 251-263, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38969453

ABSTRACT

The continuous and rapid increase of chemical pollution in surface waters has become a pressing and widely recognized global concern. As emerging contaminants (ECs) in surface waters, pharmaceutical and personal care products (PPCPs), and endocrine-disrupting compounds (EDCs) have attracted considerable attention due to their wide occurrence and potential threat to human health. Therefore, a comprehensive understanding of the occurrence and risks of ECs in Chinese surface waters is urgently required. This study summarizes and assesses the environmental occurrence concentrations and ecological risks of 42 pharmaceuticals, 15 personal care products (PCPs), and 20 EDCs frequently detected in Chinese surface waters. The ECs were primarily detected in China's densely populated and highly industrialized regions. Most detected PPCPs and EDCs had concentrations between ng/L to µg/L, whereas norfloxacin, caffeine, and erythromycin had relatively high contamination levels, even exceeding 2000 ng/L. Risk evaluation based on the risk quotient method revealed that 34 PPCPs and EDCs in Chinese surface waters did not pose a significant risk, whereas 4-nonylphenol, 4-tert-octylphenol, 17α-ethinyl estradiol, 17ß-estradiol, and triclocarban did. This review provides a comprehensive summary of the occurrence and associated hazards of typical PPCPs and EDCs in Chinese surface waters over the past decade, and will aid in the regulation and control of these ECs in Chinese surface waters.


Subject(s)
Cosmetics , Endocrine Disruptors , Environmental Monitoring , Water Pollutants, Chemical , Endocrine Disruptors/analysis , Water Pollutants, Chemical/analysis , Cosmetics/analysis , China , Pharmaceutical Preparations/analysis , Risk Assessment , East Asian People
7.
J Environ Sci (China) ; 144: 67-75, 2024 Oct.
Article in English | MEDLINE | ID: mdl-38802239

ABSTRACT

Freeze-induced acceleration of I- oxidation and the consequent iodination of dissolved organic matter (DOM) contribute to the formation of organoiodine compounds (OICs) in cold regions. The formed OICs may be a potentially important source of risk and are very closely with the environment and human health. Herein, we investigated the acceleration effects of the freeze process on I- oxidation and the formation of OICs. In comparison to reactive iodine species (RIS) formed in aqueous solutions, I- oxidation and RIS formation were greatly enhanced in frozen solution and were affected by pH, and the content of I- and O2. Freeze-thaw process further promoted I- oxidation and the concentration of RIS reached 45.7 µmol/L after 6 freeze-thaw cycles. The consequent products of DOM iodination were greatly promoted in terms of both concentration and number. The total content of OICs ranged from 0.02 to 2.83 µmol/L under various conditions. About 183-1197 OICs were detected by Fourier transform ion cyclotron resonance mass spectrometry, and more than 96.2% contained one or two iodine atoms. Most OICs had aromatic structures and were formed via substitution and addition reactions. Our findings reveal an important formation pathway for OICs and shed light on the biogeochemical cycling of iodine in the natural aquatic environment.


Subject(s)
Freezing , Iodides , Oxidation-Reduction , Water Pollutants, Chemical , Water Pollutants, Chemical/chemistry , Water Pollutants, Chemical/analysis , Iodides/chemistry , Halogenation , Iodine/chemistry
8.
Langmuir ; 39(13): 4692-4700, 2023 Apr 04.
Article in English | MEDLINE | ID: mdl-36940401

ABSTRACT

Pd-catalyzed reductive decontamination is considerably promising in the safe handling of various pollutants, and previous studies on heterogeneous Pd catalysts have demonstrated the key role of support in determining their catalysis performance. In this work, metal nitrides were studied as supports for Pd as a hydrodechlorination (HDC) catalyst. Density functional theory study showed that a transition metal nitride (TMN) support could effectively modulate the valence-band state of Pd. The upward shift of the d-band center reduced the energy barrier for water desorption from the Pd site to accommodate H2/4-chlorophenol and increased the total energy released during HDC. The theoretical results were experimentally verified by synthesizing Pd catalysts onto different metal oxides and the corresponding nitrides. All studied TMNs, including TiN, Mo2N, and CoN, showed satisfactorily stabilized Pd and render Pd with high dispersity. In line with theoretical prediction, TiN most effectively modulated the electronic states of the Pd sites and enhanced their HDC performance, with mass activity much higher than those of counterpart catalysts on other supports. The combined theoretical and experimental results shows that TMNs, especially TiN, are new and potentially important support for the highly efficient Pd HDC catalysts.

