Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 5.815
Filter
Add more filters

Publication year range
1.
Cell ; 187(2): 312-330.e22, 2024 01 18.
Article in English | MEDLINE | ID: mdl-38157854

ABSTRACT

The FERONIA (FER)-LLG1 co-receptor and its peptide ligand RALF regulate myriad processes for plant growth and survival. Focusing on signal-induced cell surface responses, we discovered that intrinsically disordered RALF triggers clustering and endocytosis of its cognate receptors and FER- and LLG1-dependent endocytosis of non-cognate regulators of diverse processes, thus capable of broadly impacting downstream responses. RALF, however, remains extracellular. We demonstrate that RALF binds the cell wall polysaccharide pectin. They phase separate and recruit FER and LLG1 into pectin-RALF-FER-LLG1 condensates to initiate RALF-triggered cell surface responses. We show further that two frequently encountered environmental challenges, elevated salt and temperature, trigger RALF-pectin phase separation, promiscuous receptor clustering and massive endocytosis, and that this process is crucial for recovery from stress-induced growth attenuation. Our results support that RALF-pectin phase separation mediates an exoskeletal mechanism to broadly activate FER-LLG1-dependent cell surface responses to mediate the global role of FER in plant growth and survival.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Phosphotransferases/metabolism , Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , Pectins/metabolism , Phase Separation , GPI-Linked Proteins/metabolism
2.
Nat Immunol ; 23(6): 904-915, 2022 06.
Article in English | MEDLINE | ID: mdl-35618834

ABSTRACT

Malignancy can be suppressed by the immune system. However, the classes of immunosurveillance responses and their mode of tumor sensing remain incompletely understood. Here, we show that although clear cell renal cell carcinoma (ccRCC) was infiltrated by exhaustion-phenotype CD8+ T cells that negatively correlated with patient prognosis, chromophobe RCC (chRCC) had abundant infiltration of granzyme A-expressing intraepithelial type 1 innate lymphoid cells (ILC1s) that positively associated with patient survival. Interleukin-15 (IL-15) promoted ILC1 granzyme A expression and cytotoxicity, and IL-15 expression in chRCC tumor tissue positively tracked with the ILC1 response. An ILC1 gene signature also predicted survival of a subset of breast cancer patients in association with IL-15 expression. Notably, ILC1s directly interacted with cancer cells, and IL-15 produced by cancer cells supported the expansion and anti-tumor function of ILC1s in a murine breast cancer model. Thus, ILC1 sensing of cancer cell IL-15 defines an immunosurveillance mechanism of epithelial malignancies.


Subject(s)
Breast Neoplasms , Interleukin-15/metabolism , Animals , Breast Neoplasms/genetics , CD8-Positive T-Lymphocytes , Female , Granzymes , Humans , Immunity, Innate , Lymphocytes , Mice
3.
Immunity ; 56(11): 2555-2569.e5, 2023 Nov 14.
Article in English | MEDLINE | ID: mdl-37967531

ABSTRACT

Tumors develop by invoking a supportive environment characterized by aberrant angiogenesis and infiltration of tumor-associated macrophages (TAMs). In a transgenic model of breast cancer, we found that TAMs localized to the tumor parenchyma and were smaller than mammary tissue macrophages. TAMs had low activity of the metabolic regulator mammalian/mechanistic target of rapamycin complex 1 (mTORC1), and depletion of negative regulator of mTORC1 signaling, tuberous sclerosis complex 1 (TSC1), in TAMs inhibited tumor growth in a manner independent of adaptive lymphocytes. Whereas wild-type TAMs exhibited inflammatory and angiogenic gene expression profiles, TSC1-deficient TAMs had a pro-resolving phenotype. TSC1-deficient TAMs relocated to a perivascular niche, depleted protein C receptor (PROCR)-expressing endovascular endothelial progenitor cells, and rectified the hyperpermeable blood vasculature, causing tumor tissue hypoxia and cancer cell death. TSC1-deficient TAMs were metabolically active and effectively eliminated PROCR-expressing endothelial cells in cell competition experiments. Thus, TAMs exhibit a TSC1-dependent mTORC1-low state, and increasing mTORC1 signaling promotes a pro-resolving state that suppresses tumor growth, defining an innate immune tumor suppression pathway that may be exploited for cancer immunotherapy.


