Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.144
Filter
Add more filters

Publication year range
1.
Cell ; 179(4): 829-845.e20, 2019 Oct 31.
Article in English | MEDLINE | ID: mdl-31675496

ABSTRACT

The immune microenvironment of hepatocellular carcinoma (HCC) is poorly characterized. Combining two single-cell RNA sequencing technologies, we produced transcriptomes of CD45+ immune cells for HCC patients from five immune-relevant sites: tumor, adjacent liver, hepatic lymph node (LN), blood, and ascites. A cluster of LAMP3+ dendritic cells (DCs) appeared to be the mature form of conventional DCs and possessed the potential to migrate from tumors to LNs. LAMP3+ DCs also expressed diverse immune-relevant ligands and exhibited potential to regulate multiple subtypes of lymphocytes. Of the macrophages in tumors that exhibited distinct transcriptional states, tumor-associated macrophages (TAMs) were associated with poor prognosis, and we established the inflammatory role of SLC40A1 and GPNMB in these cells. Further, myeloid and lymphoid cells in ascites were predominantly linked to tumor and blood origins, respectively. The dynamic properties of diverse CD45+ cell types revealed by this study add new dimensions to the immune landscape of HCC.


Subject(s)
Carcinoma, Hepatocellular/immunology , Cation Transport Proteins/genetics , Inflammation/immunology , Liver Neoplasms/immunology , Membrane Glycoproteins/genetics , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/pathology , Cell Communication/genetics , Cell Communication/immunology , Cell Lineage/genetics , Cell Lineage/immunology , Dendritic Cells/immunology , Dendritic Cells/pathology , Gene Expression Regulation, Neoplastic , Humans , Inflammation/genetics , Inflammation/pathology , Leukocyte Common Antigens/immunology , Liver/immunology , Liver/pathology , Liver Neoplasms/genetics , Liver Neoplasms/pathology , Lymph Nodes/immunology , Lymph Nodes/pathology , Lymphocytes/immunology , Lymphocytes/pathology , Lysosomal Membrane Proteins/genetics , Macrophages/immunology , Macrophages/pathology , Myeloid Cells/immunology , Myeloid Cells/pathology , Neoplasm Proteins/genetics , Sequence Analysis, RNA , Single-Cell Analysis , Transcriptome/genetics , Transcriptome/immunology , Tumor Microenvironment/genetics , Tumor Microenvironment/immunology
2.
Nat Immunol ; 19(9): 973-985, 2018 09.
Article in English | MEDLINE | ID: mdl-30127434

ABSTRACT

Human inborn errors of IFN-γ immunity underlie mycobacterial diseases. We describe patients with Mycobacterium bovis (BCG) disease who are homozygous for loss-of-function mutations of SPPL2A. This gene encodes a transmembrane protease that degrades the N-terminal fragment (NTF) of CD74 (HLA invariant chain) in antigen-presenting cells. The CD74 NTF therefore accumulates in the HLA class II+ myeloid and lymphoid cells of SPPL2a-deficient patients. This toxic fragment selectively depletes IL-12- and IL-23-producing CD1c+ conventional dendritic cells (cDC2s) and their circulating progenitors. Moreover, SPPL2a-deficient memory TH1* cells selectively fail to produce IFN-γ when stimulated with mycobacterial antigens in vitro. Finally, Sppl2a-/- mice lack cDC2s, have CD4+ T cells that produce small amounts of IFN-γ after BCG infection, and are highly susceptible to infection with BCG or Mycobacterium tuberculosis. These findings suggest that inherited SPPL2a deficiency in humans underlies mycobacterial disease by decreasing the numbers of cDC2s and impairing IFN-γ production by mycobacterium-specific memory TH1* cells.


