Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 244
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Brief Bioinform ; 25(2)2024 Jan 22.
Article in English | MEDLINE | ID: mdl-38343324

ABSTRACT

Cross-linkers play a critical role in capturing protein dynamics in chemical cross-linking mass spectrometry techniques. Various types of cross-linkers with different backbone features are widely used in the study of proteins. However, it is still not clear how the cross-linkers' backbone affect their own structure and their interactions with proteins. In this study, we systematically characterized and compared methylene backbone and polyethylene glycol (PEG) backbone cross-linkers in terms of capturing protein structure and dynamics. The results indicate the cross-linker with PEG backbone have a better ability to capture the inter-domain dynamics of calmodulin, adenylate kinase, maltodextrin binding protein and dual-specificity protein phosphatase. We further conducted quantum chemical calculations and all-atom molecular dynamics simulations to analyze thermodynamic and kinetic properties of PEG backbone and methylene backbone cross-linkers. Solution nuclear magnetic resonance was employed to validate the interaction interface between proteins and cross-linkers. Our findings suggest that the polarity distribution of PEG backbone enhances the accessibility of the cross-linker to the protein surface, facilitating the capture of sites located in dynamic regions. By comprehensively benchmarking with disuccinimidyl suberate (DSS)/bis-sulfosuccinimidyl-suberate(BS3), bis-succinimidyl-(PEG)2 revealed superior advantages in protein dynamic conformation analysis in vitro and in vivo, enabling the capture of a greater number of cross-linking sites and better modeling of protein dynamics. Furthermore, our study provides valuable guidance for the development and application of PEG backbone cross-linkers.


Subject(s)
Polyethylene Glycols , Proteins , Polyethylene Glycols/chemistry , Proteins/chemistry , Mass Spectrometry , Protein Conformation , Molecular Dynamics Simulation
2.
Mol Cell Proteomics ; 22(2): 100490, 2023 02.
Article in English | MEDLINE | ID: mdl-36566904

ABSTRACT

Aspergillus flavus is a common saprophytic and pathogenic fungus, and its secondary metabolic pathways are one of the most highly characterized owing to its aflatoxin (AF) metabolite affecting global economic crops and human health. Different natural environments can cause significant variations in AF synthesis. Succinylation was recently identified as one of the most critical regulatory post-translational modifications affecting metabolic pathways. It is primarily reported in human cells and bacteria with few studies on fungi. Proteomic quantification of lysine succinylation (Ksuc) exploring its potential involvement in secondary metabolism regulation (including AF production) has not been performed under natural conditions in A. flavus. In this study, a quantification method was performed based on tandem mass tag labeling and antibody-based affinity enrichment of succinylated peptides via high accuracy nano-liquid chromatography with tandem mass spectrometry to explore the succinylation mechanism affecting the pathogenicity of naturally isolated A. flavus strains with varying toxin production. Altogether, 1240 Ksuc sites in 768 proteins were identified with 1103 sites in 685 proteins quantified. Comparing succinylated protein levels between high and low AF-producing A. flavus strains, bioinformatics analysis indicated that most succinylated proteins located in the AF biosynthetic pathway were downregulated, which directly affected AF synthesis. Versicolorin B synthase is a key catalytic enzyme for heterochrome B synthesis during AF synthesis. Site-directed mutagenesis and biochemical studies revealed that versicolorin B synthase succinylation is an important regulatory mechanism affecting sclerotia development and AF biosynthesis in A. flavus. In summary, our quantitative study of the lysine succinylome in high/low AF-producing strains revealed the role of Ksuc in regulating AF biosynthesis. We revealed novel insights into the metabolism of AF biosynthesis using naturally isolated A. flavus strains and identified a rich source of metabolism-related enzymes regulated by succinylation.


