Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
1.
Pestic Biochem Physiol ; 199: 105797, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38458690

ABSTRACT

Antennae and legs (primarily the tarsal segments) of insects are the foremost sensory organs that contact a diverse range of toxic chemicals including insecticides. Binding proteins expressed in the two tissues are potential molecular candidates serving as the binding and sequestering of insecticides, like chemosensory proteins (CSPs). Insect CSPs endowed with multiple roles have been suggested to participate in insecticide resistance, focusing mainly on moths, aphids and mosquitos. Yet, the molecular underpinnings underlying the interactions of cerambycid CSPs and insecticides remain unexplored. Here, we present binding properties of three antenna- and tarsus-enriched RhorCSPs (RhorCSP1, CSP2 and CSP3) in Rhaphuma horsfieldi to eight insecticide classes totaling 15 chemicals. From the transcriptome of this beetle, totally 16 CSP-coding genes were found, with seven full-length sequences. In phylogeny, these RhorCSPs were distributed dispersedly in different clades. Expression profiles revealed the abundant expression of RhorCSP1, CSP2 and CSP3 in antennae and tarsi, thus as representatives for studying the protein-insecticide interactions. Binding assays showed that the three RhorCSPs were tuned differentially to insecticides but exhibited the highest affinities with hexaflumuron, chlorpyrifos and rotenone (dissociation constants <13 µM). In particular, RhorCSP3 could interact strongly with 10 of tested insecticides, of which four residues (Tyr25, Phe42, Val65 and Phe68) contributed significantly to the binding of six, four, three and four ligands, respectively. Of these, the binding of four mutated RhorCSP3s to a botanical insecticide rotenone was significantly weakened compared to the wildtype protein. Furthermore, we also evidenced that RhorCSP3 was a broadly-tuned carrier protein in response to a wide variety of plant odorants outside insecticides. Altogether, our findings shed light on different binding mechanisms and odorant-tuning profiles of three RhorCSPs in R. horsfieldi and identify key residues of the RhorCSP3-insecticide interactions.


Subject(s)
Coleoptera , Insecticides , Animals , Insecticides/pharmacology , Insecticides/metabolism , Ankle , Rotenone , Coleoptera/genetics , Coleoptera/metabolism , Insecta/genetics , Transcriptome , Phylogeny , Insect Proteins/metabolism , Arthropod Antennae/metabolism , Gene Expression Profiling
2.
Pestic Biochem Physiol ; 200: 105810, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38582582

ABSTRACT

Ectropis grisescens (Lepidoptera: Geometridae) is a destructive tea pest in China. Mimesis, characterized by changing body color, is an important trait of E. grisescens larvae. Hence, identifying melanin pathway-related genes may contribute to developing new pest control strategies. In the present study, we cloned Egebony, a gene potentially involved in melanin pigmentation in E. grisescens, and subsequently conducted CRISPR/Cas9-mediated targeted mutagenesis of Egebony to analyze its role in pigmentation and development. At the larvae, prepupae, and pupae stages, Egebony-knockout individuals exhibited darker pigmentation than the wild-type. However, Egebony knockout did not impact the colors of sclerotized appendants, including ocelli, setae, and claws. While mutant pupae could successfully develop into moths, they were unable to emerge from the puparium. Notably, embryo hatchability and larval survival of mutants remained normal. Further investigation indicated that mutant pupae exhibited significantly stronger shearing force than the wild-type, with the pigmented layer of mutant pupae appearing darker and thicker. Collectively, these results suggest that the loss of Egebony might increase the rigidity of the puparium and prevent moth eclosion. This study provides new insights into understanding the function and diversification of ebony in insect development and identifies a lethal gene that can be manipulated for developing effective pest control strategies.


Subject(s)
Moths , Animals , Moths/genetics , Melanins/genetics , CRISPR-Cas Systems , Larva/genetics , Pigmentation/genetics
3.
Pestic Biochem Physiol ; 197: 105678, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38072535

ABSTRACT

The orientation of the oligophagous cone-feeding moth Dioryctria abietella (Lepidoptera: Pyralidae) to host plants primarily relies on olfactory-related proteins, particularly those candidates highly expressed in antennae. Here, through a combination of expression profile, ligand-binding assay, molecular docking and site-directed mutagenesis strategies, we characterized the chemosensory protein (CSP) gene family in D. abietella. Quantitative real-time PCR (qPCR) analyses revealed the detectable expression of all 22 DabiCSPs in the antennae, of which seven genes were significantly enriched in this tissue. In addition, the majority of the genes (19/22 relatives) had the expression in at least one reproductive tissue. In the interactions of four antenna-dominant DabiCSPs and different chemical classes, DabiCSP1 was broadly tuned to 27 plant-derived odors, three man-made insecticides and one herbicide with high affinities (Ki < 6.60 µM). By contrast, three other DabiCSPs (DabiCSP4, CSP6 and CSP17) exhibited a narrow odor binding spectrum, in response to six compounds for each protein. Our mutation analyses combined with molecular docking simulations and binding assays further identified four key residues (Tyr25, Thr26, Ile65 and Val69) in the interactions of DabiCSP1 and ligands, of which binding abilities of this protein to 12, 15, 16 and three compounds were significantly decreased compared to the wildtype protein, respectively. Our study reveals different odor binding spectra of four DabiCSPs enriched in antennae and identifies key residues responsible for the binding of DabiCSP1 and potentially active compounds for the control of this pest.