Subject(s)
Aspartic Acid Endopeptidases/genetics , Aspartic Acid Endopeptidases/metabolism , Dendritic Cells/immunology , Membrane Proteins/metabolism , Mycobacterium Infections/immunology , Mycobacterium bovis/physiology , Mycobacterium tuberculosis/physiology , Th1 Cells/immunology , Tuberculosis/immunology , Animals , Antigens, Differentiation, B-Lymphocyte/metabolism , Cells, Cultured , HLA Antigens/metabolism , Histocompatibility Antigens Class II/metabolism , Humans , Immunity , Immunologic Memory , Infant , Interferon-gamma/metabolism , Lymphadenopathy , Male , Membrane Proteins/genetics , Mice , Mice, Inbred C57BL , Mice, Knockout , Mutation/genetics , Mycobacterium Infections/genetics , Vaccination
3.
Nat Immunol ; 18(8): 877-888, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28650480

ABSTRACT

The origin and specification of human dendritic cells (DCs) have not been investigated at the clonal level. Through the use of clonal assays, combined with statistical computation, to quantify the yield of granulocytes, monocytes, lymphocytes and three subsets of DCs from single human CD34+ progenitor cells, we found that specification to the DC lineage occurred in parallel with specification of hematopoietic stem cells (HSCs) to the myeloid and lymphoid lineages. This started as a lineage bias defined by specific transcriptional programs that correlated with the combinatorial 'dose' of the transcription factors IRF8 and PU.1, which was transmitted to most progeny cells and was reinforced by upregulation of IRF8 expression driven by the hematopoietic cytokine FLT3L during cell division. We propose a model in which specification to the DC lineage is driven by parallel and inheritable transcriptional programs in HSCs and is reinforced over cell division by recursive interactions between transcriptional programs and extrinsic signals.


Subject(s)
Cell Lineage , Dendritic Cells/cytology , Hematopoietic Stem Cells/cytology , Interferon Regulatory Factors/metabolism , Leukopoiesis , Multipotent Stem Cells/cytology , Animals , Cell Differentiation , Fetal Blood , Flow Cytometry , Humans , Interferon Regulatory Factors/genetics , Mice , Mice, Inbred NOD , Mice, Knockout , Principal Component Analysis , Proto-Oncogene Proteins/metabolism , Trans-Activators/metabolism , Up-Regulation
4.
Nature ; 617(7962): 792-797, 2023 May.
Article in English | MEDLINE | ID: mdl-35728625

ABSTRACT

In mice, only the zygotes and blastomeres from 2-cell embryos are authentic totipotent stem cells (TotiSCs) capable of producing all the differentiated cells in both embryonic and extraembryonic tissues and forming an entire organism1. However, it remains unknown whether and how totipotent stem cells can be established in vitro in the absence of germline cells. Here we demonstrate the induction and long-term maintenance of TotiSCs from mouse pluripotent stem cells using a combination of three small molecules: the retinoic acid analogue TTNPB, 1-azakenpaullone and the kinase blocker WS6. The resulting chemically induced totipotent stem cells (ciTotiSCs), resembled mouse totipotent 2-cell embryo cells at the transcriptome, epigenome and metabolome levels. In addition, ciTotiSCs exhibited bidirectional developmental potentials and were able to produce both embryonic and extraembryonic cells in vitro and in teratoma. Furthermore, following injection into 8-cell embryos, ciTotiSCs contributed to both embryonic and extraembryonic lineages with high efficiency. Our chemical approach to totipotent stem cell induction and maintenance provides a defined in vitro system for manipulating and developing understanding of the totipotent state and the development of multicellular organisms from non-germline cells.