Subject(s)
Aflatoxins , Aspergillus flavus , Humans , Aspergillus flavus/metabolism , Lysine/metabolism , Proteomics , Aflatoxins/metabolism , Protein Processing, Post-Translational
3.
Nucleic Acids Res ; 51(14): 7666-7674, 2023 08 11.
Article in English | MEDLINE | ID: mdl-37351632

ABSTRACT

The 26-mer DNA aptamer (AF26) that specifically binds aflatoxin B1 (AFB1) with nM-level high affinity is rare among hundreds of aptamers for small molecules. Despite its predicted stem-loop structure, the molecular basis of its high-affinity recognition of AFB1 remains unknown. Here, we present the first high-resolution nuclear magnetic resonance structure of AFB1-AF26 aptamer complex in solution. AFB1 binds to the 16-residue loop region of the aptamer, inducing it to fold into a compact structure through the assembly of two bulges and one hairpin structure. AFB1 is tightly enclosed within a cavity formed by the bulges and hairpin, held in a place between the G·C base pair, G·G·C triple and multiple T bases, mainly through strong π-π stacking, hydrophobic and donor atom-π interactions, respectively. We further revealed the mechanism of the aptamer in recognizing AFB1 and its analogue AFG1 with only one-atom difference and introduced a single base mutation at the binding site of the aptamer to increase the discrimination between AFB1 and AFG1 based on the structural insights. This research provides an important structural basis for understanding high-affinity recognition of the aptamer, and for further aptamer engineering, modification and applications.


Subject(s)
Aflatoxin B1 , Aptamers, Nucleotide , Aflatoxin B1/chemistry , Aflatoxin B1/metabolism , Aptamers, Nucleotide/chemistry , Aptamers, Nucleotide/metabolism , Biosensing Techniques , Limit of Detection
4.
J Am Chem Soc ; 146(7): 4741-4751, 2024 02 21.
Article in English | MEDLINE | ID: mdl-38346932

ABSTRACT

G-quadruplexes (G4s) are noncanonical nucleic acid secondary structures with diverse topological features and biological roles. Human telomeric (Htelo) overhangs consisting of TTAGGG repeats can fold into G4s that adopt different topologies under physiological conditions. These G4s are potential targets for anticancer drugs. Despite intensive research, the existence and topology of G4s at Htelo overhangs in vivo are still unclear because there is no method to distinguish and quantify the topology of Htelo overhangs with native lengths that can form more than three tandem G4s in living cells. Herein, we present a novel 19F chemical shift fingerprinting technique to identify and quantify the topology of the Htelo overhangs up to five G-quadruplexes (G4s) and 120 nucleotides long both in vitro and in living cells. Our results show that longer overhang sequences tend to form stable G4s at the 5'- and 3'-ends, while the interior G4s are dynamic and "sliding" along the sequence, with TTA or 1-3 TTAGGG repeats as a linker. Each G4 in the longer overhang is conformationally heterogeneous, but the predominant ones are hybrid-2, two- or three-tetrad antiparallel, and hybrid-1 at the 5'-terminal, interior, and 3'-terminal, respectively. Additionally, we observed a distinct behavior of different lengths of telomeric sequences in living cells, suggesting that the overhang length and protein accessibility are related to its function. This technique provides a powerful tool for quickly identifying the folding topology and relative population of long Htelo overhangs, which may provide valuable insights into telomere functionality and be beneficial for structure-based anticancer drug development targeting G4s.


Subject(s)
G-Quadruplexes , Humans , Telomere , Nucleotides , Magnetic Resonance Spectroscopy
5.
J Am Chem Soc ; 146(7): 4455-4466, 2024 02 21.
Article in English | MEDLINE | ID: mdl-38335066

ABSTRACT

Cytochrome c (cyt c) is a multifunctional protein with varying conformations. However, the conformation of cyt c in its native environment, mitochondria, is still unclear. Here, we applied NMR spectroscopy to investigate the conformation and location of endogenous cyt c within intact mitochondria at natural isotopic abundance, mainly using widespread methyl groups as probes. By monitoring time-dependent chemical shift perturbations, we observed that most cyt c is located in the inner mitochondrial membrane and partially unfolded, which is distinct from its native conformation in solution. When suffering oxidative stress, cyt c underwent oxidative modifications due to increasing reactive oxygen species (ROS), weakening electrostatic interactions with the membrane, and gradually translocating into the inner membrane spaces of mitochondria. Meanwhile, the lethality of oxidatively modified cyt c to cells was reduced compared with normal cyt c. Our findings significantly improve the understanding of the molecular mechanisms underlying the regulation of ROS by cyt c in mitochondria. Moreover, it highlights the potential of NMR to monitor high-concentration molecules at a natural isotopic abundance within intact cells or organelles.