Subject(s)
Moths , Humans , Animals , Molecular Docking Simulation , Ligands , Moths/metabolism , Odorants , Insect Proteins/metabolism , Arthropod Antennae/metabolism
4.
Genomics ; 113(4): 1876-1894, 2021 07.
Article in English | MEDLINE | ID: mdl-33839272

ABSTRACT

The common cutworm, Spodoptera litura, is a polyandrous moth with high reproductive ability. Sexual reproduction is a unique strategy for survival and reproduction of population in this species. However, to date available information about its reproductive genes is rare. Here, we combined transcriptomics, genomics and proteomics approaches to characterize reproductive-related proteins in S. litura. Illumina sequencing in parallel with the reference genome led to the yields of 12,161 reproductive genes, representing 47.83% of genes annotated in the genome. Further, 524 genes of 19 specific gene families annotated in the genome were detected in reproductive tissues of both sexes, some of which exhibited sex-biased and/or tissue-enriched expression. Of these, manual efforts together with the transcriptome analyses re-annotated 54 odorant binding proteins (OBPs) and 23 chemosensory proteins (CSPs) with an increase of 18 OBPs and one CSP compared to those previously annotated in the genome. Interestingly, at least 35 OBPs and 22 CSPs were transcribed in at least one reproductive tissue, suggestive of their involvement in reproduction. Further proteomic analysis revealed 2381 common proteins between virgin and mated female reproductive systems, 79 of which were differentially expressed. More importantly, 74 proteins exclusive to mated females were identified as transferred relatives, coupled with their specific or high expression in male reproductive systems. Of the transferred proteins, several conserved protein classes across insects were observed including OBPs, serpins, trypsins and juvenile hormone-binding proteins. Our current study has extensively surveyed reproductive genes in S. litura with an emphasis on the roles of OBPs and CSPs in reproduction, and identifies potentially transferred proteins serving as modulators of female post-mating behaviors.


Subject(s)
Receptors, Odorant , Transcriptome , Animals , Female , Gene Expression Profiling , Genomics , Insect Proteins/metabolism , Male , Proteomics , Receptors, Odorant/genetics , Reproduction/genetics , Spodoptera/genetics , Spodoptera/metabolism
5.
Genomics ; 113(1 Pt 2): 601-612, 2021 01.
Article in English | MEDLINE | ID: mdl-33002624

ABSTRACT

Lepidoptera (moths and butterflies) and Trichoptera (caddisflies), belonging to the superorder Amphiesmenoptera, are the most diverse insect orders as representatives of the terrestrial and aquatic insects, respectively. The insects of the two orders possess different biological and behavioral characteristics, especially their larvae, presumably resulting in the differences of the ionotropic receptor (IR) genes in numbers, sequence characteristics or gene structure. Here, we employed genomics, transcriptomics, bioinformatics, phylogenetics and molecular biology strategies to characterize the IR gene repertoire in Lepidoptera and Trichoptera. Genome and transcriptome analyses with exhaustive homology-based searches and manual efforts, in 32 lepidopterans and five trichopterans, led to the identification of 1449 genes encoding IRs with 1170 full-length sequences, representing the most comprehensive set of chemoreceptor superfamilies across the Amphiesmenoptera. Analysis of gene gains and losses in orthologous groups implied that some IRs were lost in related species, and multiple gene copies occurred mainly in divergent IRs (D-IRs) by gene duplications. Phylogenetic analysis of 2442 IR proteins from 67 species revealed that Lepidoptera and Trichoptera IRs could be classified into three subfamilies, i.e., 14 antennal IRs (A-IRs), five Lepidoptera-specific IRs (LS-IRs) and four D-IRs. Of the three subfamilies, A-IRs and LS-IRs members within orthologous groups exhibited high conservation of gene structure, but D-IRs shared extremely low amino acid identities (below 30%). Expression profiles revealed functional diversities of IRs from Bombyx mori and Papilio xuthus involving smell, taste or reproduction, in which some genes displayed sex-biased expression in antennae associated with specific chemosensory behaviors of female or male adults. Our current study has provided insights into the evolution, conservation and divergence of IRs between/within Lepidoptera and Trichoptera, and allows for further experiments to investigate IR functions.