Subject(s)
Totipotent Stem Cells , Animals , Mice , Blastomeres , Cell Differentiation/drug effects , Embryonic Stem Cells/cytology , Embryonic Stem Cells/drug effects , Pluripotent Stem Cells/cytology , Pluripotent Stem Cells/drug effects , Totipotent Stem Cells/cytology , Totipotent Stem Cells/drug effects , Teratoma/pathology , Cell Lineage/drug effects
5.
Proc Natl Acad Sci U S A ; 120(44): e2307793120, 2023 Oct 31.
Article in English | MEDLINE | ID: mdl-37878724

ABSTRACT

We have previously identified TopBP1 (topoisomerase IIß-binding protein 1) as a promising target for cancer therapy, given its role in the convergence of Rb, PI(3)K/Akt, and p53 pathways. Based on this, we conducted a large-scale molecular docking screening to identify a small-molecule inhibitor that specifically targets the BRCT7/8 domains of TopBP1, which we have named 5D4. Our studies show that 5D4 inhibits TopBP1 interactions with E2F1, mutant p53, and Cancerous Inhibitor of Protein Phosphatase 2A. This leads to the activation of E2F1-mediated apoptosis and the inhibition of mutant p53 gain of function. In addition, 5D4 disrupts the interaction of TopBP1 with MIZ1, which in turn allows MIZ1 to bind to its target gene promoters and repress MYC activity. Moreover, 5D4 inhibits the association of the TopBP1-PLK1 complex and prevents the formation of Rad51 foci. When combined with inhibitors of PARP1/2 or PARP14, 5D4 synergizes to effectively block cancer cell proliferation. Our animal studies have demonstrated the antitumor activity of 5D4 in breast and ovarian cancer xenograft models. Moreover, the effectiveness of 5D4 is further enhanced when combined with a PARP1/2 inhibitor talazoparib. Taken together, our findings strongly support the potential use of TopBP1-BRCT7/8 inhibitors as a targeted cancer therapy.


Subject(s)
DNA-Binding Proteins , Poly(ADP-ribose) Polymerase Inhibitors , Animals , Humans , DNA-Binding Proteins/metabolism , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Tumor Suppressor Protein p53/metabolism , Nuclear Proteins/metabolism , Molecular Docking Simulation , Carrier Proteins/metabolism
6.
Plant J ; 119(1): 137-152, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38569053

ABSTRACT

Alternative splicing (AS) of pre-mRNAs increases the diversity of transcriptome and proteome and plays fundamental roles in plant development and stress responses. However, the prevalent changes in AS events and the regulating mechanisms of plants in response to pathogens remain largely unknown. Here, we show that AS changes are an important mechanism conferring cotton immunity to Verticillium dahliae (Vd). GauSR45a, encoding a serine/arginine-rich RNA binding protein, was upregulated expression and underwent AS in response to Vd infection in Gossypium australe, a wild diploid cotton species highly resistant to Vd. Silencing GauSR45a substantially reduced the splicing ratio of Vd-induced immune-associated genes, including GauBAK1 (BRI1-associated kinase 1) and GauCERK1 (chitin elicitor receptor kinase 1). GauSR45a binds to the GAAGA motif that is commonly found in the pre-mRNA of genes essential for PTI, ETI, and defense. The binding between GauSR45a and the GAAGA motif in the pre-mRNA of BAK1 was enhanced by two splicing factors of GauU2AF35B and GauU1-70 K, thereby facilitating exon splicing; silencing either AtU2AF35B or AtU1-70 K decreased the resistance to Vd in transgenic GauSR45a Arabidopsis. Overexpressing the short splicing variant of BAK1GauBAK1.1 resulted in enhanced Verticillium wilt resistance rather than the long one GauBAK1.2. Vd-induced far more AS events were in G. barbadense (resistant tetraploid cotton) than those in G. hirsutum (susceptible tetraploid cotton) during Vd infection, indicating resistance divergence in immune responses at a genome-wide scale. We provided evidence showing a fundamental mechanism by which GauSR45a enhances cotton resistance to Vd through global regulation of AS of immunity genes.


