Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 148
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Cell ; 187(13): 3445-3459.e15, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38838668

ABSTRACT

Understanding cellular force transmission dynamics is crucial in mechanobiology. We developed the DNA-based ForceChrono probe to measure force magnitude, duration, and loading rates at the single-molecule level within living cells. The ForceChrono probe circumvents the limitations of in vitro single-molecule force spectroscopy by enabling direct measurements within the dynamic cellular environment. Our findings reveal integrin force loading rates of 0.5-2 pN/s and durations ranging from tens of seconds in nascent adhesions to approximately 100 s in mature focal adhesions. The probe's robust and reversible design allows for continuous monitoring of these dynamic changes as cells undergo morphological transformations. Additionally, by analyzing how mutations, deletions, or pharmacological interventions affect these parameters, we can deduce the functional roles of specific proteins or domains in cellular mechanotransduction. The ForceChrono probe provides detailed insights into the dynamics of mechanical forces, advancing our understanding of cellular mechanics and the molecular mechanisms of mechanotransduction.


Subject(s)
Mechanotransduction, Cellular , Single Molecule Imaging , Animals , Humans , Mice , Biomechanical Phenomena , Cell Adhesion , DNA/chemistry , DNA/metabolism , Focal Adhesions/metabolism , Integrins/metabolism , Microscopy, Atomic Force/methods , Single Molecule Imaging/methods , Cell Line , Cell Survival , Base Pairing , Calibration
2.
J Lipid Res ; 65(9): 100611, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39094773

ABSTRACT

Mitochondrial fatty acid oxidation serves as an essential process for cellular survival, differentiation, proliferation, and energy metabolism. Numerous studies have utilized etomoxir (ETO) for the irreversible inhibition of carnitine palmitoylcarnitine transferase 1 (CPT1), which catalyzes the rate-limiting step for mitochondrial long-chain fatty acid ß-oxidation to examine the bioenergetic roles of mitochondrial fatty acid metabolism in many tissues in multiple diverse disease states. Herein, we demonstrate that intact mitochondria robustly metabolize ETO to etomoxir-carnitine (ETO-carnitine) prior to nearly complete ETO-mediated inhibition of CPT1. The novel pharmaco-metabolite, ETO-carnitine, was conclusively identified by accurate mass, fragmentation patterns, and isotopic fine structure. On the basis of these data, ETO-carnitine was successfully differentiated from isobaric structures (e.g., 3-hydroxy-C18:0 carnitine and 3-hydroxy-C18:1 carnitine). Mechanistically, generation of ETO-carnitine from mitochondria required exogenous Mg2+, ATP or ADP, CoASH, and L-carnitine, indicating that thioesterification by long-chain acyl-CoA synthetase to form ETO-CoA precedes its conversion to ETO-carnitine by CPT1. CPT1-dependent generation of ETO-carnitine was substantiated by an orthogonal approach using ST1326 (a CPT1 inhibitor), which effectively inhibits mitochondrial ETO-carnitine production. Surprisingly, purified ETO-carnitine potently inhibited calcium-independent PLA2γ and PLA2ß as well as mitochondrial respiration independent of CPT1. Robust production and release of ETO-carnitine from HepG2 cells incubated in the presence of ETO was also demonstrated. Collectively, this study identifies the chemical mechanism for the biosynthesis of a novel pharmaco-metabolite of ETO, ETO-carnitine, that is generated by CPT1 in mitochondria and likely impacts multiple downstream (non-CPT1 related) enzymes and processes in multiple subcellular compartments.


Subject(s)
Carnitine O-Palmitoyltransferase , Carnitine , Epoxy Compounds , Mitochondria , Humans , Carnitine/metabolism , Epoxy Compounds/pharmacology , Epoxy Compounds/metabolism , Mitochondria/metabolism , Mitochondria/drug effects , Carnitine O-Palmitoyltransferase/metabolism , Carnitine O-Palmitoyltransferase/antagonists & inhibitors , Animals , Cell Respiration/drug effects
3.
Anal Chem ; 96(29): 12181-12188, 2024 07 23.
Article in English | MEDLINE | ID: mdl-38975840