Subject(s)
Endothelial Progenitor Cells , Tumor Suppressor Proteins , Animals , Humans , TOR Serine-Threonine Kinases/metabolism , Tuberous Sclerosis Complex 1 Protein/genetics , Tumor-Associated Macrophages/metabolism , Endothelial Progenitor Cells/metabolism , Endothelial Protein C Receptor , Mechanistic Target of Rapamycin Complex 1 , Neovascularization, Pathologic , Mammals
4.
Mol Cell ; 84(9): 1711-1726.e11, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38569554

ABSTRACT

N6-methyladenosine (m6A) is a crucial RNA modification that regulates diverse biological processes in human cells, but its co-transcriptional deposition and functions remain poorly understood. Here, we identified the RNA helicase DDX21 with a previously unrecognized role in directing m6A modification on nascent RNA for co-transcriptional regulation. DDX21 interacts with METTL3 for co-recruitment to chromatin through its recognition of R-loops, which can be formed co-transcriptionally as nascent transcripts hybridize onto the template DNA strand. Moreover, DDX21's helicase activity is needed for METTL3-mediated m6A deposition onto nascent RNA following recruitment. At transcription termination regions, this nexus of actions promotes XRN2-mediated termination of RNAPII transcription. Disruption of any of these steps, including the loss of DDX21, METTL3, or their enzymatic activities, leads to defective termination that can induce DNA damage. Therefore, we propose that the R-loop-DDX21-METTL3 nexus forges the missing link for co-transcriptional modification of m6A, coordinating transcription termination and genome stability.


Subject(s)
Adenosine , Adenosine/analogs & derivatives , DEAD-box RNA Helicases , Exoribonucleases , Genomic Instability , Methyltransferases , R-Loop Structures , RNA Polymerase II , Transcription Termination, Genetic , Humans , DEAD-box RNA Helicases/metabolism , DEAD-box RNA Helicases/genetics , Methyltransferases/metabolism , Methyltransferases/genetics , Adenosine/metabolism , Adenosine/genetics , Exoribonucleases/metabolism , Exoribonucleases/genetics , RNA Polymerase II/metabolism , RNA Polymerase II/genetics , HEK293 Cells , Chromatin/metabolism , Chromatin/genetics , DNA Damage , HeLa Cells , RNA/metabolism , RNA/genetics , Transcription, Genetic , RNA Methylation
5.
Immunity ; 55(11): 2044-2058.e5, 2022 11 08.
Article in English | MEDLINE | ID: mdl-36288724

ABSTRACT

Tumors are populated by antigen-presenting cells (APCs) including macrophage subsets with distinct origins and functions. Here, we examined how cancer impacts mononuclear phagocytic APCs in a murine model of breast cancer. Tumors induced the expansion of monocyte-derived tumor-associated macrophages (TAMs) and the activation of type 1 dendritic cells (DC1s), both of which expressed and required the transcription factor interferon regulatory factor-8 (IRF8). Although DC1s mediated cytotoxic T lymphocyte (CTL) priming in tumor-draining lymph nodes, TAMs promoted CTL exhaustion in the tumor, and IRF8 was required for TAMs' ability to present cancer cell antigens. TAM-specific IRF8 deletion prevented exhaustion of cancer-cell-reactive CTLs and suppressed tumor growth. Tumors from patients with immune-infiltrated renal cell carcinoma had abundant TAMs that expressed IRF8 and were enriched for an IRF8 gene expression signature. Furthermore, the TAM-IRF8 signature co-segregated with CTL exhaustion signatures across multiple cancer types. Thus, CTL exhaustion is promoted by TAMs via IRF8.


Subject(s)
Carcinoma, Renal Cell , Kidney Neoplasms , Humans , Animals , Mice , Tumor-Associated Macrophages , Interferon Regulatory Factors/genetics , Interferon Regulatory Factors/metabolism , T-Lymphocytes, Cytotoxic , Dendritic Cells
7.
Nature ; 605(7908): 139-145, 2022 05.
Article in English | MEDLINE | ID: mdl-35444279

ABSTRACT

Cellular transformation induces phenotypically diverse populations of tumour-infiltrating T cells1-5, and immune checkpoint blockade therapies preferentially target T cells that recognize cancer cell neoantigens6,7. Yet, how other classes of tumour-infiltrating T cells contribute to cancer immunosurveillance remains elusive. Here, in a survey of T cells in mouse and human malignancies, we identified a population of αß T cell receptor (TCR)-positive FCER1G-expressing innate-like T cells with high cytotoxic potential8 (ILTCKs). These cells were broadly reactive to unmutated self-antigens, arose from distinct thymic progenitors following early encounter with cognate antigens, and were continuously replenished by thymic progenitors during tumour progression. Notably, expansion and effector differentiation of intratumoural ILTCKs depended on interleukin-15 (IL-15) expression in cancer cells, and inducible activation of IL-15 signalling in adoptively transferred ILTCK progenitors suppressed tumour growth. Thus, the antigen receptor self-reactivity, unique ontogeny, and distinct cancer cell-sensing mechanism distinguish ILTCKs from conventional cytotoxic T cells, and define a new class of tumour-elicited immune response.