Subject(s)
Alternative Splicing , Ascomycota , Disease Resistance , Gene Expression Regulation, Plant , Gossypium , Plant Diseases , Plant Proteins , Gossypium/genetics , Gossypium/microbiology , Gossypium/immunology , Alternative Splicing/genetics , Disease Resistance/genetics , Plant Diseases/microbiology , Plant Diseases/immunology , Plant Diseases/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Ascomycota/physiology , Plant Immunity/genetics , Verticillium
7.
PLoS Comput Biol ; 20(2): e1011810, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38346079

ABSTRACT

Agent-based models have gained traction in exploring the intricate processes governing the spread of infectious diseases, particularly due to their proficiency in capturing nonlinear interaction dynamics. The fidelity of agent-based models in replicating real-world epidemic scenarios hinges on the accurate portrayal of both population-wide and individual-level interactions. In situations where comprehensive population data are lacking, synthetic populations serve as a vital input to agent-based models, approximating real-world demographic structures. While some current population synthesizers consider the structural relationships among agents from the same household, there remains room for refinement in this domain, which could potentially introduce biases in subsequent disease transmission simulations. In response, this study unveils a novel methodology for generating synthetic populations tailored for infectious disease transmission simulations. By integrating insights from microsample-derived household structures, we employ a heuristic combinatorial optimizer to recalibrate these structures, subsequently yielding synthetic populations that faithfully represent agent structural relationships. Implementing this technique, we successfully generated a spatially-explicit synthetic population encompassing over 17 million agents for Shenzhen, China. The findings affirm the method's efficacy in delineating the inherent statistical structural relationship patterns, aligning well with demographic benchmarks at both city and subzone tiers. Moreover, when assessed against a stochastic agent-based Susceptible-Exposed-Infectious-Recovered model, our results pinpointed that variations in population synthesizers can notably alter epidemic projections, influencing both the peak incidence rate and its onset.


Subject(s)
Communicable Diseases , Epidemics , Humans , Communicable Diseases/epidemiology , Nonlinear Dynamics , China/epidemiology
8.
Proc Natl Acad Sci U S A ; 119(25): e2202295119, 2022 06 21.
Article in English | MEDLINE | ID: mdl-35696574

ABSTRACT

Caveolae are small plasma membrane invaginations, important for control of membrane tension, signaling cascades, and lipid sorting. The caveola coat protein Cavin1 is essential for shaping such high curvature membrane structures. Yet, a mechanistic understanding of how Cavin1 assembles at the membrane interface is lacking. Here, we used model membranes combined with biophysical dissection and computational modeling to show that Cavin1 inserts into membranes. We establish that initial phosphatidylinositol (4, 5) bisphosphate [PI(4,5)P2]-dependent membrane adsorption of the trimeric helical region 1 (HR1) of Cavin1 mediates the subsequent partial separation and membrane insertion of the individual helices. Insertion kinetics of HR1 is further enhanced by the presence of flanking negatively charged disordered regions, which was found important for the coassembly of Cavin1 with Caveolin1 in living cells. We propose that this intricate mechanism potentiates membrane curvature generation and facilitates dynamic rounds of assembly and disassembly of Cavin1 at the membrane.


Subject(s)
Caveolae , RNA-Binding Proteins , Caveolae/chemistry , Caveolin 1/chemistry , HEK293 Cells , Humans , Phosphatidylinositol 4,5-Diphosphate/chemistry , Protein Domains , Protein Transport , RNA-Binding Proteins/chemistry , Signal Transduction
9.
Nano Lett ; 24(39): 12163-12170, 2024 Oct 02.
Article in English | MEDLINE | ID: mdl-39291795

ABSTRACT

With high current density, the intense near-electrode CO2 reduction reaction (CO2RR) will cause the concentration gradients of bicarbonate (HCO3-) and hydroxyl (OH-) ions, which affect the selectivity of high-value C2+ products of the CO2RR. In this work, we simulated the near-electrode concentration gradients of electrolyte species with different porous Cu-based CLs (catalyst layers) of GDE (gas diffusion electrode) by COMSOL Multiphysics. The higher porosity CL exhibits a better buffer ability of local alkalinity while ensuring a sufficient supply of H+ and local CO2 concentration. Subsequently, the different porosity CLs were prepared by vacuum-thermal evaporation with different evaporation rate. Structural characterizations and liquid permeability tests confirm the role of the porous CL structure in optimizing concentration gradients. As a result, the high-porosity CL (Cu-HP) exhibits a higher C2+ Faraday efficiency (FE) of ∼79.61% at 500 mA cm-2 under 1 M KHCO3, far more than the FEC2+ ≈ 38.20% with the low-porosity sample (Cu-LP).