ABSTRACT

New strategies for the simultaneous and portable detection of multiple enzyme activities are highly desirable for clinical diagnosis and home care. However, the methods developed thus far generally suffer from high costs, cumbersome procedures, and heavy reliance on large-scale instruments. To satisfy the actual requirements of rapid, accurate, and on-site detection of multiple enzyme activities, we report herein a smartphone-assisted programmable microfluidic paper-based analytical device (µPAD) that utilizes colorimetric and photothermal signals for simultaneous, accurate, and visual quantitative detection of alkaline phosphatase (ALP) and butyrylcholinesterase (BChE). Specifically, the operation of this µPAD sensing platform is based on two sequential steps. Cobalt-doped mesoporous cerium oxide (Co-m-CeO2) with remarkable peroxidase-like activities under neutral conditions first catalytically decomposes H2O2 for effectively converting colorless 3,3',5,5'-tetramethylbenzidine (TMB) into blue oxidized TMB (oxTMB). The subsequent addition of ALP or BChE to their respective substrates produces a reducing substance that can somewhat inhibit the oxTMB transformation for compromised colorimetric and photothermal signals of oxTMB. Notably, these two-step bioenzyme-nanozyme cascade reactions strongly support the straightforward and excellent processability of this platform, which exhibit lower detection limits for ALP and BChE with a detection limit for BChE an order of magnitude lower than those of the other reported paper-based detection methods. The practicability and efficiency of this platform are further demonstrated through the analysis of clinical serum samples. This innovative platform exhibits great potential as a facile yet robust approach for simultaneous, accurate, and on-site visual detection of multiple enzyme activities in authentic samples.


Subject(s)
Alkaline Phosphatase , Butyrylcholinesterase , Colorimetry , Paper , Alkaline Phosphatase/metabolism , Alkaline Phosphatase/analysis , Alkaline Phosphatase/chemistry , Humans , Butyrylcholinesterase/metabolism , Butyrylcholinesterase/blood , Lab-On-A-Chip Devices , Benzidines/chemistry , Smartphone , Cerium/chemistry , Cobalt/chemistry , Microfluidic Analytical Techniques/instrumentation , Limit of Detection , Enzyme Assays/methods , Enzyme Assays/instrumentation , Hydrogen Peroxide/chemistry , Hydrogen Peroxide/analysis
4.
Microb Ecol ; 87(1): 43, 2024 Feb 16.
Article in English | MEDLINE | ID: mdl-38363394

ABSTRACT

Biological soil crusts (biocrusts) are considered "desert ecosystem engineers" because they play a vital role in the restoration and stability maintenance of deserts, including those cold sandy land ecosystems at high latitudes, which are especially understudied. Microorganisms participate in the formation and succession of biocrusts, contributing to soil properties' improvement and the stability of soil aggregates, and thus vegetation development. Accordingly, understanding the composition and successional characteristics of microorganisms is a prerequisite for analyzing the ecological functions of biocrusts and related applications. Here, the Hulun Buir Sandy Land region in northeastern China-lying at the highest latitude of any sandy land in the country-was selected for study. Through a field investigation and next-generation sequencing (Illumina MiSeq PE300 Platform), our goal was to assess the shifts in diversity and community composition of soil bacteria and fungi across different stages during the succession of biocrusts in this region, and to uncover the main factors involved in shaping their soil microbial community. The results revealed that the nutrient enrichment capacity of biocrusts for available nitrogen, total nitrogen, total phosphorus, total content of water-soluble salt, available potassium, soil organic matter, and available phosphorus was progressively enhanced by the succession of cyanobacterial crusts to lichen crusts and then to moss crusts. In tandem, soil bacterial diversity increased as biocrust succession proceeded but fungal diversity decreased. A total of 32 bacterial phyla and 11 fungal phyla were identified, these also known to occur in other desert ecosystems. Among those taxa, the relative abundance of Proteobacteria and Cyanobacteria significantly increased and decreased, respectively, along the cyanobacterial crust-lichen-moss crust successional gradient. However, for Actinobacteria, Chloroflexi, and Acidobacteria their changed relative abundance was significantly hump-shaped, increasing in the shift from cyanobacterial crust to lichen crust, and then decreasing as lichen crust shifted to moss crust. In this process, the improved soil properties effectively enhanced soil bacterial and fungal community composition. Altogether, these findings broaden our understanding about how soil microbial properties can change during the succession of biocrusts in high-latitude, cold sandy land ecosystems.


Subject(s)
Cyanobacteria , Lichens , Microbiota , Ecosystem , Soil , Sand , Soil Microbiology , Nitrogen , Phosphorus , China
5.
Environ Res ; : 120087, 2024 Oct 23.
Article in English | MEDLINE | ID: mdl-39455046

ABSTRACT

The increasing consumption of antibiotics by humans and animals and their inappropriate disposal have increased antibiotic load in municipal and pharmaceutical industry waste, resulting in severe public health risks worldwide. Anaerobic digestion (AD) is the main force of antibiotic-containing wastewater treatment, and the adaptability of biochar/hydrochar (BC/HC) makes it an attractive addition to AD systems, which aim to promote methane production efficiency. Nevertheless, further studies are needed to better understand the multifaceted function of BC/HC and its role in antibiotic-containing wastewater AD. This review article examines the current status of AD of antibiotic-containing wastewater and the effects of different preparation conditions on the physicochemical properties of BC/HC and AD status. The incorporation of BC/HC into the AD process has several potential benefits, contingent upon the physical and chemical properties of BC/HC. These benefits include mitigation of antibiotic toxicity, establishment of a stable system, enrichment of functional microorganisms and enhancement of direct interspecies electron transfer. The mechanism by which BC/HC enhances the AD of antibiotic-containing wastewater, with focus on microbial enhancement, was analysed. A review of the literature revealed that the challenge of optimization and process improvement must be addressed to enhance efficiency and clarify the mechanism of BC/HC in the AD of antibiotic-containing wastewater. This review aims to provide significant insights and details into the BC/HC-enhanced AD of antibiotic-containing wastewater.