Subject(s)
Bombyx/genetics , Evolution, Molecular , Insect Proteins/genetics , Receptors, Ionotropic Glutamate/genetics , Animals , Bombyx/metabolism , Insect Proteins/metabolism , Multigene Family , Phylogeny , Polymorphism, Genetic , Receptors, Ionotropic Glutamate/metabolism , Transcriptome
6.
Genomics ; 112(4): 2713-2728, 2020 07.
Article in English | MEDLINE | ID: mdl-32145380

ABSTRACT

Through an exhaustive homology-based approach, coupled with manual efforts, we annotated and characterized 128 sensory neuron membrane proteins (SNMPs) from genomes and transcriptomes of 22 coleopteran species, with 107 novel candidates. Remarkably, we discovered, for the first time, a novel SNMP group, defined as Group 4 based on the phylogeny, sequence characteristics, gene structure and organization. The lineage-specific expansions in SNMPs occurred mainly in the family Scarabaeidae, harboring 12 representatives in Onthophagus taurus as a typical gene duplication and the most massive set of SNMPs in insects to date. Transcriptome sequencing of Rhaphuma horsfieldi resulted in the yields of approximately 611.9 million clean reads that were further assembled into 543,841 transcripts and 327,550 unigenes, respectively. From the transcriptome, 177 transcripts encoding 84 odorant (ORs), 62 gustatory (GRs), 20 ionotropic (IRs), and 11 ionotropic glutamate (iGluRs) receptors were identified. Phylogenetic analysis classified RhorORs into six groups, RhorGRs into four subfamilies, and RhorIRs into 10 conserved antennal IRs and one divergent IRs. Expression profiles revealed that over 80% of chemosensory genes were specifically or highly transcribed in antennae or tarsi, suggestive of their olfactory and/or gustatory roles. This study has greatly complemented the resources for chemosensory genes in the cerambycid beetles, and most importantly, identifies a novel group of SNMPs in Coleoptera.


Subject(s)
Coleoptera/genetics , Insect Proteins/genetics , Membrane Proteins/genetics , Nerve Tissue Proteins/genetics , Receptors, Cell Surface/genetics , Animals , Female , Genes, Insect , Genome, Insect , Insect Proteins/classification , Male , Membrane Proteins/classification , Multigene Family , Nerve Tissue Proteins/classification , Phylogeny , Receptors, Odorant/classification , Receptors, Odorant/genetics , Transcriptome
7.
Naturwissenschaften ; 105(5-6): 38, 2018 May 22.
Article in English | MEDLINE | ID: mdl-29789962

ABSTRACT

The ability to sense and recognize various classes of compounds is of particular importance for survival and reproduction of insects. Ionotropic receptor (IR), a sub-family of the ionotropic glutamate receptor family, has been identified as one of crucial chemoreceptor super-families, which mediates the sensing of odors and/or tastants, and serves as non-chemosensory functions. Yet, little is known about IR characteristics, evolution, and functions in Lepidoptera. Here, we identify the IR gene repertoire from a destructive polyphagous pest, Spodoptera litura. The exhaustive analyses with genome and transcriptome data lead to the identification of 45 IR genes, comprising 17 antennal IRs (A-IRs), 8 Lepidoptera-specific IRs (LS-IRs), and 20 divergent IRs (D-IRs). Phylogenetic analysis reveals that S. litura A-IRs generally retain a strict single copy within each orthologous group, and two lineage expansions are observed in the D-IR sub-family including IR100d-h and 100i-o, likely attributed to gene duplications. Results of gene structure analysis classify the SlitIRs into four types: I (intronless), II (1-3 introns), III (5-9 introns), and IV (10-18 introns). Extensive expression profiles demonstrate that the majority of SlitIRs (28/43) are enriched in adult antennae, and some are detected in gustatory-associated tissues like proboscises and legs as well as non-chemosensory organs like abdomens and reproductive tissues of both sexes. These results indicate that SlitIRs have diverse functional roles in olfaction, taste, and reproduction. Together, our study has complemented the information on chemoreceptor genes in S. litura, and meanwhile allows for target experiments to identify potential IR candidates for the control of this pest.


Subject(s)
Genome, Insect/genetics , Receptors, Ionotropic Glutamate/genetics , Spodoptera/genetics , Spodoptera/metabolism , Animals , Arthropod Antennae/metabolism , Female , Gene Expression Profiling , Gene Expression Regulation , Male , Phylogeny , Receptors, Ionotropic Glutamate/metabolism , Reproduction/genetics , Smell/genetics , Spodoptera/classification , Taste/genetics
8.
Arch Insect Biochem Physiol ; 99(3): e21503, 2018 Nov.
Article in English | MEDLINE | ID: mdl-30120804

ABSTRACT

Superoxide dismutase (SOD) known as an important antioxidative stress protein has been recently found in venoms of several parasitoid wasps. However, its functions and characteristics as a virulent factor remain scarcely described. Here, we report the characterization of two venomous SOD genes (SguaSOD1 and SguaSOD3) from the ectoparasitoid, Scleroderma guani. The metal binding sites, cysteine amino acid positions and signature sequences of the SOD family were conserved within SguaSOD1 and SguaSOD3. Relatively high levels of their transcripts were observed in pupae followed a decrease in early adults, after which they had the highest transcriptions, indicating that their productions would be regulated in venom apparatus. Although the two genes showed lower expression in venom apparatus compared to head and thorax, the enzymatic assay revealed that SOD indeed had activity in venom. Further, we showed that recombinant SguaSOD3 suppressed melanization of host hemolymph, implying that this protein used as a virulent factor uniquely impacts the prophenoloxidase cascade.