10.
Nano Lett ; 24(14): 4202-4208, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38547140

ABSTRACT

Surface effects of low-surface-tension contaminants accumulating at the evaporation surface easily induce wetting in membrane distillation, especially in hypersaline scenarios. Herein, we propose a novel strategy to eliminate the surface effect and redistribute contaminants at the evaporation interface simply by incorporating a layer of hydrogel. The as-fabricated composite membrane exhibits remarkable stability, even when exposed to solution with salt concentration of 5 M and surfactant concentration of 8 mM. Breakthrough pressure of the membrane reaches 20 bar in the presence of surfactants, surpassing commercial hydrophobic membranes by one to two magnitudes. Density functional theory and molecular dynamics simulations reveal the important role of the hydrogel-surfactant interaction in suppressing the surface effect. As a proof of concept, we demonstrate the membrane in stably processing synthetic wastewater containing 144 mg L-1 surfactants, 1 g L-1 mineral oils, and 192 g L-1 NaCl, showing its potential in addressing challenges of hypersaline water treatment.

11.
Nano Lett ; 24(43): 13741-13746, 2024 Oct 30.
Article in English | MEDLINE | ID: mdl-39405088

ABSTRACT

Copper (Cu) has been considered as the most promising catalyst for the electrochemical conversion of CO2 to multicarbon (C2+) products. However, insufficient coverage of the *CO intermediate on the C2+ formation Cu(100) facet largely hinders the C-C coupling process and thus the C2+ conversion efficiency. Herein, we developed an epitaxial growth strategy to generate highly tensile-strained Cu(100) facets via the epitaxial growth of hexagonal boron nitride (hBN) on Cu(100) facets to promote *CO coverage for efficient CO2 to C2+ conversion. The highest ∼6% tensile strain on the Cu(100) facets was obtained by lattice mismatch between the Cu(100) and hBN(002) facets. Theory calculations indicated that tensile-strained Cu(100) facets deliver a notable d-band center upshift to enhance *CO adsorption. As a result, the obtained highly tensile-strained Cu(100) facets enabled an 8-fold improvement of *CO coverage and thus a 83.4% C2+ Faradaic efficiency at 1.2 A cm-2 in strongly acidic electrolyte (pH = 1).

12.
Proteins ; 92(1): 24-36, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37497743

ABSTRACT

Glioma is a type of tumor that starts in the glial cells of the brain or spine. Since the 1800s, when the disease was first named, its survival rates have always been unsatisfactory. Despite great advances in molecular biology and traditional treatment methods, many questions regarding cancer occurrence and the underlying mechanism remain to be answered. In this study, we assessed the protein structural features of 20 oncogenes and 20 anti-oncogenes via protein structure and dynamic analysis methods and 3D structural and systematic analyses of the structure-function relationships of proteins. All of these results directly indicate that unfavorable group proteins show more complex structures than favorable group proteins. As the tumor cell microenvironment changes, the balance of oncogene-related and anti-oncogene-related proteins is disrupted, and most of the structures of the two groups of proteins will be disrupted. However, more unfavorable group proteins will maintain and refold to achieve their correct shape faster and perform their functions more quickly than favorable group proteins, and the former thus support cancer development. We hope that these analyses will help promote mechanistic research and the development of new treatments for glioma.