6.
Proc Natl Acad Sci U S A ; 118(30)2021 07 27.
Article in English | MEDLINE | ID: mdl-34301864

ABSTRACT

The dynamic change of cell-surface glycans is involved in diverse biological and pathological events such as oncogenesis and metastasis. Despite tremendous efforts, it remains a great challenge to selectively distinguish and label glycans of different cancer cells or cancer subtypes. Inspired by biomimetic cell membrane-coating technology, herein, we construct pH-responsive azidosugar liposomes camouflaged with natural cancer-cell membrane for tumor cell-selective glycan engineering. With cancer cell-membrane camouflage, the biomimetic liposomes can prevent protein corona formation and evade phagocytosis of macrophages, facilitating metabolic glycans labeling in vivo. More importantly, due to multiple membrane receptors, the biomimetic liposomes have prominent cell selectivity to homotypic cancer cells, showing higher glycan-labeling efficacy than a single-ligand targeting strategy. Further in vitro and in vivo experiments indicate that cancer cell membrane-camouflaged azidosugar liposomes not only realize cell-selective glycan imaging of different cancer cells and triple-negative breast cancer subtypes but also do well in labeling metastatic tumors. Meanwhile, the strategy is also applicable to the use of tumor tissue-derived cell membranes, which shows the prospect for individual diagnosis and treatment. This work may pave a way for efficient cancer cell-selective engineering and visualization of glycans in vivo.


Subject(s)
Biomimetics/methods , Breast Neoplasms/pathology , Cell Membrane/metabolism , Liposomes/metabolism , Lung Neoplasms/secondary , Phagocytosis , Polysaccharides/analysis , Animals , Apoptosis , Breast Neoplasms/classification , Breast Neoplasms/metabolism , Cell Engineering , Cell Proliferation , Female , Humans , Lung Neoplasms/metabolism , Mice , Nanoparticles/chemistry , Tumor Cells, Cultured , Xenograft Model Antitumor Assays
7.
Mar Drugs ; 21(11)2023 Nov 14.
Article in English | MEDLINE | ID: mdl-37999417

ABSTRACT

In our chemical investigation into Penicillium sp. UJNMF0740 derived from mangrove sediment, fourteen indole diterpene analogs, including four new ones, are purified by multiple chromatographic separation methods, with their structures being elucidated by the analyses of NMR, HR-ESIMS, and ECD data. The antibacterial and neuroprotective effects of these isolates were examined, and only compounds 6 and 9 exhibited weak antibacterial activity, while compounds 5, 8, and 10 showed protective effects against the injury of PC12 cells induced by 6-hydroxydopamine (6-OHDA). Additionally, compound 5 could suppress the apoptosis and production of reactive oxygen species (ROS) in 6-OHDA-stimulated PC12 cells as well as trigger the phosphorylation of PI3K and Akt. Taken together, our work enriches the structural diversity of indole diterpenes and hints that compounds of this skeleton can repress the 6-OHDA-induced apoptosis of PC12 cells via regulating the PI3K/Akt signaling pathway, which provides evidence for the future utilization of this fascinating class of molecules as potential neuroprotective agents.


Subject(s)
Diterpenes , Neuroprotective Agents , Penicillium , Rats , Animals , PC12 Cells , Proto-Oncogene Proteins c-akt/metabolism , Oxidopamine/toxicity , Phosphatidylinositol 3-Kinases/metabolism , Penicillium/chemistry , Reactive Oxygen Species/metabolism , Apoptosis , Diterpenes/pharmacology , Diterpenes/chemistry , Indoles/pharmacology , Indoles/chemistry , Anti-Bacterial Agents/pharmacology , Neuroprotective Agents/pharmacology
8.
Molecules ; 28(3)2023 Jan 30.
Article in English | MEDLINE | ID: mdl-36770989

ABSTRACT

Bacterial infections are a serious threat to human health, and the rapid emergence of bacterial resistance caused by the abuse of antibiotics exacerbates the seriousness of this problem. Effectively utilizing natural products to construct new antimicrobial strategies is regarded as a promising way to suppress the rapid development of bacterial resistance. In this paper, we fabricated a new type of natural antibacterial patch by using a natural active substance (allicin) as an antibacterial agent and the porous structure of the white pulp of pomelo peel as a scaffold. The antibacterial activity and mechanisms were systematically investigated by using various technologies, including the bacteriostatic circle, plate counting, fluorescence staining, and a scanning electron microscope. Both gram-positive and negative bacteria can be effectively killed by this patch. Moreover, this natural antibacterial patch also showed significant anti-skin infection activity. This study provides a green approach for constructing efficient antibacterial patches.