Subject(s)
Hemolymph/metabolism , Melanins/metabolism , Superoxide Dismutase-1/metabolism , Wasp Venoms/enzymology , Wasps/enzymology , Amino Acid Sequence , Animals , Female , Host-Parasite Interactions , Sequence Analysis, DNA , Superoxide Dismutase-1/genetics , Wasps/genetics
9.
Arch Insect Biochem Physiol ; 98(2): e21451, 2018 Jun.
Article in English | MEDLINE | ID: mdl-29399896

ABSTRACT

Venom is a prominently maternal virulent factor utilized by parasitoids to overcome hosts immune defense. With respect to roles of this toxic mixture involved in manipulating hosts immunity, great interest has been mostly restricted to Ichneumonoidea parasitoids associated with polydnavirus (PDV), of which venom is usually considered as a helper component to enhance the role of PDV, and limited Chalcidoidea species. In contrast, little information is available in other parasitoids, especially ectoparasitic species not carrying PDV. The ectoparasitoid Scleroderma guani injects venom into its host, Tenebrio molitor, implying its venom was involved in suppression of hosts immune response for successful parasitism. Thus, we investigated the effects of parasitism and venom of this parasitoid on counteracting the cellular immunity of its host by examining changes of hemocyte counts, and hemocyte spreading and encapsulation ability. Total hemocyte counts were elevated in parasitized and venom-injected pupae. The spreading behavior of both granulocytes and plasmatocytes was impaired by parasitization and venom. High concentration of venom led to more severely increased hemocyte counts and suppression of hemocyte spreading. The ability of hemocyte encapsulation was inhibited by venom in vitro. In addition to immediate effects observed, venom showed persistent interference in hosts cellular immunity. These results indicate that venom alone from S. guani plays a pivotal role in blocking hosts cellular immune response, serving as a regulator that guarantees the successful development of its progenies. The findings provide a foundation for further investigation of the underlying mechanisms in immune inhibitory action of S. guani venom.


Subject(s)
Hemocytes/physiology , Host-Parasite Interactions/immunology , Immunity, Cellular/drug effects , Tenebrio/parasitology , Wasp Venoms/toxicity , Wasps/physiology , Animals , Female , Male , Pupa/drug effects , Tenebrio/drug effects , Tenebrio/immunology
10.
Article in English | MEDLINE | ID: mdl-28807837

ABSTRACT

As the first biochemical step of olfactory reception and recognition, odorant binding proteins (OBPs) have been demonstrated to be essential. Considering functional diversities of OBPs within a single species, we here extended the characterization of two other OBPs from Spodoptera exigua, belonging to insect Classic OBPs. With a combination of transcriptome and Rapid Amplification of cDNA End (RACE) approaches, two OBP genes in S. exigua were identified, namely SexiOBP1 and OBP7. Expression pattern analysis revealed that both of them exhibited a distinct expression pattern, where OBP1 was broadly and highly expressed in several tissues including antennae of adults whereas OBP7 was abundant only in the antennae of both sexes, strongly indicative of olfactory roles. Further, binding assays showed that the two SexiOBPs shared a common odorant-response spectrum with considerable affinities to host odorants of acetophenone, farnesol and ß-ionone (Ki<20µM). Specially, OBP1 could strongly bind an insect attractant ß-caryophyllene (Ki=2.76µM) released by maize. Intriguingly, the major sex pheromone of S. exigua, Z9,E12-14:Ac, was the best ligand for OBP7 with Ki value of 7.58µM. Ligand structural analysis revealed that the two SexiOBPs were capable of accommodating different types of ligands in shape and size, possibly implying the plasticity of binding pockets. Ultimately, comparison of binding properties among 10 SexiOBPs including the two OBPs in this study implied a cross-talk in functions, i.e. different OBPs are also suitable to accept some common odorants except for unique ligands. Taken together, this study has provided evidence for their involvements in seeking and orientation of host plants, and meanwhile indicates functional conservation and differences between OBP1 and OBP7 from S. xigua.


Subject(s)
Receptors, Odorant/metabolism , Spodoptera/metabolism , Animals , Cloning, Molecular , Electrophoresis, Polyacrylamide Gel , Female , Gene Expression Regulation , Male , Real-Time Polymerase Chain Reaction , Receptors, Odorant/genetics
11.
Article in English | MEDLINE | ID: mdl-25460831

ABSTRACT

Moths have evolved a sensitive and sophisticated olfactory system to sense a variety of semiochemicals from the external environment. In chemosensory processes, the odorant binding protein (OBP) is an essential element for filtering, binding and transporting hydrophobic odorant molecules to the specific receptors. Here focusing on a major sub-class of lepidopteran OBPs, general-odorant binding proteins (GOBPs), we explored the relationship and functional difference between two GOBP members from a noctuid species Spodoptera litura. Using genomic DNA as the template, we demonstrated that SlitGOBP2 and three SlitPBPs are clustered on the same chromosome within a close proximity. qPCR results showed that two SlitGOBPs were primarily expressed in antennae at similar levels between females and males, but GOBP2 displayed much higher expression than GOBP1. Binding studies revealed that both SlitGOBP1 and 2 strongly bound C14-C16 alcohol-pheromone analogs with high affinities (Ki<1.0 µM). However, SlitGOBP2 also strongly bound most acetate- and aldehyde-sex pheromone components and analogs, while SlitGOBP1 could not. For tested plant odorants, SlitGOBP1 showed a relatively broad ligand-binding spectrum with moderate affinities, while SlitGOBP2 was tuned to some compounds with strong binding activities (Ki<5.0 µM). Finally, by molecular docking we explored the differences in protein structures and potential key residues in the binding pockets between the two SlitGOBPs. Taken together, our study strongly suggests that SlitGOBP2 and SlitPBPs evolved by gene duplication events, and two SlitGOBPs have functionally differentiated in odorant recognition.


Subject(s)
Odorants , Receptors, Odorant/metabolism , Sex Attractants/chemistry , Amino Acid Sequence , Animals , Insect Proteins/metabolism , Plants/chemistry , Protein Binding , Spodoptera/physiology
12.
BMC Genomics ; 15: 597, 2014 Jul 15.
Article in English | MEDLINE | ID: mdl-25027790

ABSTRACT

BACKGROUND: Chemosensory receptors including olfactory receptors (ORs), gustatory receptors (GRs) and ionotropic receptors (IRs) play a central role in sensing chemical signals and guiding insect behaviours, and are potential target genes in insect pest control. The cotton bollworm Helicoverpa armigera is one of the most destructive pest species that can feed on over 200 different plant species. This diversity of host plants is likely linked to a complex chemosensory system. Here we built on previous work to characterize crucial chemosensory tissues linked to environmental interactions including larval antennae, larval mouthparts and larval fat bodies, as well as male and female adult heads, male and female adult tarsi, and female abdomens. RESULTS: Using transcriptome sequencing, Trinity RNA-seq assemblies and extensive manual curation, we identified a total of 91 candidate chemosensory receptors (60 candidate ORs, 10 GRs and 21 IRs). Thirty-five of these candidates present full-length transcripts. First, we performed in silico differential expression analysis on different sequenced tissues. Further, we created extensive expression profiles using reverse transcription (RT)-PCR on a variety of adult and larval stages. We found that the expression profile of HarmOR51 was limited to adult male antenna suggesting a role in mating that was further supported by a phylogenetic analysis clustering it into the pheromone receptor clade. HarmOR51 in calcium imaging analysis did not show responses to either of the two H. armigera sex pheromone components (Z9-16:Ald or Z11-16:Ald) inviting a future detailed study. In addition, we found four novel HarmORs (OR1, 53, 54 and 58) that appeared to be larvae-antennal specific. Finally, our expression profiling showed that four "divergent" HarmIRs (IR2, 7d.1, 7d.2 and 7d.3) were expressed in both adult and larval antennae, suggesting a functional divergence from their Drosophila homologues. CONCLUSIONS: This study explored three chemoreceptor superfamily genes using a curated transcriptomic approach coupled with extensive expression profiling and a more limited functional characterization. Our results have now provided an extensive resource for investigating the chemoreceptor complement of this insect pest, and meanwhile allow for targeted experiments to identify potential molecular targets for pest control and to investigate insect-plant interactions.


Subject(s)
Insect Proteins/genetics , Moths/genetics , Receptors, Ionotropic Glutamate/genetics , Receptors, Odorant/genetics , Receptors, Pheromone/genetics , Amino Acid Sequence , Animals , Cluster Analysis , Female , Insect Proteins/classification , Insect Proteins/metabolism , Larva/genetics , Larva/metabolism , Male , Molecular Sequence Data , Moths/growth & development , Phylogeny , Protein Binding , RNA/chemistry , RNA/genetics , RNA/metabolism , Receptors, Ionotropic Glutamate/classification , Receptors, Ionotropic Glutamate/metabolism , Receptors, Odorant/classification , Receptors, Odorant/metabolism , Receptors, Pheromone/classification , Receptors, Pheromone/metabolism , Sequence Alignment , Sequence Analysis, RNA , Transcriptome
13.
Article in English | MEDLINE | ID: mdl-38723431