Subject(s)
Brain Neoplasms , Glioma , Humans , Brain Neoplasms/genetics , Brain Neoplasms/metabolism , Brain Neoplasms/pathology , Glioma/genetics , Glioma/metabolism , Glioma/pathology , Oncogenes , Tumor Microenvironment
13.
BMC Genomics ; 25(1): 126, 2024 Jan 30.
Article in English | MEDLINE | ID: mdl-38291375

ABSTRACT

Copy-number variations (CNVs), which refer to deletions and duplications of chromosomal segments, represent a significant source of variation among individuals, contributing to human evolution and being implicated in various diseases ranging from mental illness and developmental disorders to cancer. Despite the development of several methods for detecting copy number variations based on next-generation sequencing (NGS) data, achieving robust detection performance for CNVs with arbitrary coverage and amplitude remains challenging due to the inherent complexity of sequencing samples. In this paper, we propose an alternative method called OTSUCNV for CNV detection on whole genome sequencing (WGS) data. This method utilizes a newly designed adaptive sequence segmentation algorithm and an OTSU-based CNV prediction algorithm, which does not rely on any distribution assumptions or involve complex outlier factor calculations. As a result, the effective detection of CNVs is achieved with lower computational complexity. The experimental results indicate that the proposed method demonstrates outstanding performance, and hence it may be used as an effective tool for CNV detection.


Subject(s)
Algorithms , DNA Copy Number Variations , Humans , Sequence Analysis, DNA/methods , High-Throughput Nucleotide Sequencing/methods , Whole Genome Sequencing
14.
J Am Chem Soc ; 146(10): 7088-7096, 2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38436238

ABSTRACT

Dilanthanide complexes with one-electron delocalization are important targets for understanding the specific 4f/5d-bonding feature in lanthanide chemistry. Here, we report an isolable azide-bridged dicerium complex 3 [{(TrapenTMS)Ce}2(µ-N3)]• [Trapen = tris (2-aminobenzyl)amine; TMS = SiMe3], which is synthesized by the reaction of tripodal ligand-supported (TrapenTMS)CeIVCl complex 2 with NaN3. The structure and bonding nature of 3 are fully characterized by X-ray crystal diffraction analysis, electron paramagnetic resonance (EPR), magnetic measurement, cyclic voltammetry, X-ray absorption spectroscopy, and quantum-theoretical studies. Complex 3 presents a trans-bent central Ce-N3-Ce unit with a single electron of two mixed-valent Ce atoms. The unique low-temperature (2 K) anisotropic EPR signals [g = 1.135, 2.003, and 3.034] of 3 indicate that its spin density is distributed on the central Ce-N3-Ce unit with marked electron delocalization. Quantum chemical analyses show strong 4f/5d orbital mixing in the singly occupied molecular orbital of 3, which allows for the unpaired electron to extend throughout the cerium-azide-cerium unit via a multicentered one-electron (Ce-N3-Ce) interaction. This work extends the family of mixed-valent dilanthanide complexes and provides a paradigm for understanding the bonding motif of ligand-bridged dilanthanide complexes.

15.
Kidney Int ; 106(5): 840-855, 2024 Nov.
Article in English | MEDLINE | ID: mdl-39181396

ABSTRACT

The transcription factor Twist1 plays a vital role in normal development in many tissue systems and continues to be important throughout life. However, inappropriate Twist1 activity has been associated with kidney injury and fibrosis, though the underlying mechanisms involved remain incomplete. Here, we explored the role of Twist1 in regulating fibroblast behaviors and the development kidney fibrosis. Initially Twist1 protein and activity was found to be markedly increased within interstitial myofibroblasts in fibrotic kidneys in both humans and rodents. Treatment of rat kidney interstitial fibroblasts with transforming growth factor-ß1 (a profibrotic factor) also induced Twist1 expression in vitro. Gain- and loss-of-function experiments supported that Twist1 signaling was responsible for transforming growth factor-ß1-induced fibroblast activation and fetal bovine serum-induced fibroblast proliferation. Mechanistically, Twist1 protein promoted kidney fibroblast activation by driving the expression of downstream signaling proteins, Prrx1 and Tnc. Twist1 directly enhanced binding to the promoter of Prrx1 but not TNC, whereas the promoter of TNC was directly bound by Prrx1. Finally, mice with fibroblast-specific deletion of Twist1 exhibited less Prrx1 and TNC protein abundance, interstitial extracellular matrix deposition and kidney inflammation in both the unilateral ureteral obstruction and ischemic-reperfusion injury-induced-kidney fibrotic models. Inhibition of Twist1 signaling with Harmine, a ß-carboline alkaloid, improved extracellular matrix deposition in both injury models. Thus, our results suggest that Twist1 signaling promotes the activation and proliferation of kidney fibroblasts, contributing to the development of interstitial fibrosis, offering a potential therapeutic target for chronic kidney disease.