Subject(s)
Immunity, Innate , Interleukin-15 , Neoplasms , Animals , Cell Differentiation , Mice , Neoplasms/metabolism , Receptors, Antigen, T-Cell/metabolism , T-Lymphocytes, Cytotoxic/metabolism
8.
Genome Res ; 34(2): 272-285, 2024 03 20.
Article in English | MEDLINE | ID: mdl-38479836

ABSTRACT

mRNA translation relies on identifying translation initiation sites (TISs) in mRNAs. Alternative TISs are prevalent across plant transcriptomes, but the mechanisms for their recognition are unclear. Using ribosome profiling and machine learning, we developed models for predicting alternative TISs in the tomato (Solanum lycopersicum). Distinct feature sets were predictive of AUG and nonAUG TISs in 5' untranslated regions and coding sequences, including a novel CU-rich sequence that promoted plant TIS activity, a translational enhancer found across dicots and monocots, and humans and viruses. Our results elucidate the mechanistic and evolutionary basis of TIS recognition, whereby cis-regulatory RNA signatures affect start site selection. The TIS prediction model provides global estimates of TISs to discover neglected protein-coding genes across plant genomes. The prevalence of cis-regulatory signatures across plant species, humans, and viruses suggests their broad and critical roles in reprogramming the translational landscape.


Subject(s)
Eukaryota , Peptide Chain Initiation, Translational , Humans , Peptide Chain Initiation, Translational/genetics , Eukaryota/genetics , Plants/genetics , 5' Untranslated Regions , RNA, Messenger/genetics , Codon, Initiator
9.
Chem Rev ; 124(5): 2138-2204, 2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38421811

ABSTRACT

Interfacial engineering has long been a vital means of improving thin-film device performance, especially for organic electronics, perovskites, and hybrid devices. It greatly facilitates the fabrication and performance of solution-processed thin-film devices, including organic field effect transistors (OFETs), organic solar cells (OSCs), perovskite solar cells (PVSCs), and organic light-emitting diodes (OLEDs). However, due to the limitation of traditional interfacial materials, further progress of these thin-film devices is hampered particularly in terms of stability, flexibility, and sensitivity. The deadlock has gradually been broken through the development of self-assembled monolayers (SAMs), which possess distinct benefits in transparency, diversity, stability, sensitivity, selectivity, and surface passivation ability. In this review, we first showed the evolution of SAMs, elucidating their working mechanisms and structure-property relationships by assessing a wide range of SAM materials reported to date. A comprehensive comparison of various SAM growth, fabrication, and characterization methods was presented to help readers interested in applying SAM to their works. Moreover, the recent progress of the SAM design and applications in mainstream thin-film electronic devices, including OFETs, OSCs, PVSCs and OLEDs, was summarized. Finally, an outlook and prospects section summarizes the major challenges for the further development of SAMs used in thin-film devices.

10.
Nature ; 587(7832): 121-125, 2020 11.
Article in English | MEDLINE | ID: mdl-33087933

ABSTRACT

Cancer arises from malignant cells that exist in dynamic multilevel interactions with the host tissue. Cancer therapies aiming to directly kill cancer cells, including oncogene-targeted therapy and immune-checkpoint therapy that revives tumour-reactive cytotoxic T lymphocytes, are effective in some patients1,2, but acquired resistance frequently develops3,4. An alternative therapeutic strategy aims to rectify the host tissue pathology, including abnormalities in the vasculature that foster cancer progression5,6; however, neutralization of proangiogenic factors such as vascular endothelial growth factor A (VEGFA) has had limited clinical benefits7,8. Here, following the finding that transforming growth factor-ß (TGF-ß) suppresses T helper 2 (TH2)-cell-mediated cancer immunity9, we show that blocking TGF-ß signalling in CD4+ T cells remodels the tumour microenvironment and restrains cancer progression. In a mouse model of breast cancer resistant to immune-checkpoint or anti-VEGF therapies10,11, inducible genetic deletion of the TGF-ß receptor II (TGFBR2) in CD4+ T cells suppressed tumour growth. For pharmacological blockade, we engineered a bispecific receptor decoy by attaching the TGF-ß-neutralizing TGFBR2 extracellular domain to ibalizumab, a non-immunosuppressive CD4 antibody12,13, and named it CD4 TGF-ß Trap (4T-Trap). Compared with a non-targeted TGF-ß-Trap, 4T-Trap selectively inhibited TH cell TGF-ß signalling in tumour-draining lymph nodes, causing reorganization of tumour vasculature and cancer cell death, a process dependent on the TH2 cytokine interleukin-4 (IL-4). Notably, the 4T-Trap-induced tumour tissue hypoxia led to increased VEGFA expression. VEGF inhibition enhanced the starvation-triggered cancer cell death and amplified the antitumour effect of 4T-Trap. Thus, targeted TGF-ß signalling blockade in helper T cells elicits an effective tissue-level cancer defence response that can provide a basis for therapies directed towards the cancer environment.


