Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 209
Filter
Add more filters

Publication year range
1.
Nature ; 632(8027): 1032-1037, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39198671

ABSTRACT

Superconductivity in a highly correlated kagome system has been theoretically proposed for years (refs. 1-5), yet the experimental realization is hard to achieve6,7. The recently discovered vanadium-based kagome materials8, which exhibit both superconductivity9-11 and charge-density-wave orders12-14, are nonmagnetic8,9 and weakly correlated15,16. Thus these materials are unlikely to host the exotic superconductivity theoretically proposed. Here we report the discovery of a chromium-based kagome metal, CsCr3Sb5, which is contrastingly featured with strong electron correlations, frustrated magnetism and characteristic flat bands close to the Fermi level. Under ambient pressure, this kagome metal undergoes a concurrent structural and magnetic phase transition at 55 K, with a stripe-like 4a0 structural modulation. At high pressure, the phase transition evolves into two transitions, possibly associated with charge-density-wave and antiferromagnetic spin-density-wave orderings. These density-wave-like orders are gradually suppressed with pressure and, remarkably, a superconducting dome emerges at 3.65-8.0 GPa. The maximum of the superconducting transition temperature, Tcmax = 6.4 K, appears when the density-wave-like orders are completely suppressed at 4.2 GPa, and the normal state exhibits a non-Fermi-liquid behaviour, reminiscent of unconventional superconductivity and quantum criticality in iron-based superconductors17,18. Our work offers an unprecedented platform for investigating superconductivity in correlated kagome systems.

2.
Immunity ; 49(2): 225-234.e4, 2018 08 21.
Article in English | MEDLINE | ID: mdl-30119996

ABSTRACT

Antiviral immunity in Drosophila involves RNA interference and poorly characterized inducible responses. Here, we showed that two components of the IMD pathway, the kinase dIKKß and the transcription factor Relish, were required to control infection by two picorna-like viruses. We identified a set of genes induced by viral infection and regulated by dIKKß and Relish, which included an ortholog of STING. We showed that dSTING participated in the control of infection by picorna-like viruses, acting upstream of dIKKß to regulate expression of Nazo, an antiviral factor. Our data reveal an antiviral function for STING in an animal model devoid of interferons and suggest an evolutionarily ancient role for this molecule in antiviral immunity.


Subject(s)
Drosophila Proteins/metabolism , Drosophila melanogaster/immunology , Drosophila melanogaster/virology , I-kappa B Kinase/metabolism , Membrane Proteins/metabolism , Peptide Initiation Factors/metabolism , Picornaviridae Infections/immunology , Animals , Cell Line , Dicistroviridae/immunology , Drosophila Proteins/genetics , I-kappa B Kinase/genetics , Membrane Proteins/genetics , Peptide Initiation Factors/genetics , RNA Interference , Transcription Factors/metabolism
3.
Nature ; 597(7874): 114-118, 2021 09.
Article in English | MEDLINE | ID: mdl-34261128

ABSTRACT

In mammals, cyclic GMP-AMP (cGAMP) synthase (cGAS) produces the cyclic dinucleotide 2'3'-cGAMP in response to cytosolic DNA and this triggers an antiviral immune response. cGAS belongs to a large family of cGAS/DncV-like nucleotidyltransferases that is present in both prokaryotes1 and eukaryotes2-5. In bacteria, these enzymes synthesize a range of cyclic oligonucleotides and have recently emerged as important regulators of phage infections6-8. Here we identify two cGAS-like receptors (cGLRs) in the insect Drosophila melanogaster. We show that cGLR1 and cGLR2 activate Sting- and NF-κB-dependent antiviral immunity in response to infection with RNA or DNA viruses. cGLR1 is activated by double-stranded RNA to produce the cyclic dinucleotide 3'2'-cGAMP, whereas cGLR2 produces a combination of 2'3'-cGAMP and 3'2'-cGAMP in response to an as-yet-unidentified stimulus. Our data establish cGAS as the founding member of a family of receptors that sense different types of nucleic acids and trigger immunity through the production of cyclic dinucleotides beyond 2'3'-cGAMP.


Subject(s)
Drosophila melanogaster/immunology , Nucleotidyltransferases/immunology , Receptors, Pattern Recognition/metabolism , Viruses/immunology , Amino Acid Sequence , Animals , Cell Line , Drosophila Proteins/metabolism , Drosophila melanogaster/metabolism , Drosophila melanogaster/virology , Female , Humans , Immunity, Innate/genetics , Immunity, Innate/immunology , Ligands , Male , Membrane Proteins/metabolism , Models, Molecular , NF-kappa B/metabolism , Nucleotides, Cyclic/metabolism , Nucleotidyltransferases/classification , Nucleotidyltransferases/deficiency , Nucleotidyltransferases/metabolism , RNA, Double-Stranded/analysis , RNA, Double-Stranded/immunology , RNA, Double-Stranded/metabolism , Receptors, Pattern Recognition/classification , Receptors, Pattern Recognition/deficiency , Receptors, Pattern Recognition/immunology
4.
Proc Natl Acad Sci U S A ; 120(30): e2303462120, 2023 07 25.
Article in English | MEDLINE | ID: mdl-37459549