Subject(s)
Fibrosis , Homeodomain Proteins , Kidney , Nuclear Proteins , Signal Transduction , Twist-Related Protein 1 , Animals , Twist-Related Protein 1/metabolism , Twist-Related Protein 1/genetics , Humans , Kidney/pathology , Kidney/metabolism , Nuclear Proteins/metabolism , Nuclear Proteins/genetics , Male , Mice , Homeodomain Proteins/metabolism , Homeodomain Proteins/genetics , Myofibroblasts/metabolism , Myofibroblasts/pathology , Cell Proliferation , Transforming Growth Factor beta1/metabolism , Kidney Diseases/pathology , Kidney Diseases/metabolism , Kidney Diseases/genetics , Kidney Diseases/etiology , Rats , Disease Models, Animal , Mice, Knockout , Fibroblasts/metabolism , Fibroblasts/pathology , Mice, Inbred C57BL , Ureteral Obstruction/complications , Ureteral Obstruction/pathology , Ureteral Obstruction/metabolism , Reperfusion Injury/pathology , Reperfusion Injury/metabolism , Cells, Cultured
17.
BMC Microbiol ; 24(1): 214, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38886642

ABSTRACT

BACKGROUND: Bergeyella porcorum is a newly identified bacterium that has an ambiguous relationship with pneumonia in pigs. However, few studies have adequately characterized this species. RESULTS: In this study, we analyzed the morphological, physiological, and genomic characteristics of the newly identified B. porcorum sp. nov. strain QD2021 isolated from pigs. The complete genome sequence of the B. porcorum QD2021 strain consists of a single circular chromosome (2,271,736 bp, 38.51% G + C content), which encodes 2,578 genes. One plasmid with a size of 70,040 bp was detected. A total of 121 scattered repeat sequences, 319 tandem repeat sequences, 4 genomic islands, 5 prophages, 3 CRISPR sequences, and 51 ncRNAs were predicted. The coding genes of the B. porcorum genome were successfully annotated across eight databases (NR, GO, KEGG, COG, TCDB, Pfam, Swiss-Prot and CAZy) and four pathogenicity-related databases (PHI, CARD, VFDB and ARDB). In addition, a comparative genome analysis was performed to explore the evolutionary relationships of B. porcorum QD2021. CONCLUSIONS: To our knowledge, this is the first study to provide fundamental phenotypic and whole-genome sequences for B. porcorum. Our results extensively expand the current knowledge and could serve as a valuable genomic resource for future research on B. porcorum.


Subject(s)
Base Composition , Genome, Bacterial , Phylogeny , Whole Genome Sequencing , Animals , China , Genome, Bacterial/genetics , Swine , Flavobacteriaceae/genetics , Flavobacteriaceae/isolation & purification , Flavobacteriaceae/classification , Swine Diseases/microbiology , DNA, Bacterial/genetics , Genomic Islands , Plasmids/genetics , Flavobacteriaceae Infections/microbiology , Flavobacteriaceae Infections/veterinary , Sequence Analysis, DNA , Molecular Sequence Annotation
18.
Opt Express ; 32(8): 13574-13582, 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38859324

ABSTRACT

The vortex electromagnetic wave has shown great prospects of radar applications, due to the orbital angular momentum (OAM) degree of freedom. However, the radiation energy convergence of the OAM beam remains a hard problem to be solved for radar target imaging in realistic scenario. In this paper, an OAM beam generation method is developed exploiting the OAM and waveform degrees of freedom simultaneously, which can collimate the beams with different OAM modes. Furthermore, the echo demodulation and the imaging methods are proposed to reconstruct the target profiles in the range and azimuth domain. Simulation and experimental results both validate that the OAM-based radar imaging can achieve azimuthal super-resolution beyond the diffraction limit of the array aperture. This work can advance the system design of vortex electromagnetic wave radar and its real-world applications.