Subject(s)
Breast Neoplasms/therapy , Immunotherapy , Signal Transduction/drug effects , T-Lymphocytes, Helper-Inducer/drug effects , T-Lymphocytes, Helper-Inducer/immunology , Transforming Growth Factor beta/antagonists & inhibitors , Animals , Antibodies, Monoclonal/chemistry , Antibodies, Monoclonal/immunology , Antibodies, Monoclonal/pharmacology , Breast Neoplasms/blood supply , Breast Neoplasms/immunology , Breast Neoplasms/pathology , Cell Death/drug effects , Cell Hypoxia , Cell Line, Tumor , Female , HEK293 Cells , Humans , Interleukin-4/immunology , Lymph Nodes/cytology , Lymph Nodes/drug effects , Lymph Nodes/immunology , Male , Mice , Receptor, Transforming Growth Factor-beta Type II/chemistry , Receptor, Transforming Growth Factor-beta Type II/immunology , T-Lymphocytes, Helper-Inducer/metabolism , Transforming Growth Factor beta/immunology , Vascular Endothelial Growth Factor A/antagonists & inhibitors , Vascular Endothelial Growth Factor A/metabolism
11.
Nature ; 579(7800): 561-566, 2020 03.
Article in English | MEDLINE | ID: mdl-32214247

ABSTRACT

Species that propagate by sexual reproduction actively guard against the fertilization of an egg by multiple sperm (polyspermy). Flowering plants rely on pollen tubes to transport their immotile sperm to fertilize the female gametophytes inside ovules. In Arabidopsis, pollen tubes are guided by cysteine-rich chemoattractants to target the female gametophyte1,2. The FERONIA receptor kinase has a dual role in ensuring sperm delivery and blocking polyspermy3. It has previously been reported that FERONIA generates a female gametophyte environment that is required for sperm release4. Here we show that FERONIA controls several functionally linked conditions to prevent the penetration of female gametophytes by multiple pollen tubes in Arabidopsis. We demonstrate that FERONIA is crucial for maintaining de-esterified pectin at the filiform apparatus, a region of the cell wall at the entrance to the female gametophyte. Pollen tube arrival at the ovule triggers the accumulation of nitric oxide at the filiform apparatus in a process that is dependent on FERONIA and mediated by de-esterified pectin. Nitric oxide nitrosates both precursor and mature forms of the chemoattractant LURE11, respectively blocking its secretion and interaction with its receptor, to suppress pollen tube attraction. Our results elucidate a mechanism controlled by FERONIA in which the arrival of the first pollen tube alters ovular conditions to disengage pollen tube attraction and prevent the approach and penetration of the female gametophyte by late-arriving pollen tubes, thus averting polyspermy.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/cytology , Arabidopsis/metabolism , Fertilization , Intercellular Signaling Peptides and Proteins/metabolism , Nitric Oxide/metabolism , Ovule/metabolism , Pectins/metabolism , Phosphotransferases/metabolism , Pollen Tube/metabolism , Cell Wall/chemistry , Cell Wall/metabolism , Ovule/cytology , Pectins/chemistry , Pollen Tube/cytology
12.
Nature ; 588(7836): 71-76, 2020 12.
Article in English | MEDLINE | ID: mdl-33230334

ABSTRACT

The constituent particles of matter can arrange themselves in various ways, giving rise to emergent phenomena that can be surprisingly rich and often cannot be understood by studying only the individual constituents. Discovering and understanding the emergence of such phenomena in quantum materials-especially those in which multiple degrees of freedom or energy scales are delicately balanced-is of fundamental interest to condensed-matter research1,2. Here we report on the surprising observation of emergent ferroelectricity in graphene-based moiré heterostructures. Ferroelectric materials show electrically switchable electric dipoles, which are usually formed by spatial separation between the average centres of positive and negative charge within the unit cell. On this basis, it is difficult to imagine graphene-a material composed of only carbon atoms-exhibiting ferroelectricity3. However, in this work we realize switchable ferroelectricity in Bernal-stacked bilayer graphene sandwiched between two hexagonal boron nitride layers. By introducing a moiré superlattice potential (via aligning bilayer graphene with the top and/or bottom boron nitride crystals), we observe prominent and robust hysteretic behaviour of the graphene resistance with an externally applied out-of-plane displacement field. Our systematic transport measurements reveal a rich and striking response as a function of displacement field and electron filling, and beyond the framework of conventional ferroelectrics. We further directly probe the ferroelectric polarization through a non-local monolayer graphene sensor. Our results suggest an unconventional, odd-parity electronic ordering in the bilayer graphene/boron nitride moiré system. This emergent moiré ferroelectricity may enable ultrafast, programmable and atomically thin carbon-based memory devices.