ABSTRACT

Injection of OCs into adult male flies induces a strong transcriptomic response in the host flies featuring in particular genes encoding bona fide G coupled proteins, among which the gene for methuselah like 1 is prominent. The injection is followed after a 3-d lag period, by the proliferation of the oncogenic cells. We hypothesized that through the product of mthl1 the host might control, at least in part, this proliferation as a defense reaction. Through a combination of genetic manipulations of the mthl1 gene (loss of function and overexpression of mthl1), we document that indeed this gene has an antiproliferative effect. Parallel injections of primary embryonic Drosophila cells or of various microbes do not exhibit this effect. We further show that mthl1 controls the expression of a large number of genes coding for chemoreceptors and genes implicated in regulation of development. Of great potential interest is our observation that the expression of the mouse gene coding for the adhesion G-protein-coupled receptor E1 (Adgre1, also known as F4/80), a potential mammalian homologue of mthl1, is significantly induced by B16-F10 melanoma cell inoculation 3 d postinjection in both the bone marrow and spleen (nests of immature and mature myeloid-derived immune cells), respectively. This observation is compatible with a role of this GPCR in the early response to injected tumor cells in mice.


Subject(s)
Drosophila Proteins , Drosophila , Animals , Male , Mice , Drosophila/genetics , Drosophila melanogaster/genetics , Drosophila melanogaster/metabolism , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Gene Expression Profiling , Mammals/genetics , Myeloid Cells/metabolism , Receptors, G-Protein-Coupled/genetics , Receptors, G-Protein-Coupled/metabolism
5.
Proc Natl Acad Sci U S A ; 120(12): e2205140120, 2023 03 21.
Article in English | MEDLINE | ID: mdl-36917667

ABSTRACT

The Drosophila systemic immune response against many Gram-positive bacteria and fungi is mediated by the Toll pathway. How Toll-regulated effectors actually fulfill this role remains poorly understood as the known Toll-regulated antimicrobial peptide (AMP) genes are active only against filamentous fungi and not against Gram-positive bacteria or yeasts. Besides AMPs, two families of peptides secreted in response to infectious stimuli that activate the Toll pathway have been identified, namely Bomanins and peptides derived from a polyprotein precursor known as Baramicin A (BaraA). Unexpectedly, the deletion of a cluster of 10 Bomanins phenocopies the Toll mutant phenotype of susceptibility to infections. Here, we demonstrate that BaraA is required specifically in the host defense against Enterococcus faecalis and against the entomopathogenic fungus Metarhizium robertsii, albeit the fungal burden is not altered in BaraA mutants. BaraA protects the fly from the action of distinct toxins secreted by these Gram-positive and fungal pathogens, respectively, Enterocin V and Destruxin A. The injection of Destruxin A leads to the rapid paralysis of flies, whether wild type (WT) or mutant. However, a larger fraction of wild-type than BaraA flies recovers from paralysis within 5 to 10 h. BaraAs' function in protecting the host from the deleterious action of Destruxin is required in glial cells, highlighting a resilience role for the Toll pathway in the nervous system against microbial virulence factors. Thus, in complement to the current paradigm, innate immunity can cope effectively with the effects of toxins secreted by pathogens through the secretion of dedicated peptides, independently of xenobiotics detoxification pathways.


Subject(s)
Drosophila Proteins , Drosophila , Animals , Drosophila/metabolism , Drosophila melanogaster/metabolism , Drosophila Proteins/metabolism , Toll-Like Receptors/metabolism , Signal Transduction , Peptides/metabolism , Fungi/metabolism , Gram-Positive Bacteria/metabolism
6.
BMC Med ; 22(1): 298, 2024 Jul 18.
Article in English | MEDLINE | ID: mdl-39020335

ABSTRACT

BACKGROUND: Limited evidence demonstrated the potential relationship between dietary sugar intake and dementia. This association demands further clarification in a large-scale population. METHODS: A total of 210,832 participants from the UK Biobank cohort were included in this prospective cohort study. Absolute and relative sugar intake and high-sugar dietary scores were utilized to reflect dietary sugar intake. Absolute sugar intake was identified by the Oxford WebQ in the UK Biobank. Relative sugar intake was calculated by dividing the absolute sugar intake by total diet energy. High-sugar dietary pattern was identified using the method of reduced rank regression. Cox proportional hazards regression analyses and restricted cubic splines were performed to examine the longitudinal associations between dietary sugar intake and all-cause dementia and its main subtype, Alzheimer's disease. Explorative mediation analyses were conducted to explore underlying mechanisms. RESULTS: Increased absolute sugar intake (g/day) was significantly associated with a higher risk of all-cause dementia (HR = 1.003, [95%CI: 1.002-1.004], p < 0.001) and Alzheimer's disease (1.002, [1.001-1.004], 0.005). Relative sugar intake (%g/kJ/day) also demonstrated significant associations with all-cause dementia (1.317, [1.173-1.480], p < 0.001) and Alzheimer's disease (1.249, [1.041-1.500], 0.017), while the high-sugar dietary score was only significantly associated with a higher risk of all-cause dementia (1.090, [1.045-1.136], p < 0.001). In addition, both sugar intake and high-sugar dietary score demonstrated significant non-linear relationships with all-cause dementia and Alzheimer's disease (all p values for non-linearity < 0.05). CONCLUSIONS: Our study provided evidence that excessive sugar intake was associated with dementia. Controlling the excess consumption of dietary sugar may be of great public health implications for preventing dementia.