ABSTRACT

The longhorned beetles are key players for the maintenance of biodiversity in the terrestrial ecosystem. As xylophagous cerambycid insects in Coleoptera, the beetles have evolved specialized olfactory and gustatory systems to recognize chemical cues in the surrounding habitats. Despite over 36,000 described species in the Cerambycidae family including a wood-boring pest Pharsalia antennata, only a limited number of them (<1 %) have been characterized regarding their chemical ecology at the molecular level. Here, we surveyed four membrane protein gene families in P. antennata related to chemoreception through transcriptomics, phylogenetics and expression profiling analyses. In total, 144 genes encoding 72 odorant receptors (ORs), 33 gustatory receptors (GRs), 23 ionotropic receptors (IRs), four sensory neuron membrane proteins (SNMPs) and 12 ionotropic glutamate receptors (iGluRs) were harvested from the transcriptome of multiple tissues including antennae and legs of both sexes. The lineage-specific expansion of PantORs possibly implied a diverse range of host plants in this beetle, supporting this correlation between the host range and olfactory receptor repertoire sizes across cerambycid species. Further phylogenetic analysis revealed that Group 2 was contributed mainly to the large OR gene repertoire in P. antennata, representing 18 genes in Group 2A and eight in Group 2B. On the other hand, some key chemosensory genes were identified by applying a phylogenetics approach, such as PantOR21 close to the 2-phenylethanol receptor in Megacyllene caryae, three carbon dioxide GRs and seven Antennal IRs (A-IRs) clades. We also determined sex- and tissue-specific expression profiles of 69 chemosensory genes, revealing the high expression of most PantORs in antennae. Noticeably, 10 sex-biased genes (six PantORs, three PantIRs and PantSNMP1a) were presented in antennae, five sex-biased PantGRs in legs and 39 sex-biased genes (15 PantORs, 13 PantGRs, eight PantIRs and three PantSNMPs) in abdomens. These findings have greatly enhanced our knowledge about the chemical ecology of P. antennata and identify candidate molecular targets for mediating smell and taste of this beetle.


Subject(s)
Coleoptera , Insect Proteins , Phylogeny , Animals , Coleoptera/genetics , Insect Proteins/genetics , Insect Proteins/metabolism , Receptors, Odorant/genetics , Receptors, Odorant/metabolism , Male , Membrane Proteins/genetics , Membrane Proteins/metabolism , Female , Transcriptome , Receptors, Ionotropic Glutamate/genetics , Receptors, Ionotropic Glutamate/metabolism , Multigene Family , Arthropod Antennae/metabolism
14.
Article in English | MEDLINE | ID: mdl-38061252

ABSTRACT

Three tree-killing bark beetles belonging to the genus Tomicus, Tomicus yunnanensis, Tomicus brevipilosus and Tomicus minor (Coleoptera; Curculionidae, Scolytinae), are serious wood-borers with larvae feeding on the phloem tissues of Pinus yunnanensis. The three Tomicus beetles, in some cases, coexist in a same habitat, providing a best system for exploring the conservation and divergence of reproductive genes. Here, we applied comparative transcriptomics and molecular biology approaches to characterize reproductive-related genes in three sympatric Tomicus species. Illumina sequencing of female and male reproductive systems and residual bodies generated a large number of clean reads, representing 185,920,232 sequences in T. yunnanensis, 169,153,404 in T. brevipilosus and 178,493,176 in T. minor that were assembled into 32,802, 56,912 and 33,670 unigenes, respectively. The majority of the genes had detectable expression in reproductive tissues (FPKM >1), particularly those genes in T. brevipilosus accounting for 76.61 % of the total genes. From the transcriptomes, totally 838 genes encoding 463 detoxification enzymes, 339 chemosensory membrane proteins and 36 ionotropic glutamate receptors (iGluRs) were identified, including 622 reproductive tissue-expressed genes. Of these, members of carboxylesterases (COEs), ionotropic receptors (IRs), sensory neuron membrane proteins (SNMPs) and iGluRs were highly conserved in gene numbers and sequence identities across three Tomicus species. Further, expression profiling analyses revealed a number of genes expressed in reproductive tissues and the diverse expression characteristics in these beetles. The results provide evidence for the conservation and differences of reproductive genes among three sympatric closely related beetles, helping understand their different reproductive strategies and the maximization of the reproductive success.


Subject(s)
Coleoptera , Weevils , Animals , Weevils/genetics , Plant Bark , Coleoptera/genetics , Gene Expression Profiling , Transcriptome , Membrane Proteins/genetics
15.
Article in English | MEDLINE | ID: mdl-23507568

ABSTRACT

Pheromone-binding proteins (PBPs), a sub-family of odorant-binding proteins, are thought primarily to bind and transport the sex pheromones in moths. Considering multiple components of sex pheromone and multiple PBP genes exist in a single species, PBPs may contribute to the discrimination of different sex pheromone components. However, so far this discrimination is still unclear. Our previous ligand-binding assays showed that Spodoptera litura PBP1 (SlitPBP1) did not exhibit an obvious binding specificity among different sex pheromone components. In this study, binding specificity of the other two PBPs in S. litura (SlitPBP2 and SlitPBP3) was further investigated. As a result, SlitPBP2 was capable of binding all four sex pheromone components with similar affinities; whereas SlitPBP3 showed very weak binding affinities to them except Z9,E12-14:Ac. Similar results were also obtained from studied pheromone analogs, to which SlitPBP2 showed much stronger affinities than SlitPBP3. However, both SlitPBP2 and SlitPBP3 exhibited overall weaker affinities to sex pheromones and their analogs than SlitPBP1. In addition, quantitative real time PCR showed that three SlitPBP genes exhibited a very different sex-biased expression in adult antenna with male-biased for SlitPBP1 and SlitPBP2 while female-biased for SlitPBP3. Finally, ligand-binding assays indicated that the two SlitPBPs showed a similar pH-dependent conformational change as reported SlitPBP1, but these three SlitPBPs showed different behavior across a pH range or something similar. Taken together, our data suggest that in S. litura PBP1 and PBP2 may play critical roles in the perception of female sex pheromones, but do not show an obvious discriminative ability among different sex pheromone components; whereas PBP3 may have other functions.