9.
Environ Sci Technol ; 57(16): 6425-6434, 2023 04 25.
Article in English | MEDLINE | ID: mdl-37036754

ABSTRACT

The potential risk of various silver-containing nanoparticles (AgCNPs) in soils is related to the concentration, size, and speciation, but their determination remains a great challenge. Herein, we developed an effective method for determining the particle number, size, and species of dominant AgCNPs in soils, including nanoparticles of silver (Ag NPs), silver chloride (AgCl NPs), and silver sulfide (Ag2S NPs). By ultrasonication wand-assisted tetrasodium pyrophosphate extraction, these AgCNPs were extracted efficiently from soils. Then, multistep selective dissolution of Ag NPs, AgCl NPs, and whole Ag NPs/AgCl NPs/Ag2S NPs was achieved by 1% (v/v) H2O2, 5% (v/v) NH3·H2O, and 10 mM thiourea in 2% (v/v) acetic acid, respectively. Finally, the particle number concentration and size distribution of AgCNPs in the extracts and the remaining AgCNP particle number concentration after each dissolution were determined by single-particle inductively coupled plasma mass spectroscopy for speciation of the dominant AgCNPs. AgCNPs were detected in all five soil samples with the concentrations of 0.23-8.00 × 107 particles/g and sizes of 16-110 nm. Ag2S NPs were the main form of AgCNPs in the examined soils with the percentage range of 53.98-69.19%, followed by AgCl NPs (11.42-23.31%) and Ag NPs (7.78-16.19%). Our method offers a new approach for evaluating the occurrence and potential risk of AgCNPs in environmental soils.


Subject(s)
Metal Nanoparticles , Silver , Soil/chemistry , Hydrogen Peroxide , Metal Nanoparticles/chemistry , Spectrum Analysis , Particle Size
10.
Environ Sci Technol ; 2023 Jan 08.
Article in English | MEDLINE | ID: mdl-36617724

ABSTRACT

Electrochemical reduction (ER) is a promising approach to safely remove pollutants. However, sluggish reaction kinetics and significant side reactions considerably limit the applicability of this green process. Herein, we uncovered the previously ignored role of interfacial hydrophilicity in determining the ER performance through electron microscopy observations, contact angle (CA) analysis, and electrochemical measurements. A Pd/C electrocatalyst forms dense nanopores on the electrode surface, rendering it highly hydrophobic and achieving a CA of up to 145°. This imposes a large mass-transfer barrier for the diffusion of water and pollutants into Pd sites. Moreover, the release of H2 is suppressed, which changes the solid-liquid (Pd-polluted water) interface into a solid-gas (H2)-liquid interface. This further slows down mass transfer and the decontamination process. This dilemma can be easily alleviated by adding hydrophilic polymers like polyethylene glycol to increase hydrophilicity and improve mass transfer. By this way, the activity and Faraday efficiency of Pd/C in the electrochemical hydrodehalogenation of 2,4-dichlorophenol could be increased by 4-5 times. Moreover, this interfacial microenvironment modulation strategy is parallel to other approaches, such as Pd structural engineering, and therefore these strategies can be combined to further increase the electrochemical decontamination performance of electrocatalysts.

11.
Environ Sci Technol ; 57(29): 10754-10762, 2023 07 25.
Article in English | MEDLINE | ID: mdl-37428629

ABSTRACT

Plastic has been demonstrated to release nanoplastics (NPs) into the atmosphere under sunlight irradiation, posing a continuous health risk to the respiratory system. However, due to lack of reliable quantification methods, the occurrence and distribution of NPs in the atmosphere remain unclear. Polystyrene (PS) micro- and nanoplastics (MNPs) represent a crucial component of atmospheric MNPs. In this study, we proposed a simple and robust method for determining the concentration of atmospheric PS NPs using pyrolysis-gas chromatography-mass spectrometry (Py-GC/MS). Following active sampling, the filter membrane is directly ground and introduced into the Py-GC/MS system to quantify PS NPs. The proposed method demonstrates excellent reproducibility and high sensitivity, with a detection limit as low as down to 15 pg/m3 for PS NPs. By using this method, the occurrence of PS NPs in both indoor and outdoor atmospheres has been confirmed. Furthermore, the results showed that the abundance of outdoor PS NPs was significantly higher than that of indoor samples, and there was no significant difference in NP vertical distribution within a height of 28.6 m. This method can be applied for the routine monitoring of atmospheric PS NPs and for evaluating their risk to human health.