13.
Nature ; 587(7832): 115-120, 2020 11.
Article in English | MEDLINE | ID: mdl-33087928

ABSTRACT

The immune system uses two distinct defence strategies against infections: microbe-directed pathogen destruction characterized by type 1 immunity1, and host-directed pathogen containment exemplified by type 2 immunity in induction of tissue repair2. Similar to infectious diseases, cancer progresses with self-propagating cancer cells inflicting host-tissue damage. The immunological mechanisms of cancer cell destruction are well defined3-5, but whether immune-mediated cancer cell containment can be induced remains poorly understood. Here we show that depletion of transforming growth factor-ß receptor 2 (TGFBR2) in CD4+ T cells, but not CD8+ T cells, halts cancer progression as a result of tissue healing and remodelling of the blood vasculature, causing cancer cell hypoxia and death in distant avascular regions. Notably, the host-directed protective response is dependent on the T helper 2 cytokine interleukin-4 (IL-4), but not the T helper 1 cytokine interferon-γ (IFN-γ). Thus, type 2 immunity can be mobilized as an effective tissue-level defence mechanism against cancer.


Subject(s)
Neoplasms/immunology , Neoplasms/pathology , Signal Transduction/immunology , Th2 Cells/immunology , Transforming Growth Factor beta/immunology , Animals , CD8-Positive T-Lymphocytes/immunology , Cell Death/drug effects , Cell Hypoxia , Cell Line , Disease Progression , Female , Gene Expression Regulation/immunology , Humans , Interferon-gamma/immunology , Interleukin-4/immunology , Male , Mice , Mice, Inbred C57BL , Neoplasms/blood supply , Neoplasms/metabolism , Receptor, Transforming Growth Factor-beta Type II/deficiency , Signal Transduction/drug effects , Stromal Cells/cytology , Stromal Cells/immunology , Th2 Cells/metabolism , Transforming Growth Factor beta/antagonists & inhibitors
14.
Proc Natl Acad Sci U S A ; 120(32): e2303400120, 2023 08 08.
Article in English | MEDLINE | ID: mdl-37523556

ABSTRACT

Amplification of chromosome 7p11 (7p11) is the most common alteration in primary glioblastoma (GBM), resulting in gains of epidermal growth factor receptor (EGFR) copy number in 50 to 60% of GBM tumors. However, treatment strategies targeting EGFR have thus far failed in clinical trials, and the underlying mechanism remains largely unclear. We here demonstrate that EGFR amplification at the 7p11 locus frequently encompasses its neighboring genes and identifies SEC61G as a critical regulator facilitating GBM immune evasion and tumor growth. We found that SEC61G is always coamplified with EGFR and is highly expressed in GBM. As an essential subunit of the SEC61 translocon complex, SEC61G promotes translocation of newly translated immune checkpoint ligands (ICLs, including PD-L1, PVR, and PD-L2) into the endoplasmic reticulum and promotes their glycosylation, stabilization, and membrane presentation. Depletion of SEC61G promotes the infiltration and cytolytic activity of CD8+ T cells and thus inhibits GBM occurrence. Further, SEC61G inhibition augments the therapeutic efficiency of EGFR tyrosine kinase inhibitors in mice. Our study demonstrates a critical role of SEC61G in GBM immune evasion, which provides a compelling rationale for combination therapy of EGFR-amplified GBMs.


Subject(s)
Brain Neoplasms , Glioblastoma , Animals , Mice , Glioblastoma/pathology , CD8-Positive T-Lymphocytes/metabolism , ErbB Receptors/metabolism , Cell Line, Tumor , Brain Neoplasms/pathology
15.
Lancet ; 404(10454): 764-772, 2024 Aug 24.
Article in English | MEDLINE | ID: mdl-39181596

