Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
N Engl J Med ; 370(24): 2286-94, 2014 Jun 12.
Article in English | MEDLINE | ID: mdl-24869598

ABSTRACT

BACKGROUND: Ibrutinib is an irreversible inhibitor of Bruton's tyrosine kinase (BTK) and is effective in chronic lymphocytic leukemia (CLL). Resistance to irreversible kinase inhibitors and resistance associated with BTK inhibition have not been characterized. Although only a small proportion of patients have had a relapse during ibrutinib therapy, an understanding of resistance mechanisms is important. We evaluated patients with relapsed disease to identify mutations that may mediate ibrutinib resistance. METHODS: We performed whole-exome sequencing at baseline and the time of relapse on samples from six patients with acquired resistance to ibrutinib therapy. We then performed functional analysis of identified mutations. In addition, we performed Ion Torrent sequencing for identified resistance mutations on samples from nine patients with prolonged lymphocytosis. RESULTS: We identified a cysteine-to-serine mutation in BTK at the binding site of ibrutinib in five patients and identified three distinct mutations in PLCγ2 in two patients. Functional analysis showed that the C481S mutation of BTK results in a protein that is only reversibly inhibited by ibrutinib. The R665W and L845F mutations in PLCγ2 are both potentially gain-of-function mutations that lead to autonomous B-cell-receptor activity. These mutations were not found in any of the patients with prolonged lymphocytosis who were taking ibrutinib. CONCLUSIONS: Resistance to the irreversible BTK inhibitor ibrutinib often involves mutation of a cysteine residue where ibrutinib binding occurs. This finding, combined with two additional mutations in PLCγ2 that are immediately downstream of BTK, underscores the importance of the B-cell-receptor pathway in the mechanism of action of ibrutinib in CLL. (Funded by the National Cancer Institute and others.).


Subject(s)
Drug Resistance, Neoplasm/genetics , Leukemia, Lymphocytic, Chronic, B-Cell/genetics , Phospholipase C gamma/genetics , Point Mutation , Protein-Tyrosine Kinases/genetics , Pyrazoles/therapeutic use , Pyrimidines/therapeutic use , Adenine/analogs & derivatives , Agammaglobulinaemia Tyrosine Kinase , Aged , Binding Sites/genetics , Exome , Humans , Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy , Middle Aged , Phospholipase C gamma/metabolism , Piperidines , Protein-Tyrosine Kinases/antagonists & inhibitors , Pyrazoles/pharmacology , Pyrimidines/pharmacology , Receptors, Antigen, B-Cell/metabolism , Recurrence , Sequence Analysis, DNA
2.
Blood ; 126(1): 61-8, 2015 Jul 02.
Article in English | MEDLINE | ID: mdl-25972157

ABSTRACT

Ibrutinib has significantly improved the outcome of patients with relapsed chronic lymphocytic leukemia (CLL). Recent reports attribute ibrutinib resistance to acquired mutations in Bruton agammaglobulinemia tyrosine kinase (BTK), the target of ibrutinib, as well as the immediate downstream effector phospholipase C, γ2 (PLCG2). Although the C481S mutation found in BTK has been shown to disable ibrutinib's capacity to irreversibly bind this primary target, the detailed mechanisms of mutations in PLCG2 have yet to be established. Herein, we characterize the enhanced signaling competence, BTK independence, and surface immunoglobulin dependence of the PLCG2 mutation at R665W, which has been documented in ibrutinib-resistant CLL. Our data demonstrate that this missense alteration elicits BTK-independent activation after B-cell receptor engagement, implying the formation of a novel BTK-bypass pathway. Consistent with previous results, PLCG2(R665W) confers hypermorphic induction of downstream signaling events. Our studies reveal that proximal kinases SYK and LYN are critical for the activation of mutant PLCG2 and that therapeutics targeting SYK and LYN can combat molecular resistance in cell line models and primary CLL cells from ibrutinib-resistant patients. Altogether, our results engender a molecular understanding of the identified aberration at PLCG2 and explore its functional dependency on BTK, SYK, and LYN, suggesting alternative strategies to combat acquired ibrutinib resistance.


Subject(s)
Drug Resistance, Neoplasm/genetics , Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy , Leukemia, Lymphocytic, Chronic, B-Cell/genetics , Phospholipase C gamma/genetics , Protein-Tyrosine Kinases/physiology , Pyrazoles/therapeutic use , Pyrimidines/therapeutic use , Receptors, Antigen, B-Cell/metabolism , Adenine/analogs & derivatives , Agammaglobulinaemia Tyrosine Kinase , Animals , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Cells, Cultured , Chickens , Drug Resistance, Neoplasm/drug effects , Humans , Intracellular Signaling Peptides and Proteins/antagonists & inhibitors , Leukemia, Lymphocytic, Chronic, B-Cell/metabolism , Mutation, Missense , Piperidines , Protein-Tyrosine Kinases/antagonists & inhibitors , Signal Transduction/genetics , Syk Kinase , src-Family Kinases/antagonists & inhibitors
3.
Blood ; 125(2): 284-95, 2015 Jan 08.
Article in English | MEDLINE | ID: mdl-25293770

ABSTRACT

Aberrant regulation of endogenous survival pathways plays a major role in progression of chronic lymphocytic leukemia (CLL). Signaling via conjugation of surface receptors within the tumor environmental niche activates survival and proliferation pathways in CLL. Of these, the phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT) pathway appears to be pivotal to support CLL pathogenesis, and pharmacologic inhibitors targeting this axis have shown clinical activity. Here we investigate OSU-T315, a compound that disrupts the PI3K/AKT pathway in a novel manner. Dose-dependent selective cytotoxicity by OSU-T315 is noted in both CLL-derived cell lines and primary CLL cells relative to normal lymphocytes. In contrast to the highly successful Bruton's tyrosine kinase and PI3K inhibitors that inhibit B-cell receptor (BCR) signaling pathway at proximal kinases, OSU-T315 directly abrogates AKT activation by preventing translocation of AKT into lipid rafts without altering the activation of receptor-associated kinases. Through this mechanism, the agent triggers caspase-dependent apoptosis in CLL by suppressing BCR, CD49d, CD40, and Toll-like receptor 9-mediated AKT activation in an integrin-linked kinase-independent manner. In vivo, OSU-T315 attains pharmacologically active drug levels and significantly prolongs survival in the TCL1 mouse model. Together, our findings indicate a novel mechanism of action of OSU-T315 with potential therapeutic application in CLL.


Subject(s)
Antineoplastic Agents/pharmacology , Leukemia, Lymphocytic, Chronic, B-Cell/metabolism , Proto-Oncogene Proteins c-akt/antagonists & inhibitors , Animals , Cell Survival/drug effects , Flow Cytometry , Humans , Immunoblotting , Mice , Mice, Transgenic , Protein Transport/drug effects
4.
Blood ; 122(15): 2539-49, 2013 Oct 10.
Article in English | MEDLINE | ID: mdl-23886836

ABSTRACT

Given its critical role in T-cell signaling, interleukin-2-inducible kinase (ITK) is an appealing therapeutic target that can contribute to the pathogenesis of certain infectious, autoimmune, and neoplastic diseases. Ablation of ITK subverts Th2 immunity, thereby potentiating Th1-based immune responses. While small-molecule ITK inhibitors have been identified, none have demonstrated clinical utility. Ibrutinib is a confirmed irreversible inhibitor of Bruton tyrosine kinase (BTK) with outstanding clinical activity and tolerability in B-cell malignancies. Significant homology between BTK and ITK alongside in silico docking studies support ibrutinib as an immunomodulatory inhibitor of both ITK and BTK. Our comprehensive molecular and phenotypic analysis confirms ITK as an irreversible T-cell target of ibrutinib. Using ibrutinib clinical trial samples along with well-characterized neoplastic (chronic lymphocytic leukemia), parasitic infection (Leishmania major), and infectious disease (Listeria monocytogenes) models, we establish ibrutinib as a clinically relevant and physiologically potent ITK inhibitor with broad therapeutic utility. This trial was registered at www.clinicaltrials.gov as #NCT01105247 and #NCT01217749.


Subject(s)
Protein-Tyrosine Kinases/antagonists & inhibitors , Pyrazoles/pharmacology , Pyrimidines/pharmacology , Th1 Cells/drug effects , Adenine/analogs & derivatives , Animals , CD8-Positive T-Lymphocytes/cytology , CD8-Positive T-Lymphocytes/drug effects , CD8-Positive T-Lymphocytes/enzymology , Disease Models, Animal , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/therapeutic use , Humans , Jurkat Cells , Leishmaniasis, Cutaneous/drug therapy , Leishmaniasis, Cutaneous/immunology , Leukemia/drug therapy , Leukemia/immunology , Listeriosis/drug therapy , Listeriosis/immunology , Lymphocyte Activation/drug effects , Mice , Piperidines , Primary Cell Culture , Pyrazoles/therapeutic use , Pyrimidines/therapeutic use , Th1 Cells/cytology , Th1 Cells/enzymology , Th2 Cells/cytology , Th2 Cells/drug effects , Th2 Cells/enzymology
5.
Carcinogenesis ; 32(6): 812-21, 2011 Jun.
Article in English | MEDLINE | ID: mdl-21304052

ABSTRACT

While tumor suppressor genes frequently undergo epigenetic silencing in cancer, how the instructions directing this transcriptional repression are transmitted in cancer cells remain largely unclear. Expression of cyclin-dependent kinase inhibitor 1C (CDKN1C), an imprinted gene on chromosomal band 11 p15.5, is reduced or lost in the majority of breast cancers. Here, we report that CDKN1C is suppressed by estrogen through epigenetic mechanisms involving the chromatin-interacting noncoding RNA KCNQ1OT1 and CCCTC-binding factor (CTCF). Activation of estrogen signaling reduced CDKN1C expression 3-fold (P < 0.001) and established repressive histone modifications at the 5' regulatory region of the locus. These events were concomitant with induction of KCNQ1OT1 expression as well as increased recruitment of CTCF to both the distal KCNQ1OT1 promoter-associated imprinting control region (ICR) and the CDKN1C locus. Transient depletion of CTCF by small interfering RNA increased CDKN1C expression and significantly reduced the estrogen-mediated repression of CDKN1C. Further studies in breast cancer cell lines indicated that the epigenetic silencing of CDKN1C occurs in part as the result of genetic loss of the inactive methylated 11p15.5 ICR allele (R(2) = 0.612, P < 0.001). We also found a novel cis-encoded antisense transcript, CDKN1C-AS, which is induced by estrogen signaling following pharmacologic inhibition of DNA methyltransferase and histone deacetylase activity. Forced expression of CDKN1C-AS was capable of repressing endogenous CDKN1C in vivo. Our findings suggest that in addition to promoter hypermethylation, epigenetic repression of tumor suppressor genes by CTCF and noncoding RNA transcripts could be more common and important than previously understood.


Subject(s)
Breast Neoplasms/genetics , Cyclin-Dependent Kinase Inhibitor p57/genetics , DNA Methylation , Epigenesis, Genetic/genetics , Estrogens/pharmacology , Gene Silencing/drug effects , Genomic Imprinting , CCCTC-Binding Factor , Chromatin Immunoprecipitation , Female , Gene Expression Regulation, Neoplastic/drug effects , Humans , Potassium Channels, Voltage-Gated/genetics , Promoter Regions, Genetic/genetics , RNA, Messenger/genetics , RNA, Untranslated/genetics , Repressor Proteins/genetics , Reverse Transcriptase Polymerase Chain Reaction , Tumor Cells, Cultured
6.
Cancer Res ; 71(5): 1752-62, 2011 Mar 01.
Article in English | MEDLINE | ID: mdl-21216892

ABSTRACT

Trimethylation of histone 3 lysine 27 (H3K27me3) is a critical epigenetic mark for the maintenance of gene silencing. Additional accumulation of DNA methylation in target loci is thought to cooperatively support this epigenetic silencing during tumorigenesis. However, molecular mechanisms underlying the complex interplay between the two marks remain to be explored. Here we show that activation of PI3K/AKT signaling can be a trigger of this epigenetic processing at many downstream target genes. We also find that DNA methylation can be acquired at the same loci in cancer cells, thereby reinforcing permanent repression in those losing the H3K27me3 mark. Because of a link between PI3K/AKT signaling and epigenetic alterations, we conducted epigenetic therapies in conjunction with the signaling-targeted treatment. These combined treatments synergistically relieve gene silencing and suppress cancer cell growth in vitro and in xenografts. The new finding has important implications for improving targeted cancer therapies in the future.


Subject(s)
Breast Neoplasms/genetics , DNA Methylation/genetics , Gene Expression Regulation, Neoplastic/physiology , Gene Silencing/physiology , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Animals , Breast Neoplasms/metabolism , Cell Line, Tumor , Female , Gene Expression , Histones/genetics , Humans , Immunohistochemistry , Mice , Mice, SCID , Oligonucleotide Array Sequence Analysis , Reverse Transcriptase Polymerase Chain Reaction , Signal Transduction/physiology , Xenograft Model Antitumor Assays
7.
Epigenomics ; 1(2): 331-45, 2009 Dec.
Article in English | MEDLINE | ID: mdl-20526417

ABSTRACT

Metastable and somatically heritable patterns of DNA methylation provide an important level of genomic regulation. In this article, we review methods for analyzing these genome-wide epigenetic patterns and offer a perspective on the ever-expanding literature, which we hope will be useful for investigators who are new to this area. The historical aspects that we cover will be helpful in interpreting this literature and we hope that our discussion of the newest analytical methods will stimulate future progress. We emphasize that no single approach can provide a complete view of the overall methylome, and that combinations of several modalities applied to the same sample set will give the clearest picture. Given the unexpected epigenomic patterns and new biological principles, as well as new disease markers, that have been uncovered in recent studies, it is likely that important discoveries will continue to be made using genome-wide DNA methylation profiling.


Subject(s)
Biomarkers/metabolism , DNA Methylation/physiology , DNA Modification Methylases/metabolism , DNA/isolation & purification , Epigenomics/methods , Gene Expression Profiling/methods , Azacitidine/analogs & derivatives , Chromatography, Affinity/methods , DNA/metabolism , DNA Methylation/drug effects , DNA Methylation/genetics , DNA Modification Methylases/pharmacology , Decitabine , Epigenomics/trends , Mass Spectrometry/methods , Microarray Analysis/methods , Sequence Analysis, DNA/methods
SELECTION OF CITATIONS
SEARCH DETAIL