Subject(s)
Nanoparticles , Water Pollutants, Chemical , Humans , Polystyrenes , Microplastics , Gas Chromatography-Mass Spectrometry , Pyrolysis , Reproducibility of Results , Water Pollutants, Chemical/analysis , Nanoparticles/chemistry
12.
Environ Sci Technol ; 57(32): 12010-12018, 2023 08 15.
Article in English | MEDLINE | ID: mdl-37506359

ABSTRACT

Determination of microplastics and nanoplastics (MNPs), especially small MPs and NPs (<150 µm), in solid environmental matrices is a challenging task due to the formation of stable aggregates between MNPs and natural colloids. Herein, a novel method for extracting small MPs and NPs embedded in soils/sediments/sludges has been developed by combining tetramethylammonium hydroxide (TMAH) digestion with dichloromethane (DCM) dissolution. The solid samples were digested with TMAH, and the collected precipitate was washed with anhydrous ethanol to eliminate the natural organic matter. Then, the MNPs in precipitate were extracted by dissolving in DCM under ultrasonic conditions. Under the optimized digestion and extraction conditions, the factors including sizes and concentrations of MNPs showed insignificant effects on the extraction process. The feasibility of this sample preparation method was verified by the satisfactory spiked recoveries (79.6-91.4%) of polystyrene, polyethylene, polypropylene, poly(methyl methacrylate), polyvinyl chloride, and polyethylene terephthalate MNPs in soil/sediment/sludge samples. The proposed sample preparation method was coupled with pyrolysis gas chromatography-mass spectrometry to determine trace small MPs and NPs with a relatively low detection limit of 2.3-29.2 µg/g. Notably, commonly used MNPs were successfully detected at levels of 4.6-51.4 µg/g in 6 soil/sediment/sludge samples. This proposed method is promising for evaluating small solid-embedded MNP pollution.


Subject(s)
Microplastics , Plastics , Plastics/analysis , Gas Chromatography-Mass Spectrometry , Sewage/chemistry , Methylene Chloride/analysis , Solubility , Soil/chemistry , Digestion
13.
BMC Surg ; 23(1): 75, 2023 Mar 30.
Article in English | MEDLINE | ID: mdl-36997904

ABSTRACT

BACKGROUND: The efficacy of reduced-port laparoscopic surgery (RLS) for total gastrectomy remains unclear. This study focused on evaluating the short-term outcomes of RLS compared with conventional laparoscopic surgery (CLS) for total gastrectomy. METHODS: One hundred and ten patients who underwent completed laparoscopic total gastrectomy for gastric cancer between September 2018 and June 2022 were retrospectively collected and classified into two groups (65 CLS and 45 RLS) according to different operation approach. Twenty-four RLS cases underwent single-incision plus two ports laparoscopic surgery (SILS + 2) and twenty-one underwent single-incision plus one port laparoscopic surgery (SILS + 1). Surgical outcomes, pain intensity, cosmetic and postoperative morbidity, and mortality were compared between groups. RESULTS: The overall incidence of postoperative complications was similar between the CLS group and the RLS group (16.9% vs. 8.9%, P = 0.270). It was also comparable in the Clavien-Dindo classification (P = 0.774). However, compared with the CLS group, the RLS group had a significantly shorter total length of incision (5.6 ± 1.0 cm vs. 7.1 ± 0.7 cm, P = 0.000); shorter time to first ambulation (24.9 ± 5.9 h vs. 27.6 ± 5.0 h, P = 0.009), flatus (3.0 ± 0.8 d vs. 3.5 ± 1.0 d, P = 0.022) and oral intake (4.0 ± 1.6 d vs. 6.1 ± 5.1 d, P = 0.011); lower white blood cell count on the third day after the operation (9.8 ± 4.0*109/L vs. 11.6 ± 4.7*109/L, P = 0.037); and lower visual analogue scale score on postoperative days 1 and 3(3.0 ± 0.7 vs. 3.3 ± 0.7, P = 0.044 and 0.6 ± 0.7 vs. 1.6 ± 0.6, P = 0.000 respectively). On the other hand, it didn't find any difference in short-term outcomes between the SILS + 2 group and the SILS + 1 group (P > 0.05). But the proximal resection margin was longer in the SILS + 2 group than in the SILS + 1 group (2.6 ± 0.7 cm vs. 1.5 ± 0.9 cm, P = 0.046) in patients with adenocarcinoma of the esophagogastric junction (AEG). CONCLUSIONS: RLS for total gastrectomy is a feasible and safe technique when performed by an experienced laparoscopic surgeon. Moreover, compared with SILS + 1, SILS + 2 might have some advantages in AEG patients.