ABSTRACT

BACKGROUND: Antiviral post-exposure prophylaxis with neuraminidase inhibitors can reduce the incidence of influenza and the risk of symptomatic influenza, but the efficacy of the other classes of antiviral remains unclear. To support an update of WHO influenza guidelines, this systematic review and network meta-analysis evaluated antiviral drugs for post-exposure prophylaxis of influenza. METHODS: We systematically searched MEDLINE, Embase, Cochrane Central Register of Controlled Trials, Cumulative Index to Nursing and Allied Health Literature, Global Health, Epistemonikos, and ClinicalTrials.gov for randomised controlled trials published up to Sept 20, 2023 that evaluated the efficacy and safety of antivirals compared with another antiviral or placebo or standard care for prevention of influenza. Pairs of reviewers independently screened studies, extracted data, and assessed the risk of bias. We performed network meta-analyses with frequentist random effects model and assessed the certainty of evidence using the GRADE (Grading of Recommendations Assessment, Development and Evaluation) approach. The outcomes of interest were symptomatic or asymptomatic infection, admission to hospital, all-cause mortality, adverse events related to antivirals, and serious adverse events. This study is registered with PROSPERO, CRD42023466450. FINDINGS: Of 11 845 records identified by our search, 33 trials of six antivirals (zanamivir, oseltamivir, laninamivir, baloxavir, amantadine, and rimantadine) that enrolled 19 096 individuals (mean age 6·75-81·15 years) were included in this systematic review and network meta-analysis. Most of the studies were rated as having a low risk of bias. Zanamivir, oseltamivir, laninamivir, and baloxavir probably achieve important reductions in symptomatic influenza in individuals at high risk of severe disease (zanamivir: risk ratio 0·35, 95% CI 0·25-0·50; oseltamivir: 0·40, 0·26-0·62; laninamivir: 0·43, 0·30-0·63; baloxavir: 0·43, 0·23-0·79; moderate certainty) when given promptly (eg, within 48 h) after exposure to seasonal influenza. These antivirals probably do not achieve important reductions in symptomatic influenza in individuals at low risk of severe disease when given promptly after exposure to seasonal influenza (moderate certainty). Zanamivir, oseltamivir, laninamivir, and baloxavir might achieve important reductions in symptomatic zoonotic influenza in individuals exposed to novel influenza A viruses associated with severe disease in infected humans when given promptly after exposure (low certainty). Oseltamivir, laninamivir, baloxavir, and amantadine probably decrease the risk of all influenza (symptomatic and asymptomatic infection; moderate certainty). Zanamivir, oseltamivir, laninamivir, and baloxavir probably have little or no effect on prevention of asymptomatic influenza virus infection or all-cause mortality (high or moderate certainty). Oseltamivir probably has little or no effect on admission to hospital (moderate certainty). All six antivirals do not significantly increase the incidence of drug-related adverse events or serious adverse events, although the certainty of evidence varies. INTERPRETATION: Post-exposure prophylaxis with zanamivir, oseltamivir, laninamivir, or baloxavir probably decreases the risk of symptomatic seasonal influenza in individuals at high risk for severe disease after exposure to seasonal influenza viruses. Post-exposure prophylaxis with zanamivir, oseltamivir, laninamivir, or baloxavir might reduce the risk of symptomatic zoonotic influenza after exposure to novel influenza A viruses associated with severe disease in infected humans. FUNDING: World Health Organization.


Subject(s)
Antiviral Agents , Influenza, Human , Post-Exposure Prophylaxis , Adolescent , Adult , Aged , Child , Female , Humans , Male , Middle Aged , Young Adult , Antiviral Agents/therapeutic use , Antiviral Agents/adverse effects , Influenza, Human/prevention & control , Network Meta-Analysis , Post-Exposure Prophylaxis/methods , Randomized Controlled Trials as Topic , Aged, 80 and over
16.
Lancet ; 404(10454): 753-763, 2024 Aug 24.
Article in English | MEDLINE | ID: mdl-39181595