19.
J Neurol Neurosurg Psychiatry ; 95(6): 529-535, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38212060

ABSTRACT

BACKGROUND: Symptomatic intracranial atherosclerotic stenosis (ICAS) is prone to cause early recurrent stroke (ERS). Proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibitors lower low-density lipoprotein cholesterol (LDL-C) levels and prevent cardiovascular events. This multicentre, hospital-based prospective cohort study was designed to investigate whether PCSK9 inhibitors would prevent ERS in patients with symptomatic ICAS. METHODS: From 1 October 2020 to 30 September 2022, consecutive patients with acute ischaemic stroke attributed to ICAS admitted within 1 week after onset were enrolled and followed up for 1 month. Patients were divided into two groups, the PCSK9 inhibitors group receiving PCSK9 inhibitors add-on therapy, and the control group receiving statins and/or ezetimibe. The primary outcome was ERS. Cox proportional hazard models and Kaplan-Meier survival curve were used to estimate the association between PCSK9 inhibitors and ERS. RESULTS: At the end of follow-up, the LDL-C levels were further lowered by PCSK9 inhibitors add-on therapy (n=232, from 3.06±1.16 mmol/L to 2.12±1.19 mmol/L) than statins and/or ezetimibe treatment (n=429, from 2.91±1.05 mmol/L to 2.64±0.86 mmol/L, p<0.001). The Kaplan-Meier survival curves showed that PCSK9 inhibitors add-on therapy significantly reduced ERS (5.59%, 24/429, vs 2.16%, 5/232; log-rank test, p=0.044). The multivariate Cox regression analysis revealed that, after adjusting for confounders with a p value less than 0.05 in univariate analysis or of particular importance, the HR was 0.335 (95% CI 0.114 to 0.986, p=0.047), compared with the control group. CONCLUSIONS: In our study, PCSK9 inhibitors add-on therapy further reduced LDL-C levels and ERS in patients with symptomatic ICAS.


Subject(s)
Ezetimibe , Intracranial Arteriosclerosis , PCSK9 Inhibitors , Humans , Male , Female , Intracranial Arteriosclerosis/drug therapy , Intracranial Arteriosclerosis/complications , Middle Aged , Aged , Ezetimibe/therapeutic use , Prospective Studies , Cholesterol, LDL/blood , Hydroxymethylglutaryl-CoA Reductase Inhibitors/therapeutic use , Recurrence , Anticholesteremic Agents/therapeutic use , Ischemic Stroke/drug therapy , Ischemic Stroke/complications , Stroke/drug therapy , Secondary Prevention
20.
Crit Rev Biotechnol ; : 1-17, 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38503543

ABSTRACT

As an important cell factory, industrial yeast has been widely used for the production of compounds ranging from bulk chemicals to complex natural products. However, various adverse conditions including toxic products, extreme pH, and hyperosmosis etc., severely restrict microbial growth and metabolic performance, limiting the fermentation efficiency and diminishing its competitiveness. Therefore, enhancing the tolerance and robustness of yeasts is critical to ensure reliable and sustainable production of metabolites in complex industrial production processes. In this review, we provide a comprehensive review of various strategies for improving the tolerance of yeast cells, including random mutagenesis, system metabolic engineering, and material-mediated immobilization cell technology. It is expected that this review will provide a new perspective to realize the response and intelligent regulation of yeast cells to environmental stresses.

SELECTION OF CITATIONS
SEARCH DETAIL