Subject(s)
Laparoscopy , Humans , Treatment Outcome , Retrospective Studies , Laparoscopy/methods , Postoperative Complications/epidemiology , Postoperative Complications/etiology , Gastrectomy/methods , Length of Stay
14.
Transfus Med Hemother ; 50(6): 515-524, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38089493

ABSTRACT

Introduction: Bioactive substances of stored platelets change during the stored periods. Exosomes are reported to be increased during platelet storage. Circular RNAs (circRNAs) are one of the main components in exosomes. It is the purpose of this study to investigate the different expression of exosomal circRNAs during storage. Methods: Apheresis platelets were collected from 7 healthy volunteers and stored in platelet storage bags for 1 day or 5 days. We isolated exosomes by ultracentrifugation and characterized exosomes by transmission electron microscopy, nano-flow cytometry, and Western blot. We conducted microarray analysis to detect changes in the exosomal circRNAs from apheresis platelets during storage, and qRT-PCR to validate their expressions. To analyze the competing endogenous RNA (ceRNA) of circRNAs, microRNAs (miRNAs) targets were predicted based on interactions of circRNAs/miRNAs and miRNAs/mRNAs, using TargetScan and miRanda. A ceRNA network was constructed by Cytoscape. The targeted mRNAs were performed for Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genome (KEGG) pathway analysis by the DAVID. Results: Microarray analysis revealed that 61 differentially expressed circRNAs between day 1 and day 5. Thirty-one circRNAs of these are upregulated, while 30 circRNAs are downregulated. A ceRNA visualized network includes 9 circRNAs, 48 miRNAs, and 117 mRNAs. There were 117 mRNAs enriched in 203 GO terms and 9 KEGG pathways based on the GO and KEGG pathway enrichment analyses. Conclusion: We identified 61 dysregulated exosomal circRNAs from apheresis platelets during storage. The study provided insights into the underlying mechanisms of platelet storage lesion.

15.
J Environ Sci (China) ; 126: 40-47, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36503767

ABSTRACT

Hazardous waste of chemical oxygen demand (COD) test (HWCOD) is one of the most common laboratory wastewaters, containing large amounts of H2SO4 and highly toxic Cr3+ and Hg2+. Current treatment methods suffered from incomplete removal of Cr3+ and high-cost. Herein, a humic acid-coated zirconium oxide-resin nanocomposite (HA-HZO-201) was fabricated for efficient recovery of Cr3+ and Hg2+ in HWCOD. The synthesized HA-HZO-201 shows excellent tolerance to wide pH range (1-5) and high salinity (3.5 mol/L NaCl), as well as adsorption capacity for Cr3+ (37.5 mg/g) and Hg2+ (121.3 mg/g). After treating with HA-HZO-201 by using a fixed-bed adsorption procedure, the final Cr3+ and Hg2+ concentrations in HWCOD decreased to 0.28 and 0.02 mg/L, respectively. In addition, the HA-HZO-201 can be regenerated by desorption and recovery of Cr3+ and Hg2+ using HNO3 and thiourea as eluents, respectively. After 5 cycles of adsorption/desorption, the removal efficiencies still reach up to 86.0% for Cr3+ and 89.7% for Hg2+, indicating an excellent regeneration of HA-HZO-201. We hope this work open new opportunities for treatment of HWCOD with high-efficiency and low-cost.