Subject(s)
Carrier Proteins/metabolism , Insect Proteins/metabolism , Sex Attractants/metabolism , Spodoptera/metabolism , Amino Acid Sequence , Animals , Binding, Competitive , Carrier Proteins/chemistry , Carrier Proteins/genetics , Electrophoresis, Polyacrylamide Gel , Female , Gene Expression , Hydrogen-Ion Concentration , Insect Proteins/chemistry , Insect Proteins/genetics , Ligands , Male , Models, Molecular , Molecular Sequence Data , Protein Binding , Protein Isoforms/chemistry , Protein Isoforms/genetics , Protein Isoforms/metabolism , Protein Structure, Tertiary , Reverse Transcriptase Polymerase Chain Reaction , Sequence Homology, Amino Acid , Sex Factors , Spodoptera/genetics
16.
Article in English | MEDLINE | ID: mdl-36801252

ABSTRACT

In the forest ecosystem dominated by the Pinaceae plants, this boring pest Dioryctria abietella is subject to a variety of odorants derived from host and nonhost plants, in which olfactory-related proteins enriched in antennae are key behavioral modulators for the orientation of feeding and ovipositing hosts. Here, we addressed the odorant binding protein (OBP) gene family in D. abietella. Expression profiles revealed that the majority of OBPs were abundantly expressed in the antennae at a female-biased level. A male-antenna-biased DabiPBP1 was a strong candidate for detecting type I and type II pheromones of D. abitella female moths. Using a prokaryotic expression system combined with affinity chromatography, we harvested two antenna-dominant DabiOBPs. In the ligand-binding assays, the two DabiOBPs exhibited different odorant response spectra, as DabiOBP17 was tuned to most odorants with higher affinities compared to DabiOBP4. Of these, DabiOBP4 could strongly bind syringaldehyde and citral (dissociation constants (Ki) < 14 µM). A floral volatile, benzyl benzoate (Ki = 4.72 ± 0.20 µM), was the best ligand for DabiOBP17. Remarkably, several green leaf volatiles were found to strongly interact with DabiOBP17 (Ki < 8.5 µM), including Z3-hexenyl acetate, E2-hexenol, Z2-hexenal and E2-hexenal that may mediate a repellent response to D. abietella. Structural analyses of ligands revealed that the binding of the two DabiOBPs to odorants was associated with carbon-chain lengths and functional groups. Molecular simulations identified several key residues involved in the interactions of DabiOBPs and ligands, suggesting specific binding mechanisms. This study highlights olfactory roles of two antennal DabiOBPs in D. abietella, helping the identification of potentially behavioral compounds for the population control of this pest.


Subject(s)
Moths , Receptors, Odorant , Animals , Odorants , Ligands , Ecosystem , Hexobarbital/metabolism , Insect Proteins/genetics , Insect Proteins/metabolism , Moths/genetics , Moths/metabolism , Receptors, Odorant/metabolism , Forests , Arthropod Antennae/metabolism
17.
Arch Insect Biochem Physiol ; 80(3): 123-39, 2012 Aug.
Article in English | MEDLINE | ID: mdl-22648659

ABSTRACT

It is postulated that insect pheromone-binding proteins (PBPs) are involved in sex pheromone reception, while the general odorant-binding proteins (GOBPs) are involved in reception of the general odorants including plant volatiles. However, this functional specificity is not completely conclusive. In the present study, full-length sequences of two new OBP genes were molecularly identified as OachPBP1 and OachGOBP2 from Orthaga achatina, an important pest of the camphor tree Cinnamomum camphora. Quantification of transcript levels by qRT-PCR showed that the two genes highly expressed in antennae, with OachPBP1 male-biased and OachGOBP2 similar between sexes. These expression patterns are consistent with the generally proposed functions of PBPs and GOBPs. With the recombinant proteins obtained by a bacterial expression system, the binding specificity of these proteins was further investigated and compared using the competitive binding assay. OachPBP1 exhibited high binding affinities with all three putative sex pheromones and 10 pheromone analogs, supporting its role in pheromone reception. On the other hand, in addition to binding with some plant volatiles, OachGOBP2 surprisingly displayed similar or even higher binding affinities with the sex pheromones than OachPBP1. Therefore, we propose that OachGOBP2 might play roles in reception of sex pheromone. Additionally, plant volatiles farnesol and farnesene showed high binding with both OachGOBP2 and OachPBP1, suggesting that these volatile chemicals have regulatory functions in the behavior of O. achatina.