Subject(s)
Anti-Infective Agents , Bacterial Infections , Humans , Porosity , Gram-Negative Bacteria , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Microbial Sensitivity Tests
9.
World J Microbiol Biotechnol ; 40(2): 51, 2023 Dec 26.
Article in English | MEDLINE | ID: mdl-38146036

ABSTRACT

Vibrio alginolyticus (V. alginolyticus) is a common pathogen in the ocean. In addition to causing serious economic losses in aquaculture, it can also infect humans. The rapid detection of nucleic acids of V. alginolyticus with high sensitivity and specificity in the field is very important for the diagnosis and treatment of infection caused by V. alginolyticus. Here, we established a simple, fast and effective molecular method for the identification of V. alginolyticus that does not rely on expensive instruments and professionals. The method integrates recombinase polymerase amplification (RPA) technology with CRISPR system in a single PCR tube. Using this method, the results can be visualized by lateral flow dipstick (LFD) in less than 50 min, we named this method RPA-CRISPR/Cas13a-LFD. The method was confirmed to achieve high specificity for the detection of V. alginolyticus with no cross-reactivity with similar Vibrio and common clinical pathogens. This diagnostic method shows high sensitivity; the detection limit of the RPA-CRISPR/Cas13a-LFD is 10 copies/µL. We successfully identified 35 V. alginolyticus strains from a total of 55 different bacterial isolates and confirmed their identity by (Matrix-assisted laser desorption ionization time-of-flight mass spectrometry, MALDI-TOF MS). We also applied this method on infected mice blood, and the results were both easily and rapidly obtained. In conclusion, RPA-CRISPR/Cas13a-LFD offers great potential as a useful tool for reliable and rapid diagnosis of V. alginolyticus infection, especially in limited conditions.


Subject(s)
Recombinases , Vibrio alginolyticus , Animals , Humans , Mice , Recombinases/metabolism , Vibrio alginolyticus/genetics , Vibrio alginolyticus/metabolism , Clustered Regularly Interspaced Short Palindromic Repeats , Sensitivity and Specificity , Polymerase Chain Reaction/methods , Nucleic Acid Amplification Techniques/methods
10.
J Lipid Res ; 62: 100052, 2021.
Article in English | MEDLINE | ID: mdl-33636162

ABSTRACT

High-fat (HF) diet-induced obesity precipitates multiple metabolic disorders including insulin resistance, glucose intolerance, oxidative stress, and inflammation, resulting in the initiation of cell death programs. Previously, we demonstrated murine germline knockout of calcium-independent phospholipase A2γ (iPLA2γ) prevented HF diet-induced weight gain, attenuated insulin resistance, and decreased mitochondrial permeability transition pore (mPTP) opening leading to alterations in bioenergetics. To gain insight into the specific roles of hepatic iPLA2γ in mitochondrial function and cell death under metabolic stress, we generated a hepatocyte-specific iPLA2γ-knockout (HEPiPLA2γKO). Using this model, we compared the effects of an HF diet on wild-type versus HEPiPLA2γKO mice in eicosanoid production and mitochondrial bioenergetics. HEPiPLA2γKO mice exhibited higher glucose clearance rates than WT controls. Importantly, HF-diet induced the accumulation of 12-hydroxyeicosatetraenoic acid (12-HETE) in WT liver which was decreased in HEPiPLA2γKO. Furthermore, HF-feeding markedly increased Ca2+ sensitivity and resistance to ADP-mediated inhibition of mPTP opening in WT mice. In contrast, ablation of iPLA2γ prevented the HF-induced hypersensitivity of mPTP opening to calcium and maintained ADP-mediated resistance to mPTP opening. Respirometry revealed that ADP-stimulated mitochondrial respiration was significantly reduced by exogenous 12-HETE. Finally, HEPiPLA2γKO hepatocytes were resistant to calcium ionophore-induced lipoxygenase-mediated lactate dehydrogenase release. Collectively, these results demonstrate that an HF diet increases iPLA2γ-mediated hepatic 12-HETE production leading to mitochondrial dysfunction and hepatic cell death.