Subject(s)
Dementia , Dietary Sugars , Humans , Prospective Studies , Male , Female , Dementia/epidemiology , Dementia/etiology , Aged , Middle Aged , Dietary Sugars/adverse effects , Dietary Sugars/administration & dosage , United Kingdom/epidemiology , Diet/adverse effects , Alzheimer Disease/epidemiology , Risk Factors , Adult , Dietary Patterns
7.
Neuroepidemiology ; : 1-13, 2024 Jul 22.
Article in English | MEDLINE | ID: mdl-38981460

ABSTRACT

INTRODUCTION: PD is a progressive neurodegeneration disease characterized by cardinal motor symptoms such as bradykinesia and tremor. The pathogenesis of PD remains unclear. It is hypothesized that immune system dysfunction may contribute to PD. Thus, autoimmune diseases may influence the risk of incident PD. METHODS: We included 398,329 participants without PD at the baseline from UK Biobank. The association between 20 autoimmune diseases with PD was examined using cox hazards regression analyses, adjusting covariates like age, sex, and smoking status in the statistical models. Sensitivity analyses were conducted, adjusting for polygenic risk score and the reported source of PD, to check the robustness. RESULTS: After an average follow-up of 13.1 ± 0.816 years, 2,245 participants were diagnosed with incident PD. After multiple comparison correction, only multiple sclerosis (MS) reached statistical significance and showed an increased risk for incident PD. Compared with non-MS patients, the risk of incident PD in MS patients was 2.57-fold with age and sex being adjusted (95% CI, 1.59-4.14; adjust p value = 0.002). After adjusting lifestyle and other factors, the hazard ratio of incident PD in MS patients was 2.49 (95% CI, 1.55-4.02; adjust p value = 0.004). Excluding the self-reported PD cases in the sensitivity analysis, MS was a detrimental factor for incident PD (HR, 2.06; 95% CI, 1.56-4.05; adjust p value = 0.004). The link between MS and PD did not reach the statistical significance in the sensitivity analysis adjusting the PRS (adjust p value = 0.95). CONCLUSION: Our study provided evidence from observational analyses that MS was associated with an increased risk of PD. Further investigations should be performed to determine the causal association and potential pathophysiology between MS and PD.

9.
Inorg Chem ; 63(36): 16595-16599, 2024 Sep 09.
Article in English | MEDLINE | ID: mdl-39177198

ABSTRACT

We report the first crystal structure of heteroleptic Grignard reagent 2 based on the carborane endo/exo dianion [CB11H11-12-C≡C]2-. Full characterization reveals a rare coordination pattern and affirms the bimetallic nature. Navigating the reactivity landscape, we unlock the potential of 2 in nucleophilic addition with ketones to afford propargylic alcohols 3, renowned for their synthetic versatility and potential biological activities, and unveil the Meyer-Schuster rearrangement, yielding α,ß-unsaturated carbonyl compounds 4. This narrative of synthesis, characterization, and reactivity opens new horizons for carborane chemistry, offering avenues for innovation and facile functionalization of carborane scaffolds.

10.
Acta Pharmacol Sin ; 2024 Jul 31.
Article in English | MEDLINE | ID: mdl-39085407

ABSTRACT

Tumor immunotherapy characterized by its high specificity and minimal side effects has achieved revolutionary progress in the field of cancer treatment. However, the complex mechanisms of tumor immune microenvironment (TIME) and the individual variability of patients' immune system still present significant challenges to its clinical application. Immunocyte membrane-coated nanocarrier systems, as an innovative biomimetic drug delivery platform, exhibit remarkable advantages in tumor immunotherapy due to their high targeting capability, good biocompatibility and low immunogenicity. In this review we summarize the latest research advances in biomimetic delivery systems based on immune cells for tumor immunotherapy. We outline the existing methods of tumor immunotherapy including immune checkpoint therapy, adoptive cell transfer therapy and cancer vaccines etc. with a focus on the application of various immunocyte membranes in tumor immunotherapy and their prospects and challenges in drug delivery and immune modulation. We look forward to further exploring the application of biomimetic delivery systems based on immunocyte membrane-coated nanoparticles, aiming to provide a new framework for the clinical treatment of tumor immunity.

SELECTION OF CITATIONS
SEARCH DETAIL