Subject(s)
Carrier Proteins/genetics , Carrier Proteins/metabolism , Insect Proteins/genetics , Insect Proteins/metabolism , Moths/metabolism , Receptors, Odorant/genetics , Receptors, Odorant/metabolism , Animals , Carrier Proteins/isolation & purification , Cloning, Molecular , Escherichia coli , Female , Gene Expression Regulation , Insect Proteins/isolation & purification , Male , Molecular Sequence Data , Pheromones/metabolism , Plants/metabolism , Real-Time Polymerase Chain Reaction , Receptors, Odorant/isolation & purification , Recombinant Proteins/genetics , Recombinant Proteins/isolation & purification , Recombinant Proteins/metabolism , Sequence Analysis, DNA , Sex Attractants/metabolism , Sex Distribution , Volatile Organic Compounds/metabolism
18.
Front Physiol ; 13: 1015793, 2022.
Article in English | MEDLINE | ID: mdl-36187767

ABSTRACT

The wood-boring beetles, including the majority of Cerambycidae, have developed the ability to metabolize a variety of toxic compounds derived from host plants and the surrounding environment. However, detoxification mechanisms underlying the evolutionary adaptation of a cerambycid beetle Pharsalia antennata to hosts and habitats are largely unexplored. Here, we characterized three key gene families in relation to detoxification (cytochrome P450 monooxygenases: P450s, carboxylesterases: COEs and glutathione-S-transferases: GSTs), by combinations of transcriptomics, gene identification, phylogenetics and expression profiles. Illumina sequencing generated 668,701,566 filtered reads in 12 tissues of P. antennata, summing to 100.28 gigabases data. From the transcriptome, 215 genes encoding 106 P450s, 77 COEs and 32 GSTs were identified, of which 107 relatives were differentially expressed genes. Of the identified 215 genes, a number of relatives showed the orthology to those in Anoplophora glabripennis, revealing 1:1 relationships in 94 phylogenetic clades. In the trees, P. antennata detoxification genes mainly clustered into one or two subfamilies, including 64 P450s in the CYP3 clan, 33 COEs in clade A, and 20 GSTs in Delta and Epsilon subclasses. Combining transcriptomic data and PCR approaches, the numbers of detoxification genes expressed in abdomens, antennae and legs were 188, 148 and 141, respectively. Notably, some genes exhibited significantly sex-biased levels in antennae or legs of both sexes. The findings provide valuable reference resources for further exploring xenobiotics metabolism and odorant detection in P. antennata.

19.
J Agric Food Chem ; 70(35): 10747-10761, 2022 Sep 07.
Article in English | MEDLINE | ID: mdl-36002911

ABSTRACT

In this study, we annotated 49 odorant-binding proteins (OBPs) in Papilio xuthus, with four novel genes and seven improved sequences. Expression profiles identified numerous OBPs in antennae or reproductive tissues. Using two antenna-enriched general OBPs (PxutGOBP1 and PxutGOBP2) as targets, we screened three key compounds by a reverse chemical ecology strategy. Of these, an oviposition stimulant vicenin-2 could strongly interact with PxutGOBP1, representing a dissociation constant (Ki) value of 10.34 ± 0.07 µM. Molecular simulations and site-directed mutagenesis revealed the importance of His66, Thr73, and Phe118 between PxutGOBP1 and vicenin-2 interactions. Two other compounds, an ordinary floral scent ß-ionone and a widely used insecticide chlorpyrifos, exhibited high affinities to PxutGOBPs (Ki < 13 µM). Furthermore, two mutations His66Ala and Thr73Ala of PxutGOBP1 significantly reduced the binding to chlorpyrifos. Our study provides insights into the putative roles of PxutGOBPs in odorant perception and identifies key binding sites of PxutGOBP1 to vicenin-2 and chlorpyrifos.


Subject(s)
Butterflies , Chlorpyrifos , Insecticides , Receptors, Odorant , Animals , Female , Insect Proteins/metabolism , Odorants , Perception , Receptors, Odorant/metabolism
20.
PeerJ ; 9: e12641, 2021.
Article in English | MEDLINE | ID: mdl-34993022

ABSTRACT

In most moth species, sex pheromones responsible for mating and communication of both sexes are primarily produced by the pheromone glands (PGs) of female moths. Although the PG transcriptomes and pheromone production related genes from 24 moth species have been characterized, studies on the related information remain unknown in the Zygaenidae family. Here, we sequenced the PG transcriptome of a zygaenid moth, Achelura yunnanensis. Such the sequencing resulted in the yields of 47,632,610 clean reads that were assembled into 54,297 unigenes, coupled with RNA sequencing data from 12 other tissues. Based on the transcriptome, a total of 191 genes encoding pheromone biosynthesis and degradation enzymes were identified, 161 of which were predicted to have full-length sequences. A comparative analysis among 24 moth species of nine families indicated that the numbers of the genes were variable, ranging from 14 in two Grapholita species to 191 in A. yunnanensis. Phylogenetic analysis in parallel with the expression data highlighted some key genes, including three △9 and four △11 desaturases, four fatty acyl-CoA reductases (FARs) clustering in the pgFAR clade, and three significantly antennae-enriched aldehyde oxidases. An extensive tissue- and sex- expression profile revealed a broad distribution of the genes, in which 128 relatives were detected in the PGs and 127 in the antennae. This study reports, for the first time, the gene repertoires associated with the pheromone production in Zygaenidae, and provides a valuable resource for exploring putative roles of the PG-enriched genes in A. yunnanensis.

SELECTION OF CITATIONS
SEARCH DETAIL