Subject(s)
Diet, High-Fat
11.
J Biol Chem ; 295(16): 5307-5320, 2020 04 17.
Article in English | MEDLINE | ID: mdl-32161117

ABSTRACT

The canonical pathway of eicosanoid production in most mammalian cells is initiated by phospholipase A2-mediated release of arachidonic acid, followed by its enzymatic oxidation resulting in a vast array of eicosanoid products. However, recent work has demonstrated that the major phospholipase in mitochondria, iPLA2γ (patatin-like phospholipase domain containing 8 (PNPLA8)), possesses sn-1 specificity, with polyunsaturated fatty acids at the sn-2 position generating polyunsaturated sn-2-acyl lysophospholipids. Through strategic chemical derivatization, chiral chromatographic separation, and multistage tandem MS, here we first demonstrate that human platelet-type 12-lipoxygenase (12-LOX) can directly catalyze the regioselective and stereospecific oxidation of 2-arachidonoyl-lysophosphatidylcholine (2-AA-LPC) and 2-arachidonoyl-lysophosphatidylethanolamine (2-AA-LPE). Next, we identified these two eicosanoid-lysophospholipids in murine myocardium and in isolated platelets. Moreover, we observed robust increases in 2-AA-LPC, 2-AA-LPE, and their downstream 12-LOX oxidation products, 12(S)-HETE-LPC and 12(S)-HETE-LPE, in calcium ionophore (A23187)-stimulated murine platelets. Mechanistically, genetic ablation of iPLA2γ markedly decreased the calcium-stimulated production of 2-AA-LPC, 2-AA-LPE, and 12-HETE-lysophospholipids in mouse platelets. Importantly, a potent and selective 12-LOX inhibitor, ML355, significantly inhibited the production of 12-HETE-LPC and 12-HETE-LPE in activated platelets. Furthermore, we found that aging is accompanied by significant changes in 12-HETE-LPC in murine serum that were also markedly attenuated by iPLA2γ genetic ablation. Collectively, these results identify previously unknown iPLA2γ-initiated signaling pathways mediated by direct 12-LOX oxidation of 2-AA-LPC and 2-AA-LPE. This oxidation generates previously unrecognized eicosanoid-lysophospholipids that may serve as biomarkers for age-related diseases and could potentially be used as targets in therapeutic interventions.


Subject(s)
12-Hydroxy-5,8,10,14-eicosatetraenoic Acid/metabolism , Arachidonate 12-Lipoxygenase/metabolism , Blood Platelets/metabolism , Group VI Phospholipases A2/metabolism , Lysophosphatidylcholines/metabolism , Animals , Cell Line , Cells, Cultured , Fatty Acids, Unsaturated/metabolism , Group VI Phospholipases A2/genetics , Humans , Mice , Mice, Inbred C57BL , Oxidation-Reduction , Spodoptera
12.
Chemistry ; 27(14): 4738-4745, 2021 Mar 08.
Article in English | MEDLINE | ID: mdl-33405257

ABSTRACT

Unsatisfactory oxygen mobility is a considerable barrier to the development of perovskites for low-temperature volatile organic compounds (VOCs) oxidation. This work introduced small amounts of dispersed non-metal boron into the LaCoO3 crystal through an easy sol-gel method to create more oxygen defects, which are conducive to the catalytic performance of propane (C3 H8 ) oxidation. It reveals that moderate addition of boron successfully induces a high distortion of the LaCoO3 crystal, decreases the perovskite particle size, and produces a large proportion of bulk Co2+ species corresponding to abundant oxygen vacancies. Additionally, surface Co3+ species, as the acid sites, which are active for cleaving the C-H bonds of C3 H8 molecules, are enriched. As a result, the LCB-7 (molar ratio of Co/B=0.93:0.07) displays the best C3 H8 oxidation activity. Simultaneously, the above catalyst exhibits superior thermal stability against CO2 and H2 O, lasting 200 h. This work provides a new strategy for modifying the catalytic VOCs oxidation performance of perovskites by the regulation of amorphous boron dispersion.

13.
Molecules ; 26(2)2021 Jan 18.
Article in English | MEDLINE | ID: mdl-33477459

ABSTRACT

In this study, a laccase LAC-Yang1 was successfully purified from a white-rot fungus strain Pleurotus ostreatus strain yang1 with high laccase activity. The enzymatic properties of LAC-Yang1 and its ability to degrade and detoxify chlorophenols such as 2,6-dichlorophenol and 2,3,6-trichlorophenol were systematically studied. LAC-Yang1 showed a strong tolerance to extremely acidic conditions and strong stability under strong alkaline conditions (pH 9-12). LAC-Yang1 also exhibited a strong tolerance to different inhibitors (EDTA, SDS), metal ions (Mn2+, Cu2+, Mg2+, Na+, K+, Zn2+, Al3+, Co2+, and metal ion mixtures), and organic solvents (glycerol, propylene glycol). LAC-Yang1 showed good stability in the presence of Mg2+, Mn2+, glycerol, and ethylene glycol. Our results reveal the strong degradation ability of this laccase for high concentrations of chlorophenols (especially 2,6-dichlorophenol) and chlorophenol mixtures (2,6-dichlorophenol + 2,3,6-trichlorophenol). LAC-Yang1 displayed a strong tolerance toward a variety of metal ions (Na2+, Zn2+, Mn2+, Mg2+, K+ and metal ion mixtures) and organic solvents (glycerol, ethylene glycol) in its degradation of 2,6-dichlorophenol and 2,3,6-trichlorophenol. The phytotoxicity of 2,6-dichlorophenol treated by LAC-Yang1 was significantly reduced or eliminated. LAC-Yang1 demonstrated a good detoxification effect on 2,6-dichlorophenol while degrading this compound. In conclusion, LAC-Yang1 purified from Pleurotus ostreatus has great application value and potential in environmental biotechnology, especially the efficient degradation and detoxification of chlorophenols.