Subject(s)
Cytochromes c , Mitochondria , Cytochromes c/chemistry , Reactive Oxygen Species/metabolism , Mitochondria/metabolism , Oxidation-Reduction , Mitochondrial Membranes/metabolism
6.
J Biomol NMR ; 78(2): 87-94, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38530516

ABSTRACT

The fast motions of proteins at the picosecond to nanosecond timescale, known as fast dynamics, are closely related to protein conformational entropy and rearrangement, which in turn affect catalysis, ligand binding and protein allosteric effects. The most used NMR approach to study fast protein dynamics is the model free method, which uses order parameter S2 to describe the amplitude of the internal motion of local group. However, to obtain order parameter through NMR experiments is quite complex and lengthy. In this paper, we present a machine learning approach for predicting backbone 1H-15N order parameters based on protein NMR structure ensemble. A random forest model is used to learn the relationship between order parameters and structural features. Our method achieves high accuracy in predicting backbone 1H-15N order parameters for a test dataset of 10 proteins, with a Pearson correlation coefficient of 0.817 and a root-mean-square error of 0.131.


Subject(s)
Machine Learning , Nuclear Magnetic Resonance, Biomolecular , Protein Conformation , Proteins , Proteins/chemistry , Nuclear Magnetic Resonance, Biomolecular/methods
7.
Anal Chem ; 2024 Feb 09.
Article in English | MEDLINE | ID: mdl-38335322

ABSTRACT

The configuration elucidation of organic molecules continues to pose significant challenges in studies involving stereochemistry. Nuclear magnetic resonance (NMR) techniques are powerful for obtaining such structural information. Anisotropic NMR techniques, such as measurement of residual dipolar couplings (RDCs) and residual chemical shift anisotropies (RCSAs), complementing isotropic NMR parameters, provide relative configuration information. RCSAs provide valuable structural information, especially for nonprotonated carbons, yet have been severely underutilized due to the lack of an easily operational alignment medium capable of rapid transition from anisotropic to isotropic environments, especially in aqueous conditions. In this study, an oligopeptide-based alignment media (FK)4 is presented for RCSA measurements. Temperature variation manipulates the assembly of (FK)4, yielding tunable anisotropic and isotropic phases without the requirement of any special devices or time-consuming correction procedures during data analysis. Decent observed ΔΔRCSA values from sp3 carbons benefit the utilization of RCSA measurements in the structural elucidation of organic molecules highly composed with sp3 carbons. Moreover, the (FK)4 alignment medium is applicable for both RDC and RCSA measurements in one sample, further advancing the configuration analysis of molecules of interest.

8.
Anal Chem ; 2024 Feb 09.
Article in English | MEDLINE | ID: mdl-38334355

ABSTRACT

Abnormal fatty acid metabolism is recognized as a key driver of tumor development and progression. Although numerous inhibitors have been developed to target this pathway, finding drugs with high specificity that do not disrupt normal cellular metabolism remains a formidable challenge. In this paper, we introduced a novel real-time NMR-based drug screening technique that operates within living cells. This technique provides a direct way to putatively identify molecular targets involved in specific metabolic processes, making it a powerful tool for cell-based drug screening. Using 2-13C acetate as a tracer, combined with 3D cell clusters and a bioreactor system, our approach enables real-time detection of inhibitors that target fatty acid metabolism within living cells. As a result, we successfully demonstrated the initial application of this method in the discovery of traditional Chinese medicines that specifically target fatty acid metabolism. Elucidating the mechanisms behind herbal medicines remains challenging due to the complex nature of their compounds and the presence of multiple targets. Remarkably, our findings demonstrate the significant inhibitory effect of P. cocos on fatty acid synthesis within cells, illustrating the potential of this approach in analyzing fatty acid metabolism events and identifying drug candidates that selectively inhibit fatty acid synthesis at the cellular level. Moreover, this systematic approach represents a valuable strategy for discovering the intricate effects of herbal medicine.