ABSTRACT

BACKGROUND: The optimal antiviral drug for treatment of severe influenza remains unclear. To support updated WHO influenza clinical guidelines, this systematic review and network meta-analysis evaluated antivirals for treatment of patients with severe influenza. METHODS: We systematically searched MEDLINE, Embase, Cochrane Central Register of Controlled Trials, Cumulative Index to Nursing and Allied Health Literature, Global Health, Epistemonikos, and ClinicalTrials.gov for randomised controlled trials published up to Sept 20, 2023, that enrolled hospitalised patients with suspected or laboratory-confirmed influenza and compared direct-acting influenza antivirals against placebo, standard care, or another antiviral. Pairs of coauthors independently extracted data on study characteristics, patient characteristics, antiviral characteristics, and outcomes, with discrepancies resolved by discussion or by a third coauthor. Key outcomes of interest were time to alleviation of symptoms, duration of hospitalisation, admission to intensive care unit, progression to invasive mechanical ventilation, duration of mechanical ventilation, mortality, hospital discharge destination, emergence of antiviral resistance, adverse events, adverse events related to treatments, and serious adverse events. We conducted frequentist network meta-analyses to summarise the evidence and evaluated the certainty of evidence using the GRADE (Grading of Recommendations Assessment, Development and Evaluation) approach. This study is registered with PROSPERO, CRD42023456650. FINDINGS: Of 11 878 records identified by our search, eight trials with 1424 participants (mean age 36-60 years for trials that reported mean or median age; 43-78% male patients) were included in this systematic review, of which six were included in the network meta-analysis. The effects of oseltamivir, peramivir, or zanamivir on mortality compared with placebo or standard care without placebo for seasonal and zoonotic influenza were of very low certainty. Compared with placebo or standard care, we found low certainty evidence that duration of hospitalisation for seasonal influenza was reduced with oseltamivir (mean difference -1·63 days, 95% CI -2·81 to -0·45) and peramivir (-1·73 days, -3·33 to -0·13). Compared with standard care, there was little or no difference in time to alleviation of symptoms with oseltamivir (0·34 days, -0·86 to 1·54; low certainty evidence) or peramivir (-0·05 days, -0·69 to 0·59; low certainty evidence). There were no differences in adverse events or serious adverse events with oseltamivir, peramivir, and zanamivir (very low certainty evidence). Uncertainty remains about the effects of antivirals on other outcomes for patients with severe influenza. Due to the small number of eligible trials, we could not test for publication bias. INTERPRETATION: In hospitalised patients with severe influenza, oseltamivir and peramivir might reduce duration of hospitalisation compared with standard care or placebo, although the certainty of evidence is low. The effects of all antivirals on mortality and other important patient outcomes are very uncertain due to scarce data from randomised controlled trials. FUNDING: World Health Organization.


Subject(s)
Antiviral Agents , Influenza, Human , Humans , Antiviral Agents/therapeutic use , Antiviral Agents/adverse effects , Hospitalization/statistics & numerical data , Influenza, Human/drug therapy , Network Meta-Analysis , Oseltamivir/therapeutic use , Oseltamivir/adverse effects , Randomized Controlled Trials as Topic , Zanamivir/therapeutic use
17.
Genome Res ; 2022 Aug 10.
Article in English | MEDLINE | ID: mdl-35948368

ABSTRACT

Understanding the genetic mechanisms of phenotypic variation in hybrids between domestic animals and their wild relatives may aid germplasm innovation. Here, we report the high-quality genome assemblies of a male Pamir argali (O ammon polii, 2n = 56), a female Tibetan sheep (O aries, 2n = 54), and a male hybrid of Pamir argali and domestic sheep, and the high-throughput sequencing of 425 ovine animals, including the hybrids of argali and domestic sheep. We detected genomic synteny between Chromosome 2 of sheep and two acrocentric chromosomes of argali. We revealed consistent satellite repeats around the chromosome breakpoints, which could have resulted in chromosome fusion. We observed many more hybrids with karyotype 2n = 54 than with 2n = 55, which could be explained by the selfish centromeres, the possible decreased rate of normal/balanced sperm, and the increased incidence of early pregnancy loss in the aneuploid ewes or rams. We identified genes and variants associated with important morphological and production traits (e.g., body weight, cannon circumference, hip height, and tail length) that show significant variations. We revealed a strong selective signature at the mutation (c.334C > A, p.G112W) in TBXT and confirmed its association with tail length among sheep populations of wide geographic and genetic origins. We produced an intercross population of 110 F2 offspring with varied number of vertebrae and validated the causal mutation by whole-genome association analysis. We verified its function using CRISPR-Cas9 genome editing. Our results provide insights into chromosomal speciation and phenotypic evolution and a foundation of genetic variants for the breeding of sheep and other animals.

18.
Brief Bioinform ; 24(2)2023 03 19.
Article in English | MEDLINE | ID: mdl-36772998

ABSTRACT

Chronic diseases, because of insidious onset and long latent period, have become the major global disease burden. However, the current chronic disease diagnosis methods based on genetic markers or imaging analysis are challenging to promote completely due to high costs and cannot reach universality and popularization. This study analyzed massive data from routine blood and biochemical test of 32 448 patients and developed a novel framework for cost-effective chronic disease prediction with high accuracy (AUC 87.32%). Based on the best-performing XGBoost algorithm, 20 classification models were further constructed for 17 types of chronic diseases, including 9 types of cancers, 5 types of cardiovascular diseases and 3 types of mental illness. The highest accuracy of the model was 90.13% for cardia cancer, and the lowest was 76.38% for rectal cancer. The model interpretation with the SHAP algorithm showed that CREA, R-CV, GLU and NEUT% might be important indices to identify the most chronic diseases. PDW and R-CV are also discovered to be crucial indices in classifying the three types of chronic diseases (cardiovascular disease, cancer and mental illness). In addition, R-CV has a higher specificity for cancer, ALP for cardiovascular disease and GLU for mental illness. The association between chronic diseases was further revealed. At last, we build a user-friendly explainable machine-learning-based clinical decision support system (DisPioneer: http://bioinfor.imu.edu.cn/dispioneer) to assist in predicting, classifying and treating chronic diseases. This cost-effective work with simple blood tests will benefit more people and motivate clinical implementation and further investigation of chronic diseases prevention and surveillance program.