Subject(s)
Hazardous Waste , Mercury , Humic Substances , Chromium , Biological Oxygen Demand Analysis
16.
J Environ Sci (China) ; 131: 141-150, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37225375

ABSTRACT

Adenosine triphosphate (ATP) generation of aquatic organisms is often subject to nanoparticles (NPs) stress, involving extensive reprogramming of gene expression and changes in enzyme activity accompanied by metabolic disturbances. However, little is known about the mechanism of energy supply by ATP to regulate the metabolism of aquatic organisms under NPs stress. Here, we selected extensively existing silver nanoparticles (AgNPs) to investigate their implications on ATP generation and relevant metabolic pathways in alga (Chlorella vulgaris). Results showed that ATP content significantly decreased by 94.2% of the control (without AgNPs) in the algal cells at 0.20 mg/L AgNPs, which was mainly attributed to the reduction of chloroplast ATPase activity (81.4%) and the downregulation of ATPase-coding genes atpB and atpH (74.5%-82.8%) in chloroplast. Molecular dynamics simulations demonstrated that AgNPs competed with the binding sites of substrates adenosine diphosphate and inorganic phosphate by forming a stable complex with ATPase subunit beta, potentially resulting in the reduced binding efficiency of substrates. Furthermore, metabolomics analysis proved that the ATP content positively correlated with the content of most differential metabolites such as D-talose, myo-inositol, and L-allothreonine. AgNPs remarkably inhibited ATP-involving metabolic pathways, including inositol phosphate metabolism, phosphatidylinositol signaling system, glycerophospholipid metabolism, aminoacyl-tRNA biosynthesis, and glutathione metabolism. These results could provide a deep understanding of energy supply in regulating metabolic disturbances under NPs stress.


Subject(s)
Chlorella vulgaris , Metal Nanoparticles , Adenosine Triphosphatases , Metal Nanoparticles/toxicity , Silver/toxicity , Adenosine Triphosphate
17.
J Environ Sci (China) ; 130: 14-23, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37032031

ABSTRACT

The application of selenium nanoparticles (SeNPs) as nanofertilizers may lead to the release of SeNPs into aquatic systems. However, the environmental behavior of SeNPs is rarely studied. In this study, using alginate-coated SeNPs (Alg-SeNPs) and polyvinyl alcohol-coated SeNPs (PVA-SeNPs) as models, we systematically investigated the aggregation and stability of SeNPs under various water conditions. PVA-SeNPs were highly stable in mono- and polyvalent electrolytes, probably due to the strong steric hindrance of the capping agent. Alg-SeNPs only suffered from a limited increase in size, even at 2500 mmol/L NaCl and 200 mmol/L MgCl2, while they underwent apparent aggregation in CaCl2 and LaCl3 solutions. The binding of Ca2+ and La3+ with the guluronic acid part in alginate induced the formation of cross-linking aggregates. Natural organic matter enhanced the stability of Alg-SeNPs in monovalent electrolytes, while accelerated the attachment of Alg-SeNPs in polyvalent electrolytes, due to the cation bridge effects. The long-term stability of SeNPs in natural water showed that the aggregation sizes of Alg-SeNPs and PVA-SeNPs increased to several hundreds of nanometers or above 10 µm after 30 days, implying that SeNPs may be suspended in the water column or further settle down, depending on the surrounding water chemistry. The study may contribute to the deep insight into the fate and mobility of SeNPs in the aquatic environment. The varying fate of SeNPs in different natural waters also suggests that the risks of SeNPs to organisms living in diverse depths in the aquatic compartment should be concerned.


Subject(s)
Nanoparticles , Selenium , Nanoparticles/chemistry , Electrolytes/chemistry , Alginates , Water
18.
J Environ Sci (China) ; 128: 45-54, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36801041

ABSTRACT

The removal of iodide (I-) from source waters is an effective strategy to minimize the formation of iodinated disinfection by-products (DBPs), which are more toxic than their brominated and chlorinated analogues. In this work, a nanocomposite Ag-D201 was synthesized by multiple in situ reduction of Ag-complex in D201 polymer matrix, to achieve highly efficient removal of iodide from water. Scanning electron microscope /energy dispersive spectrometer characterization showed that uniform cubic silver nanoparticles (AgNPs) evenly dispersed in the D201 pores. The equilibrium isotherms data for iodide adsorption onto Ag-D201 was well fitted with Langmuir isotherm with the adsorption capacity of 533 mg/g at neutral pH. The adsorption capacity of Ag-D201 increased with the decrease of pH in acidic aqueous solution, and reached the maximum value of 802 mg/g at pH 2. This was attributed to the oxidization of I-, by dissolved oxygen under the catalysis of AgNPs, to I2 which was finally adsorbed as AgI3. However, the aqueous solutions at pH 7 - 11 could hardly affect the iodide adsorption. The adsorption of I- was barely affected by real water matrixes such as competitive anions (SO42-, NO3-, HCO3-, Cl-) and natural organic matter, of which interference of NOM was offset by the presence of Ca2+. The proposed synergistic mechanism for the excellent performance of iodide adsorption by the absorbent was ascribed to the Donnan membrane effect caused by the D201 resin, the chemisorption of I- by AgNPs, and the catalytic effect of AgNPs.


Subject(s)
Metal Nanoparticles , Water Pollutants, Chemical , Water , Iodides , Polystyrenes , Silver , Metal Nanoparticles/chemistry , Water Pollutants, Chemical/chemistry , Adsorption
19.
Anal Chem ; 94(47): 16328-16336, 2022 11 29.
Article in English | MEDLINE | ID: mdl-36378246

ABSTRACT

Application of selenium nanoparticle (SeNP)-based fertilizers results in the release of SeNPs to aquatic systems, where SeNPs may transform into inorganic selenite (Se(IV)) and selenate (Se(VI)) with higher toxicity. However, methods for the speciation analysis of different Se species are lacking, hindering the accurate assessment of the risks of SeNPs. Herein, for the first time, a Triton X-45 (TX-45)-based dual-cloud point extraction (CPE) method was established for the selective determination of SeNPs, Se(IV), and Se(VI) in water. TX-45 can adsorb on the surface of SeNPs and facilitate the extraction of SeNPs into the lower TX-45-rich phase in the first CPE, while Se(VI) and Se(IV) retain in the upper aqueous phase. In the second CPE, Se(IV) can selectively associate with diethyldithiocarbamate and be concentrated in the TX-45-rich phase, whereas Se(VI) remains in the upper phase. Different Se species can be isolated and then quantified by ICP-MS. The presence of coexisting ions and dissolved organic matter (0-30 mg C/L) did not interfere with extraction and separation. The feasibility of the presented method was confirmed by the analysis of natural water samples, with a detection limit of 0.03 µg/L and recoveries in the ranges of 61.1-104, 65.5-113, and 80.3-131% for SeNPs, Se(IV), and Se(VI), respectively. This study aims to provide an effective method to track the fate and transformation of SeNPs in aquatic systems and further contribute to estimating the potential risks of SeNPs to environmental organisms and human bodies.


Subject(s)
Nanoparticles , Selenium , Humans , Selenium/analysis , Ditiocarb , Octoxynol , Water
20.
Anal Chem ; 94(2): 740-747, 2022 01 18.
Article in English | MEDLINE | ID: mdl-34974702

ABSTRACT

The global pollution of micro- and nano-plastics (MNPs) calls for monitoring methods. As diverse mixtures of various sizes, morphologies, and chemical compositions in the environment, MNPs are currently quantified based on mass or number concentrations. Here, we show total organic carbon (TOC) as an index for quantifying the pollution of total MNPs in environmental waters. Two parallel water samples are respectively filtered with a carbon-free glass fiber membrane. Then, one membrane with the collected particulate substances is treated by potassium peroxodisulfate oxidation and Fenton digestion in sequence for quantifying the sum of MNPs and particulate black carbon (PBC) as TOCMNP&PBC using a TOC analyzer, another membrane is treated by sulfonation and Fenton digestion for quantifying PBC as TOCPBC, and the TOC of MNPs is calculated by subtracting TOCPBC from TOCMNP&PBC. The feasibility of our method is demonstrated by determination of various MNPs of representative plastic types and sizes (0.5-100 µm) in tap, river, and sea water samples, with low detection limits (∼7 µg C L-1) and high spiked recoveries (83.7-114%). TOC is a powerful index for routine monitoring of MNP pollution.


Subject(s)
Plastics , Water Pollutants, Chemical , Carbon , Environmental Monitoring , Environmental Pollution , Microplastics , Rivers , Water Pollutants, Chemical/analysis
SELECTION OF CITATIONS
SEARCH DETAIL