Subject(s)
Biodegradation, Environmental , Chlorophenols/chemistry , Chlorophenols/metabolism , Environmental Pollutants/metabolism , Laccase/metabolism , Pleurotus/enzymology , Pleurotus/growth & development
14.
J Biol Chem ; 293(1): 115-129, 2018 01 05.
Article in English | MEDLINE | ID: mdl-29158256

ABSTRACT

Congestive heart failure typically arises from cardiac myocyte necrosis/apoptosis, associated with the pathological opening of the mitochondrial permeability transition pore (mPTP). mPTP opening decreases the mitochondrial membrane potential leading to the activation of Ca2+-independent phospholipase A2γ (iPLA2γ) and the production of downstream toxic metabolites. However, the array of enzymatic mediators and the exact chemical mechanisms responsible for modulating myocardial mPTP opening remain unclear. Herein, we demonstrate that human heart failure activates specific myocardial mitochondrial phospholipases that increase Ca2+-dependent production of toxic hydroxyeicosatetraenoic acids (HETEs) and attenuate the activity of phospholipases that promote the synthesis of protective epoxyeicosatrienoic acids (EETs). Mechanistically, HETEs activated the Ca2+-induced opening of the mPTP in failing human myocardium, and the highly selective pharmacological blockade of either iPLA2γ or lipoxygenases attenuated mPTP opening in failing hearts. In contrast, pharmacological inhibition of cytochrome P450 epoxygenases opened the myocardial mPTP in human heart mitochondria. Remarkably, the major mitochondrial phospholipase responsible for Ca2+-activated release of arachidonic acid (AA) in mitochondria from non-failing hearts was calcium-dependent phospholipase A2ζ (cPLA2ζ) identified by sequential column chromatographies and activity-based protein profiling. In contrast, iPLA2γ predominated in failing human myocardium. Stable isotope kinetics revealed that in non-failing human hearts, cPLA2ζ metabolically channels arachidonic acid into EETs, whereas in failing hearts, increased iPLA2γ activity channels AA into toxic HETEs. These results mechanistically identify the sequelae of pathological remodeling of human mitochondrial phospholipases in failing myocardium. This remodeling metabolically channels AA into toxic HETEs promoting mPTP opening, which induces necrosis/apoptosis leading to further progression of heart failure.


Subject(s)
Group VI Phospholipases A2/metabolism , Heart Failure/metabolism , Hydroxyeicosatetraenoic Acids/biosynthesis , Mitochondria, Heart/metabolism , Mitochondrial Membrane Transport Proteins/metabolism , Amino Acid Sequence , Calcium/metabolism , Calcium Channels/metabolism , Heart Failure/enzymology , Heart Failure/pathology , Humans , Hydroxyeicosatetraenoic Acids/metabolism , Membrane Potential, Mitochondrial , Mitochondria, Heart/enzymology , Mitochondrial Membranes/enzymology , Mitochondrial Membranes/metabolism , Mitochondrial Permeability Transition Pore , Myocardium/enzymology , Myocardium/metabolism , Myocardium/pathology , Permeability , Phospholipases A2/metabolism
15.
Small ; 15(51): e1904870, 2019 12.
Article in English | MEDLINE | ID: mdl-31750615

ABSTRACT

Tumor hypoxia significantly diminishes the efficacy of reactive oxygen species (ROS)-based therapy, mainly because the generation of ROS is highly oxygen dependent. Recently reported hypoxia-irrelevant radical initiators (AIBIs) exhibit promising potential for cancer therapy under different oxygen tensions. However, overexpressed glutathione (GSH) in cancer cells would potently scavenge the free radicals produced from AIBI before their arrival to the specific site and dramatically limit the therapeutic efficacy. A synergistic antitumor platform (MoS2 @AIBI-PCM nanoflowers) is constructed by incorporating polyethylene-glycol-functionalized molybdenum disulfide (PEG-MoS2 ) nanoflowers with azo initiator and phase-change material (PCM). Under near-infrared laser (NIR) irradiation, the photothermal feature of PEG-MoS2 induces the decomposition of AIBI to produce free radicals. Furthermore, PEG-MoS2 can facilitate GSH oxidation without releasing toxic metal ions, greatly promoting tumor apoptosis and avoiding the introduction of toxic metal ions. This is the first example of the use of intelligent MoS2 -based nanoflowers as a benign GSH scavenger for enhanced cancer treatment.


Subject(s)
Disulfides/chemistry , Glutathione/chemistry , Molybdenum/chemistry , Neoplasms/therapy , Cell Line, Tumor , Free Radicals/chemistry , Humans , Polyethylene Glycols/chemistry , Reactive Oxygen Species
16.
Small ; 15(24): e1901116, 2019 06.
Article in English | MEDLINE | ID: mdl-31069962

ABSTRACT

The inhibition of amyloid-ß (Aß) aggregation by photo-oxygenation has become an effective way of treating Alzheimer's disease (AD). New near-infrared (NIR) activated treatment agents, which not only possess high photo-oxygenation efficiency, but also show low biotoxicity, are urgently needed. Herein, for the first time, it is demonstrated that NIR activated black phosphorus (BP) could serve as an effective nontoxic photo-oxidant for amyloid-ß peptide in vitro and in vivo. The nanoplatform BP@BTA (BTA: one of thioflavin-T derivatives) possesses high affinity to the Aß peptide due to specific amyloid selectivity of BTA. Importantly, under NIR light, BP@BTA can significantly generate a high quantum yield of singlet oxygen (1 O2 ) to oxygenate Aß, thereby resulting in inhibiting the aggregation and attenuating Aß-induced cytotoxicity. In addition, BP could finally degrade into nontoxic phosphate, which guarantees the biosafety. Using transgenic Caenorhabditis elegans CL2006 as AD model, the results demonstrate that the 1 O2 -generation system could dramatically promote life-span extension of CL2006 strain by decreasing the neurotoxicity of Aß.


Subject(s)
Amyloid beta-Peptides/radiation effects , Oxygen/metabolism , Phosphorus/therapeutic use , Phototherapy/methods , Protein Aggregation, Pathological/prevention & control , Alzheimer Disease/metabolism , Alzheimer Disease/therapy , Amyloid beta-Peptides/chemistry , Amyloid beta-Peptides/genetics , Amyloid beta-Peptides/metabolism , Animals , Animals, Genetically Modified , Caenorhabditis elegans/genetics , Caenorhabditis elegans/metabolism , Caenorhabditis elegans/radiation effects , Disease Models, Animal , Humans , Infrared Rays/therapeutic use , Oxidation-Reduction/radiation effects , Phosphorus/chemistry , Protein Aggregation, Pathological/metabolism
17.
Chemistry ; 25(51): 11852-11858, 2019 Sep 12.
Article in English | MEDLINE | ID: mdl-31361361

ABSTRACT

Proteolysis of amyloid-ß (Aß) is a promising approach against Alzheimer's disease. However, it is not feasible to employ natural hydrolases directly because of their cumbersome preparation and purification, poor stability, and hazardous immunogenicity. Therefore, artificial enzymes have been developed as potential alternatives to natural hydrolases. Since specific cleavage sites of Aß are usually embedded inside the ß-sheet structures that restrict access by artificial enzymes, this strongly hinders their efficiency for practical applications. Herein, we construct a NIR (near-IR) controllable artificial metalloprotease (MoS2 -Co) using a molybdenum disulfide nanosheet (MoS2 ) and a cobalt complex of 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (Codota). Evidenced by detailed experimental and theoretical studies, the NIR-enhanced MoS2 -Co can circumvent the restriction by simultaneously inhibition of ß-sheet formation and destroying ß-sheet structures of the preformed Aß aggregates in living cell. Furthermore, our designed MoS2 -Co is an easy to graft Aß-target agent that prevents misdirected or undesirable hydrolysis reactions, and has been demonstrated to cross the blood brain barrier. This method can be adapted for hydrolysis of other kinds of amyloids.


Subject(s)
Amyloid beta-Peptides/chemistry , Blood-Brain Barrier/metabolism , Disulfides/chemistry , Metalloproteases/chemistry , Molybdenum/chemistry , Alzheimer Disease , Blood-Brain Barrier/chemistry , Humans , Metalloproteases/metabolism , Spectrophotometry, Infrared
18.
Bioorg Med Chem Lett ; 29(11): 1430-1433, 2019 06 01.
Article in English | MEDLINE | ID: mdl-30975625

ABSTRACT

A series of nitropyridyl-based dichloropropene ethers were prepared and evaluated for their insecticidal activities against main lepidopteran pests such as M. separate, P. xylostella and P. litura. The compounds showed a broad-spectrum of remarkable insecticidal activities. Especially 4a (2,6-dichloro-4-(3,3-dichloroallyloxy)phenyl 3-[5-nitro-2-pyridyloxy]propyl ether) and 11a (2-(4-(3-(2,6-dichloro-4-((3,3-dichloroallyl)oxy)phenoxy)propoxy)phenoxy)-5-nitropyridine) displayed potent activities comparable to that of Pyridalyl, the only commercialized dichloropropene ether insecticide thus far. The structure-activity relationship was also discussed.


