Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Publication year range
1.
Small ; 19(11): e2206487, 2023 03.
Article in English | MEDLINE | ID: mdl-36642861

ABSTRACT

Cardiovascular disease is a leading cause of disability and death worldwide. Although the survival rate of patients with heart diseases can be improved with contemporary pharmacological treatments and surgical procedures, none of these therapies provide a significant improvement in cardiac repair and regeneration. Stem cell-based therapies are a promising approach for functional recovery of damaged myocardium. However, the available stem cells are difficult to differentiate into cardiomyocytes, which result in the extremely low transplantation efficiency. Nanomaterials are widely used to regulate the myocardial differentiation of stem cells, and play a very important role in cardiac tissue engineering. This study discusses the current status and limitations of stem cells and cell-derived exosomes/micro RNAs based cardiac therapy, describes the cardiac repair mechanism of nanomaterials, summarizes the recent advances in nanomaterials used in cardiac repair and regeneration, and evaluates the advantages and disadvantages of the relevant nanomaterials. Besides discussing the potential clinical applications of nanomaterials in cardiac therapy, the perspectives and challenges of nanomaterials used in stem cell-based cardiac repair and regeneration are also considered. Finally, new research directions in this field are proposed, and future research trends are highlighted.


Subject(s)
Myocardium , Nanostructures , Humans , Myocytes, Cardiac , Stem Cells , Regeneration
2.
Heart Vessels ; 28(1): 101-13, 2013 Jan.
Article in English | MEDLINE | ID: mdl-22241736

ABSTRACT

The aim of this work is to study cytoskeletal impairment during the development of ouabain-induced ventricular hypertrophy. Male Sprague-Dawley rats were treated with either ouabain or saline. Systolic blood pressure (SBP) was recorded weekly. At the end of the 3rd and 6th week, the rats were killed and cardiac mass index were measured. Hematoxylin-eosin and Sirius red staining were carried out and cardiac ultrastructure were studied using transmission electron microscopy. The mRNA level of Profilin-1, Desmin, PCNA, TGF-ß(1) and ET-1 in the left ventricle were measured using real-time quantitative PCR while their protein levels were examined by Western blot or immunohistochemistry. After 3 weeks, there was no significant difference in the mean SBP, cardiac mass index, mRNA and protein expression of PCNA, TGF-ß(1) and ET-1 between the two groups. However, ouabain-treated rats showed disorganized cardiac cytoskeleton with abnormal expression of Profilin-1 and Desmin. After 6 weeks, the cardiac mass index remained the same in the two groups while PCNA, TGF-ß(1), and ET-1 have been upregulated in ouabain-treated rats. The cardiac cytoskeletal impairment was more severe in ouabain-treated rats with further changes of Profilin-1 and Desmin. Cytoskeletal abnormality is an ultra-early change during ouabain-induced ventricular hypertrophy, before the release of hypertrophic factors. Therapy for prevention of ouabain-induced hypertrophy should start at the early stage by preventing the cytoskeleton from disorganization.


Subject(s)
Cytoskeleton/drug effects , Hypertrophy, Left Ventricular/pathology , Myocardium/ultrastructure , Ouabain/toxicity , Animals , Blood Pressure , Cytoskeleton/ultrastructure , Desmin/biosynthesis , Desmin/genetics , Disease Models, Animal , Disease Progression , Gene Expression Regulation/drug effects , Hypertrophy, Left Ventricular/chemically induced , Hypertrophy, Left Ventricular/physiopathology , Male , Microscopy, Electron, Transmission , Myocardium/metabolism , Profilins/biosynthesis , Profilins/genetics , RNA, Messenger/genetics , Rats , Rats, Sprague-Dawley , Real-Time Polymerase Chain Reaction
3.
J Hypertens ; 31(3): 576-86; discussion 586, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23615214

ABSTRACT

OBJECTIVE: Cardiac hypertrophy is a major cause of heart failure and sudden cardiac death among hypertensive individuals. The present study examined the effects of profilin-1 on hypertension-induced cardiac hypertrophy. METHODS: We used adenovirus injection to knockdown or overexpress profilin-1 in spontaneous hypertensive rats (SHRs). As a control, blank adenovirus was injected into age-matched SHRs and Wistar-Kyoto rats (WKYs). SBP and cardiac mass index were measured. Cardiac tissues were stained with hematoxylin-eosin and sirius red, and cardiac ultrastructure was imaged using transmission electron microscopy. Actin filament was quantified by staining with TRIC-tagged phalloidin. Caveolin-3 abundance and endothelial nitric oxide synthase (eNOS) activity were measured using real-time quantitative PCR, Western blot or immunofluorescence staining. RESULTS: Endogenous profilin-1 was highly expressed in hypertrophic myocardium of SHRs compared with WKYs. Lowering profilin-1 expression in SHRs significantly attenuated hypertension-induced cardiac hypertrophy and fibrosis and displayed a significant preservation of myofibrils, sarcolemmal caveolae, abundance of caveolin-3 protein, activity of eNOS and production of nitric oxide (NO). In contrast, transgenic overexpression of profilin-1 in SHRs induced more serious cardiac hypertrophy and fibrosis with significant reduction of sarcolemmal caveolae, caveolin-3 protein, eNOS activity, and production of NO when compared with SHR controls. CONCLUSION: Profilin-1 promotes cardiac hypertrophy partly through interfering with the formation of sarcolemmal caveolae and attenuating the eNOS/NO pathway. These results demonstrate a crucial role for profilin-1 in hypertensive cardiac hypertrophy.


Subject(s)
Cardiomegaly/physiopathology , Hypertension/physiopathology , Profilins/physiology , Animals , Base Sequence , DNA Primers , Male , Rats , Rats, Inbred SHR , Rats, Inbred WKY , Real-Time Polymerase Chain Reaction
SELECTION OF CITATIONS
SEARCH DETAIL