9.
Chembiochem ; : e202400392, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38967093

ABSTRACT

Two-component signal transduction systems (TCSs) are regulatory systems widely distributed in eubacteria, archaea, and a few eukaryotic organisms, but not in mammalian cells. A typical TCS consists of a histidine kinase and a response regulator protein. Functional and mechanistic studies on different TCSs have greatly advanced the understanding of cellular phosphotransfer signal transduction mechanisms. In this concept paper, we focus on the His-Asp phosphotransfer mechanism, the ATP synthesis function, antimicrobial drug design, cellular biosensors design, and protein allostery mechanisms based on recent TCS investigations to inspire new applications and future research perspectives.

10.
Chembiochem ; 25(5): e202300727, 2024 03 01.
Article in English | MEDLINE | ID: mdl-38100267

ABSTRACT

The abnormal aggregation of proteins is a significant pathological hallmark of diseases, such as the amyloid formation associated with fused in sarcoma protein (FUS) in frontotemporal lobar degeneration and amyotrophic lateral sclerosis diseases. Understanding which cellular components and how these components regulate the process of abnormal protein aggregation in living organisms is crucial for the prevention and treatment of neurodegenerative diseases. MOAG-4/SERF is a conserved family of proteins with rich positive charged residues, which was initially identified as an enhancer for the formation of amyloids in C. elegans. Knocking out SERF impedes the amyloid formation of various proteins, including α-synuclein and ß-amyloid, which are linked to Parkinson's and Alzheimer's diseases, respectively. However, recent studies revealed SERF exhibited dual functions, as it could both promote and inhibit the fibril formation of the neurodegenerative disease-related amyloidogenic proteins. The connection between functions and structure basis of SERF in regulating the amyloid formation is still unclear. This review will outline the hallmark proteins in neurodegenerative diseases, summarize the contradictory role of the SERF protein family in promoting and inhibiting the aggregation of neurodegenerative proteins, and finally explore the potential structural basis and functional selectivity of the SERF protein.


Subject(s)
Alzheimer Disease , Caenorhabditis elegans Proteins , Neurodegenerative Diseases , Animals , Caenorhabditis elegans , Amyloidogenic Proteins , Amyloid beta-Peptides
11.
Mass Spectrom Rev ; 42(1): 67-94, 2023 01.
Article in English | MEDLINE | ID: mdl-34028064

ABSTRACT

Single cell analysis has drawn increasing interest from the research community due to its capability to interrogate cellular heterogeneity, allowing refined tissue classification and facilitating novel biomarker discovery. With the advancement of relevant instruments and techniques, it is now possible to perform multiple omics including genomics, transcriptomics, metabolomics or even proteomics at single cell level. In comparison with other omics studies, single-cell metabolomics (SCM) represents a significant challenge since it involves many types of dynamically changing compounds with a wide range of concentrations. In addition, metabolites cannot be amplified. Although difficult, considerable progress has been made over the past decade in mass spectrometry (MS)-based SCM in terms of processing technologies and biochemical applications. In this review, we will summarize recent progress in the development of promising MS platforms, sample preparation methods and SCM analysis of various cell types (including plant cell, cancer cell, neuron, embryo cell, and yeast cell). Current limitations and future research directions in the field of SCM will also be discussed.


Subject(s)
Biomedical Research , Metabolomics , Mass Spectrometry , Metabolomics/methods , Proteomics , Genomics
12.
Electrophoresis ; 2024 Feb 08.
Article in English | MEDLINE | ID: mdl-38332570

ABSTRACT

Oligomerization is an important feature of proteins, which gives a defined quaternary structure to complete the biological functions. Although frequently observed in membrane proteins, characterizing the oligomerization state remains complicated and time-consuming. In this study, 0.05% (w/v) sarkosyl-polyacrylamide gel electrophoresis (05SAR-PAGE) was used to identify the oligomer states of the membrane proteins CpxA, EnvZ, and Ma-Mscl with high sensitivity. Furthermore, two-dimensional electrophoresis (05SAR/sodium dodecyl sulfate-PAGE) combined with western blotting and liquid chromatography-tandem mass spectrometry was successfully applied to study the complex of CpxA/OmpA in cell lysate. The results indicated that 05SAR-PAGE is an efficient, economical, and practical gel method that can be widely used for the identification of membrane protein oligomerization and the analysis of weak protein interactions.