Subject(s)
Cardiovascular Diseases , Mental Disorders , Humans , Cardiovascular Diseases/diagnosis , Cardiovascular Diseases/genetics , Cost-Benefit Analysis , Chronic Disease , Algorithms
19.
Brief Bioinform ; 25(1)2023 11 22.
Article in English | MEDLINE | ID: mdl-38095856

ABSTRACT

The success of immune checkpoint blockade (ICB) promotes the immunotherapy to be a new pillar in cancer treatment. However, the low response rate of the ICB therapy limits its application. To increase the response rate and enhance efficacy, the ICB combination therapy has emerged and its clinical trials are increasing. Nevertheless, the gene expression profile and its pattern of ICB combination were not comprehensively studied, which limits the understanding of the ICB combination therapy and the identification of new drugs. Here, we constructed ICBcomb (http://bioinfo.life.hust.edu.cn/ICBcomb/), a comprehensive database, by analyzing the human and mouse expression data of the ICB combination therapy and comparing them between groups treated with ICB, other drugs or their combinations. ICBcomb contains 1399 samples across 29 cancer types involving 52 drugs. It provides a user-friendly web interface for demonstrating the results of the available comparisons in the ICB combination therapy datasets with five functional modules: [1, 2] the 'Dataset/Disease' modules for browsing the expression, enrichment and comparison results in each dataset or disease; [3] the 'Gene' module for inputting a gene symbol and displaying its expression and comparison results across datasets/diseases; [4] the 'Gene Set' module for GSVA/GSEA enrichment analysis on the built-in gene sets and the user-input gene sets in different comparisons; [5] the 'Immune Cell' module for immune cell infiltration comparison between different groups by immune cell abundance analysis. The ICBcomb database provides the first resource for gene expression profile and comparison in ICB combination therapy, which may provide clues for discovering the mechanism of effective combination strategies and new combinatory drugs.


Subject(s)
Immune Checkpoint Inhibitors , Immunotherapy , Humans , Animals , Mice , Databases, Factual , Gene Regulatory Networks
20.
Hepatology ; 79(1): 61-78, 2024 Jan 01.
Article in English | MEDLINE | ID: mdl-36683360

ABSTRACT

BACKGROUND AND AIMS: Deregulation of adenosine-to-inosine editing by adenosine deaminase acting on RNA 1 (ADAR1) leads to tumor-specific transcriptome diversity with prognostic values for HCC. However, ADAR1 editase-dependent mechanisms governing liver cancer stem cell (LCSC) generation and maintenance have remained elusive. APPROACH AND RESULTS: RNA-seq profiling identified ADAR1-responsive recoding editing events in HCC and showed editing frequency of GLI1 , rather than transcript abundance was clinically relevant. Functional differences in LCSC self-renewal and tumor aggressiveness between wild-type (GLI1 wt ) and edited GLI1 (GLI1 edit ) were elucidated. We showed that overediting of GLI1 induced an arginine-to-glycine (R701G) substitution, augmenting tumor-initiating potential and exhibiting a more aggressive phenotype. GLI1 R701G harbored weak affinity to SUFU, which in turn, promoted its cytoplasmic-to-nuclear translocation to support LCSC self-renewal by increased pluripotency gene expression. Moreover, editing predisposed to stabilize GLI1 by abrogating ß-TrCP-GLI1 interaction. Integrative analysis of single-cell transcriptome further revealed hyperactivated mitophagy in ADAR1-enriched LCSCs. GLI1 editing promoted a metabolic switch to oxidative phosphorylation to control stress and stem-like state through PINK1-Parkin-mediated mitophagy in HCC, thereby conferring exclusive metastatic and sorafenib-resistant capacities. CONCLUSIONS: Our findings demonstrate a novel role of ADAR1 as an active regulator for LCSCs properties through editing GLI1 in the highly heterogeneous HCC.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Humans , Liver Neoplasms/pathology , Carcinoma, Hepatocellular/pathology , Zinc Finger Protein GLI1/metabolism , RNA-Binding Proteins/metabolism , Mitophagy , Neoplastic Stem Cells/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL