Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 548
Filter
Add more filters

Publication year range
1.
Nat Immunol ; 24(11): 1813-1824, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37813965

ABSTRACT

Kupffer cells, the liver tissue resident macrophages, are critical in the detection and clearance of cancer cells. However, the molecular mechanisms underlying their detection and phagocytosis of cancer cells are still unclear. Using in vivo genome-wide CRISPR-Cas9 knockout screening, we found that the cell-surface transmembrane protein ERMAP expressed on various cancer cells signaled to activate phagocytosis in Kupffer cells and to control of liver metastasis. ERMAP interacted with ß-galactoside binding lectin galectin-9 expressed on the surface of Kupffer cells in a manner dependent on glycosylation. Galectin-9 formed a bridging complex with ERMAP and the transmembrane receptor dectin-2, expressed on Kupffer cells, to induce the detection and phagocytosis of cancer cells by Kupffer cells. Patients with low expression of ERMAP on tumors had more liver metastases. Thus, our study identified the ERMAP-galectin-9-dectin-2 axis as an 'eat me' signal for Kupffer cells.


Subject(s)
Cytophagocytosis , Kupffer Cells , Humans , Phagocytosis/genetics , Galectins/genetics , Galectins/metabolism , Membrane Proteins/genetics , Membrane Proteins/metabolism
2.
Nature ; 626(8000): 765-771, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38383627

ABSTRACT

Photonic bound states in the continuum (BICs), embedded in the spectrum of free-space waves1,2 with diverging radiative quality factor, are topologically non-trivial dark modes in open-cavity resonators that have enabled important advances in photonics3,4. However, it is particularly challenging to achieve maximum near-field enhancement, as this requires matching radiative and non-radiative losses. Here we propose the concept of supercritical coupling, drawing inspiration from electromagnetically induced transparency in near-field coupled resonances close to the Friedrich-Wintgen condition2. Supercritical coupling occurs when the near-field coupling between dark and bright modes compensates for the negligible direct far-field coupling with the dark mode. This enables a quasi-BIC field to reach maximum enhancement imposed by non-radiative loss, even when the radiative quality factor is divergent. Our experimental design consists of a photonic-crystal nanoslab covered with upconversion nanoparticles. Near-field coupling is finely tuned at the nanostructure edge, in which a coherent upconversion luminescence enhanced by eight orders of magnitude is observed. The emission shows negligible divergence, narrow width at the microscale and controllable directivity through input focusing and polarization. This approach is relevant to various physical processes, with potential applications for light-source development, energy harvesting and photochemical catalysis.

3.
Nature ; 618(7964): 281-286, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37165192

ABSTRACT

Light-field detection measures both the intensity of light rays and their precise direction in free space. However, current light-field detection techniques either require complex microlens arrays or are limited to the ultraviolet-visible light wavelength ranges1-4. Here we present a robust, scalable method based on lithographically patterned perovskite nanocrystal arrays that can be used to determine radiation vectors from X-rays to visible light (0.002-550 nm). With these multicolour nanocrystal arrays, light rays from specific directions can be converted into pixelated colour outputs with an angular resolution of 0.0018°. We find that three-dimensional light-field detection and spatial positioning of light sources are possible by modifying nanocrystal arrays with specific orientations. We also demonstrate three-dimensional object imaging and visible light and X-ray phase-contrast imaging by combining pixelated nanocrystal arrays with a colour charge-coupled device. The ability to detect light direction beyond optical wavelengths through colour-contrast encoding could enable new applications, for example, in three-dimensional phase-contrast imaging, robotics, virtual reality, tomographic biological imaging and satellite autonomous navigation.

4.
Nature ; 590(7846): 410-415, 2021 02.
Article in English | MEDLINE | ID: mdl-33597760

ABSTRACT

Current X-ray imaging technologies involving flat-panel detectors have difficulty in imaging three-dimensional objects because fabrication of large-area, flexible, silicon-based photodetectors on highly curved surfaces remains a challenge1-3. Here we demonstrate ultralong-lived X-ray trapping for flat-panel-free, high-resolution, three-dimensional imaging using a series of solution-processable, lanthanide-doped nanoscintillators. Corroborated by quantum mechanical simulations of defect formation and electronic structures, our experimental characterizations reveal that slow hopping of trapped electrons due to radiation-triggered anionic migration in host lattices can induce more than 30 days of persistent radioluminescence. We further demonstrate X-ray luminescence extension imaging with resolution greater than 20 line pairs per millimetre and optical memory longer than 15 days. These findings provide insight into mechanisms underlying X-ray energy conversion through enduring electron trapping and offer a paradigm to motivate future research in wearable X-ray detectors for patient-centred radiography and mammography, imaging-guided therapeutics, high-energy physics and deep learning in radiology.

5.
Brief Bioinform ; 25(3)2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38600668

ABSTRACT

Microbial community analysis is an important field to study the composition and function of microbial communities. Microbial species annotation is crucial to revealing microorganisms' complex ecological functions in environmental, ecological and host interactions. Currently, widely used methods can suffer from issues such as inaccurate species-level annotations and time and memory constraints, and as sequencing technology advances and sequencing costs decline, microbial species annotation methods with higher quality classification effectiveness become critical. Therefore, we processed 16S rRNA gene sequences into k-mers sets and then used a trained DNABERT model to generate word vectors. We also design a parallel network structure consisting of deep and shallow modules to extract the semantic and detailed features of 16S rRNA gene sequences. Our method can accurately and rapidly classify bacterial sequences at the SILVA database's genus and species level. The database is characterized by long sequence length (1500 base pairs), multiple sequences (428,748 reads) and high similarity. The results show that our method has better performance. The technique is nearly 20% more accurate at the species level than the currently popular naive Bayes-dominated QIIME 2 annotation method, and the top-5 results at the species level differ from BLAST methods by <2%. In summary, our approach combines a multi-module deep learning approach that overcomes the limitations of existing methods, providing an efficient and accurate solution for microbial species labeling and more reliable data support for microbiology research and application.


Subject(s)
Deep Learning , Microbiota , RNA, Ribosomal, 16S/genetics , Bayes Theorem , Microbiota/genetics , Bacteria/genetics , Phylogeny
6.
Nature ; 587(7835): 594-599, 2020 11.
Article in English | MEDLINE | ID: mdl-33239799

ABSTRACT

The generation, control and transfer of triplet excitons in molecular and hybrid systems is of great interest owing to their long lifetime and diffusion length in both solid-state and solution phase systems, and to their applications in light emission1, optoelectronics2,3, photon frequency conversion4,5 and photocatalysis6,7. Molecular triplet excitons (bound electron-hole pairs) are 'dark states' because of the forbidden nature of the direct optical transition between the spin-zero ground state and the spin-one triplet levels8. Hence, triplet dynamics are conventionally controlled through heavy-metal-based spin-orbit coupling9-11 or tuning of the singlet-triplet energy splitting12,13 via molecular design. Both these methods place constraints on the range of properties that can be modified and the molecular structures that can be used. Here we demonstrate that it is possible to control triplet dynamics by coupling organic molecules to lanthanide-doped inorganic insulating nanoparticles. This allows the classically forbidden transitions from the ground-state singlet to excited-state triplets to gain oscillator strength, enabling triplets to be directly generated on molecules via photon absorption. Photogenerated singlet excitons can be converted to triplet excitons on sub-10-picosecond timescales with unity efficiency by intersystem crossing. Triplet exciton states of the molecules can undergo energy transfer to the lanthanide ions with unity efficiency, which allows us to achieve luminescent harvesting of the dark triplet excitons. Furthermore, we demonstrate that the triplet excitons generated in the lanthanide nanoparticle-molecule hybrid systems by near-infrared photoexcitation can undergo efficient upconversion via a lanthanide-triplet excitation fusion process: this process enables endothermic upconversion and allows efficient upconversion from near-infrared to visible frequencies in the solid state. These results provide a new way to control triplet excitons, which is essential for many fields of optoelectronic and biomedical research.

7.
Nat Mater ; 23(6): 803-809, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38191632

ABSTRACT

High-sensitivity radiation detectors for energetic particles are essential for advanced applications in particle physics, astronomy and cancer therapy. Current particle detectors use bulk crystals, and thin-film organic scintillators have low light yields and limited radiation tolerance. Here we present transmissive thin scintillators made from CsPbBr3 nanocrystals, designed for real-time single-proton counting. These perovskite scintillators exhibit exceptional sensitivity, with a high light yield (~100,000 photons per MeV) when subjected to proton beams. This enhanced sensitivity is attributed to radiative emission from biexcitons generated through proton-induced upconversion and impact ionization. These scintillators can detect as few as seven protons per second, a sensitivity level far below the rates encountered in clinical settings. The combination of rapid response (~336 ps) and pronounced ionostability enables diverse applications, including single-proton tracing, patterned irradiation and super-resolution proton imaging. These advancements have the potential to improve proton dosimetry in proton therapy and radiography.

8.
Chem Soc Rev ; 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38836431

ABSTRACT

The past few decades have witnessed encouraging progress in the development of high-performance film-based fluorescent sensors (FFSs) for detecting explosives, illicit drugs, chemical warfare agents (CWAs), and hazardous volatile organic chemicals (VOCs), among others. Several FFSs have transitioned from laboratory research to real-world applications, demonstrating their practical relevance. At the heart of FFS technology lies the sensing films, which play a crucial role in determining the analytes and the resulting signals. The selection of sensing fluorophores and the fabrication strategies employed in film construction are key factors that influence the fluorescence properties, active-layer structures, and overall sensing behaviors of these films. This review examines the progress and innovations in the research field of FFSs over the past two decades, focusing on advancements in fluorophore design and active-layer structural engineering. It underscores popular sensing fluorophore scaffolds and the dynamics of excited state processes. Additionally, it delves into six distinct categories of film fabrication technologies and strategies, providing insights into their advantages and limitations. This review further addresses important considerations such as photostability and substrate effects. Concluding with an overview of the field's challenges and prospects, it sheds light on the potential for further development in this burgeoning area.

9.
Nano Lett ; 24(8): 2503-2510, 2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38258747

ABSTRACT

X-ray scintillators have utility in radiation detection, therapy, and imaging. Various materials, such as halide perovskites, organic illuminators, and metal clusters, have been developed to replace conventional scintillators due to their ease of fabrication, improved performance, and adaptability. However, they suffer from self-absorption, chemical instability, and weak X-ray stopping power. Addressing these limitations, we employ alkali metal doping to turn nonemissive CsPb2Br5 into scintillators. Introducing alkali metal dopants causes lattice distortion and enhances electron-phonon coupling, which creates transient potential energy wells capable of trapping photogenerated or X-ray-generated electrons and holes to form self-trapped excitons. These self-trapped excitons undergo radiative recombination, resulting in a photoluminescence quantum yield of 55.92%. The CsPb2Br5-based X-ray scintillator offers strong X-ray stopping power, high resistance to self-absorption, and enhanced stability when exposed to the atmosphere, chemical solvents, and intense irradiation. It exhibits a detection limit of 162.3 nGyair s-1 and an imaging resolution of 21 lp mm-1.

10.
J Am Chem Soc ; 146(10): 6471-6475, 2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38428039

ABSTRACT

Adaptive materials that exhibit a multichromatic response as a function of applied stimulus are highly desirable, as they can result in applications ranging from smart surfaces to anticounterfeit devices. Here we report on such a system based on an intriguing thermal 1,2-BF2 shift that transforms a visible-light-activated azo-BF2 photoswitch into a BF2-hydrazone fluorophore (BODIHY) in both solution and the solid-state. Structure-property analysis, in conjunction with DFT calculations, reveals that the shift is catalyzed by the spatial proximity of an oxygen atom next to the BF2 group and that the activation originates from an electronic and not steric effect. Theoretical calculations also show that while the energy barrier for the trans → BODIHY transformation is accessible at room temperature (thermal half-life of 30 h), the cis → BODIHY transformation has a much higher barrier, which is why the 1,2-BF2 shift is not observed for the cis form. The photoswitching of the azo-BF2, in conjunction with the 1,2-BF2 shift, was then used in the multicolor modulation of a switch-containing cross-linked polydimethylsiloxane film using light and/or heat stimuli, elaborating the usefulness of the sophisticated reaction cascade that can be accessed from this simple system.

11.
J Am Chem Soc ; 146(13): 9413-9421, 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38506128

ABSTRACT

Precise control of cellular signaling events during programmed cell death is crucial yet challenging for cancer therapy. The modulation of signal transduction in cancer cells holds promise but is limited by the lack of efficient, biocompatible, and spatiotemporally controllable approaches. Here we report a photodynamic strategy that modulates both apoptotic and pyroptotic cell death by altering caspase-3 protein activity and the associated signaling crosstalk. This strategy employs a mitochondria-targeting, near-infrared activatable probe (termed M-TOP) that functions via a type-I photochemical mechanism. M-TOP is less dependent on oxygen and more effective in treating drug-resistant cancer cells, even under hypoxic conditions. Our study shows that higher doses of M-TOP induce pyroptotic cell death via the caspase-3/gasdermin-E pathway, whereas lower doses lead to apoptosis. This photodynamic method is effective across diverse gasdermin-E-expressing cancer cells. Moreover, the M-TOP mediated shift from apoptotic to pyroptotic modulation can evoke a controlled inflammatory response, leading to a robust yet balanced immune reaction. This effectively inhibits both distal tumor growth and postsurgical tumor recurrence. This work demonstrates the feasibility of modulating intracellular signaling through the rational design of photodynamic anticancer drugs.


Subject(s)
Gasdermins , Neoplasms , Humans , Caspase 3/metabolism , Apoptosis , Signal Transduction , Mitochondria/metabolism , Neoplasms/metabolism , Caspase 8/metabolism , Caspase 8/pharmacology , Caspase 1/metabolism , Caspase 1/pharmacology
12.
J Am Chem Soc ; 146(10): 6566-6579, 2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38422385

ABSTRACT

Superior photostability, minimal phototoxicity, red-shifted absorption/emission wavelengths, high brightness, and an enlarged Stokes shift are essential characteristics of top-tier organic fluorophores, particularly for long-lasting super-resolution imaging in live cells (e.g., via stimulated emission depletion (STED) nanoscopy). However, few existing fluorophores possess all of these properties. In this study, we demonstrate a general approach for simultaneously enhancing these parameters through the introduction of 9,9-dimethyl-9,10-dihydroacridine (DMA) as an electron-donating auxochrome. DMA not only induces red shifts in emission wavelengths but also suppresses photooxidative reactions and prevents the formation of triplet states in DMA-based fluorophores, greatly improving photostability and remarkably minimizing phototoxicity. Moreover, the DMA group enhances the fluorophores' brightness and enlarges the Stokes shift. Importantly, the "universal" benefits of attaching the DMA auxochrome have been exemplified in various fluorophores including rhodamines, difluoride-boron complexes, and coumarin derivatives. The resulting fluorophores successfully enabled the STED imaging of organelles and HaloTag-labeled membrane proteins.


Subject(s)
Fluorescent Dyes , Humans , Rhodamines , Microscopy, Fluorescence/methods , HeLa Cells , Ionophores
13.
Anal Chem ; 96(16): 6148-6157, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38603515

ABSTRACT

Photodynamic therapy (PDT) provides an alternative approach to targeted cancer treatment, but the therapeutic mechanism of advanced nanodrugs applied to live cells and tissue is still not well understood. Herein, we employ the hybrid hyperspectral stimulated Raman scattering (SRS) and transient absorption (TA) microscopy developed for real-time in vivo visualization of the dynamic interplay between the unique photoswichable lanthanide-doped upconversion nanoparticle-conjugated rose bengal and triphenylphosphonium (LD-UCNP@CS-Rb-TPP) probe synthesized and live cancer cells. The Langmuir pharmacokinetic model associated with SRS/TA imaging is built to quantitatively track the uptakes and pharmacokinetics of LD-UCNP@CS-Rb-TPP within cancer cells. Rapid SRS/TA imaging quantifies the endocytic internalization rates of the LD-UCNP@CS-Rb-TPP probe in individual HeLa cells, and the translocation of LD-UCNP@CS-Rb-TPP from mitochondria to cell nuclei monitored during PDT can be associated with mitochondria fragmentations and the increased nuclear membrane permeability, cascading the dual organelle ablations in cancer cells. The real-time SRS spectral changes of cellular components (e.g., proteins, lipids, and DNA) observed reflect the PDT-induced oxidative damage and the dose-dependent death pattern within a single live cancer cell, thereby facilitating the real-time screening of optimal light dose and illumination duration controls in PDT. This study provides new insights into the further understanding of drug delivery and therapeutic mechanisms of photoswitchable LD-UCNP nanomedicine in live cancer cells, which are critical in the optimization of nanodrug formulations and development of precision cancer treatment in PDT.


Subject(s)
Nanoparticles , Photochemotherapy , Photosensitizing Agents , Humans , HeLa Cells , Nanoparticles/chemistry , Photosensitizing Agents/chemistry , Photosensitizing Agents/pharmacology , Spectrum Analysis, Raman , Rose Bengal/chemistry , Rose Bengal/pharmacology , Nonlinear Optical Microscopy , Dose-Response Relationship, Drug
14.
Nat Mater ; 22(3): 289-304, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36864164

ABSTRACT

Persistent luminescent phosphors can store light energy in advance and release it with a long-lasting afterglow emission. With their ability to eliminate in situ excitation and store energy for long periods of time, they are promising for broad applications, including background-free bioimaging, high-resolution radiography, conformal electronics imaging and multilevel encryption. This Review provides an overview of various strategies for trap manipulation in persistent luminescent nanomaterials. We highlight key examples in the design and preparation of nanomaterials with tunable persistent luminescence, particularly in the near-infrared range. In subsequent sections, we cover the most current developments and trends concerning the use of these nanomaterials in biological applications. Moreover, we assess their advantages and disadvantages compared with conventional luminescent materials for biological applications. We also discuss future research directions and challenges, such as insufficient brightness at the single-particle level, and possible solutions to these challenges.

15.
Acc Chem Res ; 56(4): 425-439, 2023 02 21.
Article in English | MEDLINE | ID: mdl-36745051

ABSTRACT

Surface-modified lanthanide nanoparticles have been widely developed as an emerging class of therapeutics for cancer treatment because they exhibit several unique properties. First, lanthanide nanoparticles exhibit a variety of diagnostic capabilities suitable for various image-guided therapies. Second, a large number of therapeutic molecules can be accommodated on the surface of lanthanide nanoparticles, which can simultaneously achieve combined cancer therapy. Third, multivalent targeting ligands on lanthanide nanoparticles can be easily modified to achieve high affinity and specificity for target cells. Last but not least, lanthanide nanoparticles can be engineered for spatially and temporally controlled tumor therapy, which is critical for developing precise and personalized tumor therapy. Surface-modified lanthanide-doped nanoparticles are widely used in cancer phototherapy. This is due to their unique optical properties, including large anti-Stokes shifts, long-lasting luminescence, high photostability, and the capacity for near-infrared or X-ray excitation. Upon near-infrared irradiation, these nanoparticles can emit ultraviolet to visible light, which activates photosensitizers and photothermal agents to destroy tumor cells. Surface modification with special ligands that respond to tumor microenvironment changes, such as acidic pH, hypoxia, or redox reactions, can turn lanthanide nanoparticles into a smart nanoplatform for light-guided tumor chemotherapy and gene therapy. Surface-engineered lanthanide nanoparticles can include antigens that elicit tumor-specific immune responses, as well as immune activators that boost immunity, allowing distant and metastatic tumors to be eradicated. The design of ligands and surface chemistry is crucial for improving cancer therapy without causing side effects. In this Account, we classify surface-modified lanthanide nanoparticles for tumor therapy into four main domains: phototherapy, radiotherapy, chemotherapy, and biotherapy. We begin by introducing fundamental bioapplications and then discuss recent developments in tumor phototherapy (photodynamic therapy and photothermal therapy), radiotherapy, chemotherapy, and biotherapy (gene therapy and immunotherapy). We also assess the viability of a variety of strategies for eliminating tumor cells through innovative pathways. Finally, future opportunities and challenges for the development of more efficient lanthanide nanoprobes are discussed.


Subject(s)
Lanthanoid Series Elements , Metal Nanoparticles , Nanoparticles , Neoplasms , Photochemotherapy , Humans , Lanthanoid Series Elements/chemistry , Nanoparticles/chemistry , Phototherapy , Neoplasms/drug therapy , Infrared Rays , Cell Line, Tumor , Tumor Microenvironment
16.
Chemistry ; 30(15): e202303707, 2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38221317

ABSTRACT

Fluorogenic dyes with high brightness, large turn-on ratios, excellent photostability, favorable specificity, low cytotoxicity, and high membrane permeability are essential for high-resolution fluorescence imaging in live cells. In this study, we endowed these desirable properties to a rhodamine derivative by simply replacing the N, N-diethyl group with a pyrrole substituent. The resulting dye, Rh-NH, exhibited doubled Stokes shifts (54 nm) and a red-shift of more than 50 nm in fluorescence spectra compared to Rhodamine B. Rh-NH preferentially exists in a non-emissive but highly permeable spirolactone form. Upon binding to lysosomes, the collective effects of low pH, low polarity, and high viscosity endow Rh-NH with significant fluorescence turn-on, making it a suitable candidate for wash-free, high-contrast lysosome tracking. Consequently, Rh-NH enabled us to successfully explore stimulated emission depletion (STED) super-resolution imaging of lysosome dynamics, as well as fluorescence lifetime imaging of lysosomes in live cells.


Subject(s)
Fluorescent Dyes , Lysosomes , Humans , Fluorescent Dyes/chemistry , Rhodamines/chemistry , Lysosomes/chemistry , HeLa Cells , Microscopy, Fluorescence/methods
17.
Chem Rev ; 122(6): 5519-5603, 2022 03 23.
Article in English | MEDLINE | ID: mdl-34989556

ABSTRACT

Impurity doping is a promising method to impart new properties to various materials. Due to their unique optical, magnetic, and electrical properties, rare-earth ions have been extensively explored as active dopants in inorganic crystal lattices since the 18th century. Rare-earth doping can alter the crystallographic phase, morphology, and size, leading to tunable optical responses of doped nanomaterials. Moreover, rare-earth doping can control the ultimate electronic and catalytic performance of doped nanomaterials in a tunable and scalable manner, enabling significant improvements in energy harvesting and conversion. A better understanding of the critical role of rare-earth doping is a prerequisite for the development of an extensive repertoire of functional nanomaterials for practical applications. In this review, we highlight recent advances in rare-earth doping in inorganic nanomaterials and the associated applications in many fields. This review covers the key criteria for rare-earth doping, including basic electronic structures, lattice environments, and doping strategies, as well as fundamental design principles that enhance the electrical, optical, catalytic, and magnetic properties of the material. We also discuss future research directions and challenges in controlling rare-earth doping for new applications.


Subject(s)
Metals, Rare Earth , Nanostructures , Metals, Rare Earth/chemistry , Nanostructures/chemistry
18.
Nature ; 561(7721): 88-93, 2018 09.
Article in English | MEDLINE | ID: mdl-30150772

ABSTRACT

The rising demand for radiation detection materials in many applications has led to extensive research on scintillators1-3. The ability of a scintillator to absorb high-energy (kiloelectronvolt-scale) X-ray photons and convert the absorbed energy into low-energy visible photons is critical for applications in radiation exposure monitoring, security inspection, X-ray astronomy and medical radiography4,5. However, conventional scintillators are generally synthesized by crystallization at a high temperature and their radioluminescence is difficult to tune across the visible spectrum. Here we describe experimental investigations of a series of all-inorganic perovskite nanocrystals comprising caesium and lead atoms and their response to X-ray irradiation. These nanocrystal scintillators exhibit strong X-ray absorption and intense radioluminescence at visible wavelengths. Unlike bulk inorganic scintillators, these perovskite nanomaterials are solution-processable at a relatively low temperature and can generate X-ray-induced emissions that are easily tunable across the visible spectrum by tailoring the anionic component of colloidal precursors during their synthesis. These features allow the fabrication of flexible and highly sensitive X-ray detectors with a detection limit of 13 nanograys per second, which is about 400 times lower than typical medical imaging doses. We show that these colour-tunable perovskite nanocrystal scintillators can provide a convenient visualization tool for X-ray radiography, as the associated image can be directly recorded by standard digital cameras. We also demonstrate their direct integration with commercial flat-panel imagers and their utility in examining electronic circuit boards under low-dose X-ray illumination.

19.
Nano Lett ; 23(3): 979-984, 2023 Feb 08.
Article in English | MEDLINE | ID: mdl-36652276

ABSTRACT

Trivalent lanthanides are commonly incorporated into sodium yttrium fluoride nanocrystals to enhance their optical properties. Lanthanides are expected to randomly replace trivalent yttrium cations due to their isovalent nature, and the dopant-dopant distance decreases with increasing dopant concentration. Combining spectroscopy with quantum mechanical calculations, we find that large lanthanides exhibit an anisotropic distribution in the hexagonal yttrium sublattice at low dopant concentrations. This counterintuitive substitution suggests the formation of one-dimensional dimers or chains with short dopant-dopant distances. Our study of the distance-sensitive cross-relaxation between Nd3+ dopants in ß-NaYF4 nanocrystals confirms that the concentration quenching threshold is lower than that of their cubic counterparts, consistent with the proposed chain-like model. Moreover, we demonstrate modulation of the anisotropic distribution by microstrain management via alkali metal codoping. Research into dopant distribution in inorganic crystals may enable the development of new materials and properties for future challenges.

20.
Nano Lett ; 23(15): 7221-7227, 2023 Aug 09.
Article in English | MEDLINE | ID: mdl-37338434

ABSTRACT

Vacancies pose a major challenge in the production of high-quality crystals, particularly at the nanoscale. To address this problem, we report a convenient strategy that involves volumetric lattice reconstruction and dynamic metal complex docking to produce ultrasmall (10 nm) and bright core-shell upconversion nanoparticles (UCNPs). This strategy involves the formation of lanthanide ion-oleic acid complexes during postannealing in solution, which effectively removes vacancies in nanocrystals. The removal of vacancies restricts the diffusion of lanthanide sensitizers and emitters within the core, thus minimizing surface quenching. Our volumetric lattice reconstruction strategy provides fundamental insights into lattice engineering and presents a general strategy for purifying functional nanocrystals for applications in fields such as single-molecule tracking, quantum optics, energy conversion, and others.

SELECTION OF CITATIONS
SEARCH DETAIL