13.
Anal Bioanal Chem ; 416(9): 2319-2334, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38240793

ABSTRACT

Metabolism is a fundamental process that underlies human health and diseases. Nuclear magnetic resonance (NMR) techniques offer a powerful approach to identify metabolic processes and track the flux of metabolites at the molecular level in living systems. An in vitro study through in-cell NMR tracks metabolites in real time and investigates protein structures and dynamics in a state close to their most natural environment. This technique characterizes metabolites and proteins involved in metabolic pathways in prokaryotic and eukaryotic cells. In vivo magnetic resonance spectroscopy (MRS) enables whole-organism metabolic monitoring by visualizing the spatial distribution of metabolites and targeted proteins. One limitation of these NMR techniques is the sensitivity, for which a possible improved approach is through isotopic enrichment or hyperpolarization methods, including dynamic nuclear polarization (DNP) and parahydrogen-induced polarization (PHIP). DNP involves the transfer of high polarization from electronic spins of radicals to surrounding nuclear spins for signal enhancements, allowing the detection of low-abundance metabolites and real-time monitoring of metabolic activities. PHIP enables the transfer of nuclear spin polarization from parahydrogen to other nuclei for signal enhancements, particularly in proton NMR, and has been applied in studies of enzymatic reactions and cell signaling. This review provides an overview of in-cell NMR, in vivo MRS, and hyperpolarization techniques, highlighting their applications in metabolic studies and discussing challenges and future perspectives.


Subject(s)
Magnetic Resonance Imaging , Metabolomics , Humans , Magnetic Resonance Spectroscopy/methods , Metabolic Networks and Pathways , Signal Transduction
14.
Proc Natl Acad Sci U S A ; 118(11)2021 03 16.
Article in English | MEDLINE | ID: mdl-33836588

ABSTRACT

Protein-protein interactions are essential for life but rarely thermodynamically quantified in living cells. In vitro efforts show that protein complex stability is modulated by high concentrations of cosolutes, including synthetic polymers, proteins, and cell lysates via a combination of hard-core repulsions and chemical interactions. We quantified the stability of a model protein complex, the A34F GB1 homodimer, in buffer, Escherichia coli cells and Xenopus laevis oocytes. The complex is more stable in cells than in buffer and more stable in oocytes than E. coli Studies of several variants show that increasing the negative charge on the homodimer surface increases stability in cells. These data, taken together with the fact that oocytes are less crowded than E. coli cells, lead to the conclusion that chemical interactions are more important than hard-core repulsions under physiological conditions, a conclusion also gleaned from studies of protein stability in cells. Our studies have implications for understanding how promiscuous-and specific-interactions coherently evolve for a protein to properly function in the crowded cellular environment.


Subject(s)
Intracellular Space/chemistry , Proteins/chemistry , Animals , Escherichia coli , Macromolecular Substances/chemistry , Oocytes/chemistry , Protein Multimerization , Protein Stability , Thermodynamics , Xenopus laevis
15.
Angew Chem Int Ed Engl ; 63(13): e202318503, 2024 Mar 22.
Article in English | MEDLINE | ID: mdl-38311597

ABSTRACT

ATP (adenosine triphosphate) is a vital energy source for living organisms, and its biosynthesis and precise concentration regulation often depend on macromolecular machinery composed of protein complexes or complicated multidomain proteins. We have identified a single-domain protein HK853CA derived from bacterial histidine kinases (HK) that can catalyze ATP synthesis efficiently. Here, we explored the reaction mechanism and multiple factors that influence this catalysis through a combination of experimental techniques and molecular simulations. Moreover, we optimized its enzymatic activity and applied it as an ATP replenishment machinery to other ATP-dependent systems. Our results broaden the understanding of ATP biosynthesis and show that the single CA domain can be applied as a new biomolecular catalyst used for ATP supply.


Subject(s)
Bacteria , Bacterial Proteins , Histidine Kinase/metabolism , Bacterial Proteins/metabolism , Bacteria/metabolism , Adenosine Triphosphate/metabolism , Catalysis
16.
J Am Chem Soc ; 145(19): 10641-10650, 2023 05 17.
Article in English | MEDLINE | ID: mdl-37158674

ABSTRACT

Synaptic vesicle fusion is mediated by soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) proteins, including synaptobrevin-2 (Syb-2), syntaxin-1 (Syx-1), and SNAP-25. However, it remains controversial whether the formation of thoroughly contacted α-helical bundle from the SNARE motifs to the end of the transmembrane domains (TMDs) is necessary for SNARE-mediated membrane fusion. In this study, we characterized the conformation of Syb-2 in different assembly states using a combination of dipolar- and scalar-based solid-state NMR experiments in lipid bilayers. Our spectral analysis revealed a highly dynamic nature of the Syb-2 TMD with considerable α-helical contents. Chemical shift perturbation and mutational analysis indicated that the coupling between Syb-2 and Syx-1 TMDs mediated by residue Gly-100 of Syb-2 together with high mobility of the C-terminal segment of Syb-2 TMD are required for inner membrane merger. Our results provide new insights into the role of the Syb-2 TMD in driving membrane fusion, which improves the current understanding of the structural mechanism of SNARE complex assembly. This study highlights the significance of membrane environments in elucidating the mechanism of membrane proteins.


Subject(s)
Lipid Bilayers , SNARE Proteins , Soluble N-Ethylmaleimide-Sensitive Factor Attachment Proteins , SNARE Proteins/chemistry , Vesicle-Associated Membrane Protein 2/chemistry , Vesicle-Associated Membrane Protein 2/metabolism , Membrane Fusion , Syntaxin 1/chemistry
17.
Anal Chem ; 95(45): 16567-16574, 2023 Nov 14.
Article in English | MEDLINE | ID: mdl-37921276

ABSTRACT

High-resolution nuclear magnetic resonance (NMR) spectroscopy is a powerful analytical tool with wide applications. However, the conventional shim technique may not guarantee the homogeneity of the magnetic field when the experimental conditions are unfavorable. In this study, we proposed a data postprocessing method called Restore High-resolution Unet (RH-Unet), which uses a convolutional neural network to restore distorted NMR spectra that have been acquired in inhomogeneous magnetic fields. The method generates feature-label pairs from singlet peak regions and ideal Lorentzian line shapes and trains a RH-Unet model to map low-resolution spectra to high-resolution spectra. The method was applied to different samples and showed superior performance than the reference deconvolution method incorporated in Bruker Topspin software. The proposed method provides a simple and fast way to obtain high-resolution NMR spectra in inhomogeneous fields that can facilitate the application of NMR spectroscopy in various fields.

18.
Anal Chem ; 95(6): 3476-3485, 2023 02 14.
Article in English | MEDLINE | ID: mdl-36724385

ABSTRACT

Fast, simplified, and multiplexed detection of human papillomaviruses (HPVs) is of great importance for both clinical management and population screening. However, current HPV detection methods often require sophisticated instruments and laborious procedures to detect multiple targets. In this work, we developed a simple microfluidic dual-droplet device (M-D3) for the simultaneous detection of HPV16 and HPV18 by combining the CRISPR-Cas12a system and multiplexed recombinase polymerase amplification (RPA) assay. A new approach of combining pressure/vacuum was proposed for efficient droplet generation with minimal sample consumption. Two groups of droplets that separately encapsulate the relevant Cas12a/crRNA and the fluorescent green or red reporters are parallelly generated, followed by automatic imaging to discriminate the HPV subtypes based on the specific fluorescence of the droplets. The M-D3 platform performs with high sensitivity (∼0.02 nM for unamplified plasmids) and specificity in detecting HPV16 and HPV18 DNA. By combining the RPA and Cas12a assay, M-D3 allows on-chip detection of HPV16 and HPV18 DNA simultaneously within 30 min, reaching a detection limit of 10-18 M (∼1 copy/reaction). Moreover, the outstanding performance of M-D3 was validated in testing 20 clinical patient samples with HPV infection risk, showing a sensitivity of 92.3% and a specificity of 100%. By integrating the dual-droplet generator, CRISPR-Cas12a, and multiplexed RPA, the M-D3 platform provides an efficient way to discriminate the two most harmful HPV subtypes and holds great potential in the applications of multiplexed nucleic acid testing.


Subject(s)
Human papillomavirus 16 , Papillomavirus Infections , Humans , Human papillomavirus 16/genetics , Human papillomavirus 18/genetics , CRISPR-Cas Systems , Papillomavirus Infections/diagnosis , Microfluidics , Human Papillomavirus Viruses , Nucleotidyltransferases , Recombinases , Nucleic Acid Amplification Techniques
19.
Biochem Biophys Res Commun ; 653: 133-139, 2023 04 23.
Article in English | MEDLINE | ID: mdl-36868077

ABSTRACT

The Arabidopsis WRKY11 (AtWRKY11) protein is an important transcription factor involved in plant response to biotic and abiotic stresses. Its DNA-binding domain specifically binds to gene promoter regions harboring the W-box consensus motif. Herein we report the high-resolution structure of the AtWRKY11 DNA-binding domain (DBD) determined by solution NMR spectroscopy. The results show that AtWRKY11-DBD adopts an all-ß fold comprising five ß-strands packed in an antiparallel topology, stabilized by a zinc-finger motif. Structural comparison reveals that the long ß1-ß2 loop shows the highest structural variation from other available WRKY domain structures. Moreover, this loop was further found to contribute to the binding between AtWRKY11-DBD and W-box DNA. Our current study provides atomic-level structural basis for further understanding the structure-function relationship of plant WRKY proteins.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis/genetics , Arabidopsis/metabolism , DNA-Binding Proteins/metabolism , Amino Acid Sequence , Transcription Factors/metabolism , Plant Proteins/metabolism , DNA , Gene Expression Regulation, Plant , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism
20.
Biochem Biophys Res Commun ; 642: 50-56, 2023 01 29.
Article in English | MEDLINE | ID: mdl-36563628

ABSTRACT

Retinoid X receptor (RXRα) is a nuclear receptor (NR) for retinoic acid (RA) and regulates various NR signaling pathways. Ligand-binding domain (LBD) of RXRα can bind with its ligand 9-cis-RA and cofactors, and mediate the forming of homodimer and homotetramer of RXRα and its heterodimer with other NRs, conferring RXRα the ability to play complicated roles in development and diseases. Due to the coexistence of monomer, dimer and tetramer, there are difficulties to study the structure and interaction of RXRα-LBD with its ligands and cofactors in solution and to distinguish the roles of different forms of RXRα in cell. Here, through analyzing available structures of RXRα-LBD, we selected two residues, D379 and L420, in the homodimer interface to design three mutants of RXRα-LBD. Recombinant proteins of the three mutants showed decreased proportions of dimer and tetramer but unchanged overall structure and binding affinities to 9-cis-RA, corepressor SMRT, and coactivator SRC2. Especially, the double-site mutant RXRα-LBDD379A-L420G existed as a uniform monomer. Furthermore, L420 was found to play a similar role in forming RXRα-LBD homodimer and its heterodimer with various NRs, while the role of D379 varies a lot, as it shows almost no interaction with RARα/ß, LXRα/ß, and THRα/ß. This study provides a new insight into the mechanism for forming RXRα-LBD homodimer and its heterodimer with other NRs, and will facilitate the studies on the structure and interaction of RXRα-LBD with ligands, cofactors and drugs in solution, and the broad physiological functions of RXRα cooperating with various NRs in cell.


Subject(s)
Retinoid X Receptor alpha , Tretinoin , Tretinoin/metabolism , Ligands , Retinoid X Receptor alpha/genetics , Retinoid X Receptor alpha/metabolism , Alitretinoin , Mutation
SELECTION OF CITATIONS
SEARCH DETAIL