Subject(s)
Ethers/pharmacology , Insecticides/pharmacology , Pyridines/pharmacology , Animals , Ethers/chemical synthesis , Insecticides/chemical synthesis , Molecular Structure , Moths/drug effects , Pyridines/chemical synthesis , Structure-Activity Relationship
19.
J Biol Chem ; 291(37): 19687-700, 2016 09 09.
Article in English | MEDLINE | ID: mdl-27453526

ABSTRACT

Calcium-independent phospholipase A2γ (iPLA2γ) is a mitochondrial enzyme that produces lipid second messengers that facilitate opening of the mitochondrial permeability transition pore (mPTP) and contribute to the production of oxidized fatty acids in myocardium. To specifically identify the roles of iPLA2γ in cardiac myocytes, we generated cardiac myocyte-specific iPLA2γ knock-out (CMiPLA2γKO) mice by removing the exon encoding the active site serine (Ser-477). Hearts of CMiPLA2γKO mice exhibited normal hemodynamic function, glycerophospholipid molecular species composition, and normal rates of mitochondrial respiration and ATP production. In contrast, CMiPLA2γKO mice demonstrated attenuated Ca(2+)-induced mPTP opening that could be rapidly restored by the addition of palmitate and substantially reduced production of oxidized polyunsaturated fatty acids (PUFAs). Furthermore, myocardial ischemia/reperfusion (I/R) in CMiPLA2γKO mice (30 min of ischemia followed by 30 min of reperfusion in vivo) dramatically decreased oxidized fatty acid production in the ischemic border zones. Moreover, CMiPLA2γKO mice subjected to 30 min of ischemia followed by 24 h of reperfusion in vivo developed substantially less cardiac necrosis in the area-at-risk in comparison with their WT littermates. Furthermore, we found that membrane depolarization in murine heart mitochondria was sensitized to Ca(2+) by the presence of oxidized PUFAs. Because mitochondrial membrane depolarization and calcium are known to activate iPLA2γ, these results are consistent with salvage of myocardium after I/R by iPLA2γ loss of function through decreasing mPTP opening, diminishing production of proinflammatory oxidized fatty acids, and attenuating the deleterious effects of abrupt increases in calcium ion on membrane potential during reperfusion.


Subject(s)
Fatty Acids, Unsaturated/metabolism , Group VI Phospholipases A2/metabolism , Membrane Potential, Mitochondrial , Mitochondria, Heart/enzymology , Myocardial Reperfusion Injury/enzymology , Myocardium/enzymology , Myocytes, Cardiac/enzymology , Animals , Calcium/metabolism , Group VI Phospholipases A2/genetics , Mice , Mice, Knockout , Mitochondria, Heart/genetics , Myocardial Reperfusion Injury/genetics , Organ Specificity , Oxidation-Reduction
20.
Hum Mutat ; 36(3): 301-6, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25512002

ABSTRACT

Mitochondriopathies are a group of clinically heterogeneous genetic diseases caused by defects in mitochondrial metabolism, bioenergetic efficiency, and/or signaling functions. The large majority of proteins involved in mitochondrial function are encoded by nuclear genes, with many yet to be associated with human disease. We performed exome sequencing on a young girl with a suspected mitochondrial myopathy that manifested as progressive muscle weakness, hypotonia, seizures, poor weight gain, and lactic acidosis. She was compound heterozygous for two frameshift mutations, p.Asn112HisfsX29 and p.Leu659AlafsX4, in the PNPLA8 gene, which encodes mitochondrial calcium-independent phospholipase A2 γ (iPLA2 γ). Western blot analysis of affected muscle displayed the absence of PNPLA8 protein. iPLA2 s are critical mediators of a variety of cellular processes including growth, metabolism, and lipid second messenger generation, exerting their functions through catalyzing the cleavage of the acyl groups in glycerophospholipids. The clinical presentation, muscle histology and the mitochondrial ultrastructural abnormalities of this proband are highly reminiscent of Pnpla8 null mice. Although other iPLA2 -related diseases have been identified, namely, infantile neuroaxonal dystrophy and neutral lipid storage disease with myopathy, this is the first report of PNPLA8-related disease in a human. We suggest PNPLA8 join the increasing list of human genes involved in lipid metabolism associated with neuromuscular diseases due to mitochondrial dysfunction.


Subject(s)
Group IV Phospholipases A2/genetics , Mitochondria/pathology , Animals , Calcium/metabolism , Child , Female , Group IV Phospholipases A2/metabolism , Humans , Mice , Mice, Knockout , Protein Isoforms/genetics , Protein Isoforms/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL