Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 80
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Virol J ; 21(1): 158, 2024 Jul 14.
Article in English | MEDLINE | ID: mdl-39004752

ABSTRACT

BACKGROUND: West Nile virus (WNV) is a rapidly spreading mosquito-borne virus accounted for neuroinvasive diseases. An insight into WNV-host factors interaction is necessary for development of therapeutic approaches against WNV infection. CD11b has key biological functions and been identified as a therapeutic target for several human diseases. The purpose of this study was to determine whether CD11b was implicated in WNV infection. METHODS: SH-SY5Y cells with and without MEK1/2 inhibitor U0126 or AKT inhibitor MK-2206 treatment were infected with WNV. CD11b mRNA levels were assessed by real-time PCR. WNV replication and expression of stress (ATF6 and CHOP), pro-inflammatory (TNF-α), and antiviral (IFN-α, IFN-ß, and IFN-γ) factors were evaluated in WNV-infected SH-SY5Y cells with CD11b siRNA transfection. Cell viability was determined by MTS assay. RESULTS: CD11b mRNA expression was remarkably up-regulated by WNV in a time-dependent manner. U0126 but not MK-2206 treatment reduced the CD11b induction by WNV. CD11b knockdown significantly decreased WNV replication and protected the infected cells. CD11b knockdown markedly increased TNF-α, IFN-α, IFN-ß, and IFN-γ mRNA expression induced by WNV. ATF6 mRNA expression was reduced upon CD11b knockdown following WNV infection. CONCLUSION: These results demonstrate that CD11b is involved in maintaining WNV replication and modulating inflammatory as well as antiviral immune response, highlighting the potential of CD11b as a target for therapeutics for WNV infection.


Subject(s)
CD11b Antigen , Virus Replication , West Nile virus , Humans , Virus Replication/drug effects , West Nile virus/physiology , West Nile virus/immunology , CD11b Antigen/genetics , CD11b Antigen/metabolism , Cell Line, Tumor , West Nile Fever/immunology , West Nile Fever/virology , Neuroblastoma/immunology , Neuroblastoma/virology , Host-Pathogen Interactions/immunology , Cell Survival/drug effects , Tumor Necrosis Factor-alpha/metabolism , Tumor Necrosis Factor-alpha/genetics
2.
BMC Infect Dis ; 24(1): 894, 2024 Aug 31.
Article in English | MEDLINE | ID: mdl-39217309

ABSTRACT

BACKGROUND: Sepsis is a life-threatening organ dysfunction caused by an excessive host response to infection, manifested by elevated levels of inflammatory cytokines. At present, the use of hemoperfusion to remove inflammatory cytokines from the bloodstream has been expanding. Meanwhile, the pharmacokinetics and pharmacodynamics characteristics of antibiotics in critically ill patients may be impacted by hemoperfusion. CASE PRESENTATION: The patient was a 69-year-old male with poorly controlled type 2 diabetes. When admitted to the ICU, Multiple Organ Dysfunction Syndrome (MODS) appeared within 48 h, and he was suspected of septic shock due to acute granulocytopenia and significantly increased procalcitonin. Broad-spectrum antibiotics imipenem was administered according to Sepsis 3.0 bundle and hemoperfusion lasting 4 h with a neutron-macroporous resin device (HA-380, Jafron, China) five times was conducted to lower the extremely high value of serum inflammatory factors. Blood samples were collected to measure imipenem plasma concentration to investigate the effect of hemoperfusion quantitatively. This study showed that 4 h of hemoperfusion had a good adsorption ability on inflammatory factors and could remove about 75.2% of imipenem. CONCLUSIONS: This case demonstrated the high adsorption capacity of hemoperfusion on imipenem in critically ill patients. It implies a timely imipenem supplement is required, especially before hemoperfusion.


Subject(s)
Anti-Bacterial Agents , Critical Illness , Hemoperfusion , Imipenem , Shock, Septic , Humans , Male , Imipenem/therapeutic use , Imipenem/administration & dosage , Imipenem/pharmacokinetics , Aged , Shock, Septic/drug therapy , Shock, Septic/therapy , Hemoperfusion/methods , Anti-Bacterial Agents/pharmacokinetics , Anti-Bacterial Agents/therapeutic use , Anti-Bacterial Agents/administration & dosage , Adsorption
3.
Angew Chem Int Ed Engl ; 62(15): e202217871, 2023 Apr 03.
Article in English | MEDLINE | ID: mdl-36753391

ABSTRACT

Asymmetric sequential hydrogenations of conjugated enynes have been developed using a Ph-BPE-CoI catalyst for the precise synthesis of chiral Z-allylamides in high activity (up to 1000 substrate/catalyst (S/C)) and with excellent enantioselectivity (up to >99 % enantiomeric excess (ee)). Mechanism experiments and theoretical calculations support a cationic CoI /CoIII redox catalytic cycle. The catalytic activity difference between cobalt complexes of Ph-BPE and QuinoxP* was explained by the process decomposition of rate-determining step in the second hydrogenation.

4.
J Med Virol ; 94(10): 4809-4819, 2022 10.
Article in English | MEDLINE | ID: mdl-35733297

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the seventh member of the coronavirus family that can infect humans. Recently, more contagious and pathogenic variants of SARS-CoV-2 have been continuously emerging. Clinical candidates with high efficacy and ready availability are still in urgent need. To identify potent anti-SARS-CoV-2 repurposing drugs, we evaluated the antiviral efficacy of 18 selective estrogen receptor modulators (SERMs) against SARS-CoV-2 infection. Six SERMs exhibited excellent anti-SARS-CoV-2 effects in Vero E6 cells and three human cell lines. Clomifene citrate, tamoxifen, toremifene citrate, and bazedoxifene acetate reduced the weight loss of hamsters challenged with SARS-CoV-2, and reduced hamster pulmonary viral load and interleukin-6 expression when assayed at 4 days postinfection. In particular, bazedoxifene acetate was identified to act on the penetration stage of the postattachment step via altering cholesterol distribution and endosome acidification. And, bazedoxifene acetate inhibited pseudoviruses infection of original SARS-CoV-2, Delta variant, Omicron variant, and SARS-CoV. These results offer critical information supporting bazedoxifene acetate as a promising agent against coronaviruses.


Subject(s)
COVID-19 Drug Treatment , SARS-CoV-2 , Antiviral Agents/pharmacology , Humans , Indoles , Selective Estrogen Receptor Modulators/pharmacology
5.
Angew Chem Int Ed Engl ; 60(31): 16989-16993, 2021 07 26.
Article in English | MEDLINE | ID: mdl-34062038

ABSTRACT

Asymmetric hydrogenation is one of the most powerful methods for the preparation of single enantiomer compounds. However, the chemo- and enantioselective hydrogenation of the relatively inert unsaturated group in substrates possessing multiple unsaturated bonds remains a challenge. We herein report a protocol for the highly chemo- and enantioselective hydrogenation of conjugated enynes while keeping the alkynyl bond intact. Mechanism studies indicate that the accompanying Zn2+ generated from zinc reduction of the CoII complex plays a critical role to initiate a plausible CoI /CoIII catalytic cycle. This approach allows for the highly efficient generation of chiral propargylamines (up to 99.9 % ee and 2000 S/C) and further useful chemical transformations.

6.
Angew Chem Int Ed Engl ; 60(3): 1641-1645, 2021 01 18.
Article in English | MEDLINE | ID: mdl-33009704

ABSTRACT

Utilizing a chiral bicyclic imidazole organocatalyst and adopting a continuous injection process, an alternative route has been developed for the efficient synthesis of chiral phthalidyl ester prodrugs via dynamic kinetic resolution of 3-hydroxyphthalides through enantioselective acylation (up to 99 % ee). The computational studies suggest a general base catalytic mechanism differing from the widely accepted nucleophilic catalytic mechanism. The structure analysis of the key transition states shows that the CH-π interactions and not the previously considered cation/π-π interactions between the catalyst and substrate is the dominant factor giving rise to the observed stereocontrol.

7.
Blood ; 129(3): 358-370, 2017 01 19.
Article in English | MEDLINE | ID: mdl-27815262

ABSTRACT

Somatic mutations in TP53 and NRAS are associated with transformation of human chronic myeloid diseases to acute myeloid leukemia (AML). Here, we report that concurrent RAS pathway and TP53 mutations are identified in a subset of AML patients and confer an inferior overall survival. To further investigate the genetic interaction between p53 loss and endogenous NrasG12D/+ in AML, we generated conditional NrasG12D/+p53-/- mice. Consistent with the clinical data, recipient mice transplanted with NrasG12D/+p53-/- bone marrow cells rapidly develop a highly penetrant AML. We find that p53-/- cooperates with NrasG12D/+ to promote increased quiescence in megakaryocyte-erythroid progenitors (MEPs). NrasG12D/+p53-/- MEPs are transformed to self-renewing AML-initiating cells and are capable of inducing AML in serially transplanted recipients. RNA sequencing analysis revealed that transformed MEPs gain a partial hematopoietic stem cell signature and largely retain an MEP signature. Their distinct transcriptomes suggests a potential regulation by p53 loss. In addition, we show that during AML development, transformed MEPs acquire overexpression of oncogenic Nras, leading to hyperactivation of ERK1/2 signaling. Our results demonstrate that p53-/- synergizes with enhanced oncogenic Nras signaling to transform MEPs and drive AML development. This model may serve as a platform to test candidate therapeutics in this aggressive subset of AML.


Subject(s)
Cell Transformation, Neoplastic/genetics , GTP Phosphohydrolases/genetics , Leukemia, Myeloid, Acute/pathology , Megakaryocyte-Erythroid Progenitor Cells/pathology , Membrane Proteins/genetics , Tumor Suppressor Protein p53/genetics , Animals , Bone Marrow Transplantation , Humans , Leukemia, Myeloid, Acute/etiology , Leukemia, Myeloid, Acute/genetics , MAP Kinase Signaling System , Mice , Mutation , Signal Transduction , Tumor Suppressor Protein p53/deficiency
8.
Angew Chem Int Ed Engl ; 58(44): 15767-15771, 2019 Oct 28.
Article in English | MEDLINE | ID: mdl-31464078

ABSTRACT

An efficient cobalt-catalyzed asymmetric hydrogenation of C=N bonds has been realized. Chiral hydrazines were obtained in high yields and with excellent enantioselectivities (95-98 % ee). The hydrogenation went smoothly at up to 2000 substrate/catalyst and on a gram scale. The success of this reaction relies on the presence of an NHBz group in the substrates, with the reactivity and enantioselectivity improved by an assisted coordination to the cobalt atom and a nonbonding interaction with the ligand. Furthermore, this reaction has practical applications for the synthesis of several useful chiral nitrogen-containing compounds.

9.
Stem Cells ; 34(7): 1859-71, 2016 07.
Article in English | MEDLINE | ID: mdl-26972179

ABSTRACT

Previous studies indicate that Kras is dispensable for fetal liver hematopoiesis, but its role in adult hematopoiesis remains unclear. Here, we generated a Kras conditional knockout allele to address this question. Deletion of Kras in adult bone marrow (BM) is mediated by Vav-Cre or inducible Mx1-Cre. We find that loss of Kras leads to greatly reduced thrombopoietin (TPO) signaling in hematopoietic stem cells (HSCs) and multipotent progenitors (MPPs), while stem cell factor-evoked ERK1/2 activation is not affected. The compromised TPO signaling is associated with reduced long term- and intermediate-term HSC compartments and a bias toward myeloid differentiation in MPPs. Although granulocyte macrophage colony-stimulating factor (GM-CSF)-evoked ERK1/2 activation is only moderately decreased in Kras(-/-) myeloid progenitors, it is blunted in neutrophils and neutrophil survival is significantly reduced in vitro. At 9-12 months old, Kras conditional knockout mice develop profound hematopoietic defects, including splenomegaly, an expanded neutrophil compartment, and reduced B cell number. In a serial transplantation assay, the reconstitution potential of Kras(-/-) BM cells is greatly compromised, which is attributable to defects in the self-renewal of Kras(-/-) HSCs and defects in differentiated hematopoietic cells. Our results demonstrate that Kras is a major regulator of TPO and GM-CSF signaling in specific populations of hematopoietic cells and its function is required for adult hematopoiesis. Stem Cells 2016;34:1859-1871.


Subject(s)
Aging/metabolism , Proto-Oncogene Proteins p21(ras)/metabolism , Animals , Cell Compartmentation/drug effects , Cell Differentiation/drug effects , Cell Self Renewal/drug effects , Cell Survival/drug effects , Enzyme Activation/drug effects , Extracellular Signal-Regulated MAP Kinases/metabolism , Gene Deletion , Granulocyte-Macrophage Colony-Stimulating Factor/pharmacology , Hematopoiesis/drug effects , Hematopoietic Stem Cells/cytology , Hematopoietic Stem Cells/metabolism , Integrases/metabolism , Mice, Inbred C57BL , Myeloid Progenitor Cells/drug effects , Myeloid Progenitor Cells/metabolism , Neutrophils/cytology , Neutrophils/drug effects , Neutrophils/metabolism , Proto-Oncogene Proteins p21(ras)/deficiency
10.
Chemistry ; 23(5): 1040-1043, 2017 Jan 23.
Article in English | MEDLINE | ID: mdl-27905139

ABSTRACT

A highly efficient P-stereogenic diphosphine-rhodium complex was applied to the chemo- and enantioselective hydrogenation of allylic hydrazones for the synthesis of chiral allylic hydrazines in 89-96 % yields and with 82-99 % ee values. This methodology was successfully applied to the preparation of versatile chiral allylic amine derivatives.

11.
J Biol Chem ; 290(31): 19093-103, 2015 Jul 31.
Article in English | MEDLINE | ID: mdl-26082490

ABSTRACT

Activating Ras signaling is a major driver in juvenile and the myeloproliferative variant of chronic myelomonocytic leukemia (JMML/MP-CMML). Numerous studies suggest that GM-CSF signaling plays a central role in establishing and maintaining JMML/MP-CMML phenotypes in human and mouse. However, it remains elusive how GM-CSF signaling impacts on JMML/MP-CMML initiation and progression. Here, we investigate this issue in a well characterized MP-CMML model induced by endogenous Nras(G12D/+) mutation. In this model, Nras(G12D/+) hematopoietic stem cells (HSCs) are required to initiate and maintain CMML phenotypes and serve as CMML-initiating cells. We show that the common ß chain of the GM-CSF receptor (ßc) is dispensable for Nras(G12D/+) HSC function; loss of ßc does not affect the expansion, increased self-renewal, or myeloid differentiation bias in Nras(G12D/+) HSCs. Therefore, ßc(-/-) does not abrogate CMML in Nras(G12D/+) mice. However, ßc deficiency indeed significantly reduces Nras(G12D/+)-induced splenomegaly and spontaneous colony formation and prolongs the survival of CMML-bearing mice, suggesting that GM-CSF signaling plays an important role in promoting CMML progression. Together, our results suggest that inhibiting GM-CSF signaling in JMML/MP-CMML patients might alleviate disease symptoms but would not eradicate the disease.


Subject(s)
Cytokine Receptor Common beta Subunit/genetics , Leukemia, Myelomonocytic, Chronic/genetics , Monomeric GTP-Binding Proteins/genetics , Animals , Cells, Cultured , Cytokine Receptor Common beta Subunit/metabolism , Disease Progression , Granulocyte-Macrophage Colony-Stimulating Factor/physiology , Histiocytic Sarcoma/genetics , Histiocytic Sarcoma/metabolism , Leukemia, Myelomonocytic, Chronic/pathology , Liver Neoplasms/genetics , Liver Neoplasms/metabolism , Mice , Mice, Inbred C57BL , Mice, Transgenic , Signal Transduction , Spleen/pathology
12.
J Neuroinflammation ; 13(1): 71, 2016 Apr 05.
Article in English | MEDLINE | ID: mdl-27048470

ABSTRACT

BACKGROUND: The NLRP3 inflammasome (NOD-like receptor family, pyrin domain containing 3) is an intracellular protein complex that plays an important role in innate immune sensing. Its activation leads to the maturation of caspase-1 and regulates the cleavage of interleukin (IL)-1ß and IL-18. Various studies have shown that activation of the immune system plays a pivotal role in the development of fatigue. However, the mechanisms underlying the association between immune activation and fatigue remained elusive, and few reports have described the involvement of NLRP3 inflammasome activation in fatigue. METHODS: We established a mouse fatigue model with lipopolysaccharide (LPS, 3 mg/kg) challenge combined with swim stress. Both behavioural and biochemical parameters were measured to illustrate the characteristics of this model. We also assessed NLRP3 inflammasome activation in the mouse diencephalon, which is the brain region that has been suggested to be responsible for fatigue sensation. To further identify the role of NLRP3 inflammasome activation in the pathogenesis of chronic fatigue syndrome (CFS), NLRP3 KO mice were also subjected to LPS treatment and swim stress, and the same parameters were evaluated. RESULTS: Mice challenged with LPS and subjected to the swim stress test showed decreased locomotor activity, decreased fall-off time in a rota-rod test and increased serum levels of IL-1ß and IL-6 compared with untreated mice. Serum levels of lactic acid and malondialdehyde (MDA) were not significantly altered in the treated mice. We demonstrated increased NLRP3 expression, IL-1ß production and caspase-1 activation in the diencephalons of the treated mice. In NLRP3 KO mice, we found remarkably increased locomotor activity with longer fall-off times and decreased serum IL-1ß levels compared with those of wild-type (WT) mice after LPS challenge and the swim stress test. IL-1ß levels in the diencephalon were also significantly decreased in the NLRP3 KO mice. By contrast, IL-6 levels were not significantly altered. CONCLUSIONS: These findings suggest that LPS-induced fatigue is an IL-1ß-dependent process and that the NLRP3/caspase-1 pathway is involved in the mechanisms of LPS-induced fatigue behaviours. NLRP3/caspase-1 inhibition may be a promising therapy for fatigue treatment.


Subject(s)
Fatigue Syndrome, Chronic/physiopathology , Fatigue/chemically induced , Fatigue/physiopathology , Inflammasomes/drug effects , NLR Family, Pyrin Domain-Containing 3 Protein/drug effects , Animals , Behavior, Animal/drug effects , Disease Models, Animal , Fatigue/psychology , Fatigue Syndrome, Chronic/psychology , Female , Interleukin-1beta/metabolism , Interleukin-6/metabolism , Lipopolysaccharides , Mice , Mice, Inbred C57BL , Mice, Knockout , Stress, Psychological/physiopathology , Swimming/psychology
13.
Chemistry ; 22(51): 18354-18357, 2016 Dec 19.
Article in English | MEDLINE | ID: mdl-27770544

ABSTRACT

An iridium-catalyzed asymmetric hydrogenation of unfunctionalized exocyclic C=C bonds was performed by using an axially flexible chiral phosphine-oxazoline ligand, providing the desired chiral 1-benzyl-2,3-dihydro-1H-indene products with up to 98 % ee (enantiomeric excess). This represents the first general hydrogenation of unfunctionalized exocyclic olefins with high selectivity reported thus far. The additive acetate ion plays an important role in the reaction's high enantioselectivity. The chiral product can be further transformed into key intermediates required for the synthesis of an important insecticide and a drug compound.

14.
Blood ; 121(26): 5203-7, 2013 Jun 27.
Article in English | MEDLINE | ID: mdl-23687087

ABSTRACT

Oncogenic NRAS mutations are frequently identified in human myeloid leukemias. In mice, expression of endogenous oncogenic Nras (Nras(G12D/+)) in hematopoietic cells leads to expansion of myeloid progenitors, increased long-term reconstitution of bone marrow cells, and a chronic myeloproliferative neoplasm (MPN). However, acute expression of Nras(G12D/+) in a pure C57BL/6 background does not induce hyperactivated granulocyte macrophage colony-stimulating factor signaling or increased proliferation in myeloid progenitors. It is thus unclear how Nras(G12D/+) signaling promotes leukemogenesis. Here, we show that hematopoietic stem cells (HSCs) expressing Nras(G12D/+) serve as MPN-initiating cells. They undergo moderate hyperproliferation with increased self-renewal. The aberrant Nras(G12D/+) HSC function is associated with hyperactivation of ERK1/2 in HSCs. Conversely, downregulation of MEK/ERK by pharmacologic and genetic approaches attenuates the cycling of Nras(G12D/+) HSCs and prevents the expansion of Nras(G12D/+) HSCs and myeloid progenitors. Our data delineate critical mechanisms of oncogenic Nras signaling in HSC function and leukemogenesis.


Subject(s)
GTP Phosphohydrolases/physiology , Hematopoietic Stem Cells/pathology , Leukemia, Myelomonocytic, Chronic/genetics , Leukemia, Myelomonocytic, Chronic/pathology , MAP Kinase Kinase 1/metabolism , Membrane Proteins/physiology , Mitogen-Activated Protein Kinase 3/metabolism , Mutation/genetics , Animals , Flow Cytometry , Hematopoietic Stem Cells/metabolism , Humans , Leukemia, Myelomonocytic, Chronic/metabolism , MAP Kinase Kinase 1/antagonists & inhibitors , Mice , Mice, Transgenic , Mitogen-Activated Protein Kinase 3/antagonists & inhibitors , Phosphorylation , Signal Transduction
15.
Org Biomol Chem ; 13(9): 2694-702, 2015 Mar 07.
Article in English | MEDLINE | ID: mdl-25588159

ABSTRACT

A new P-stereogenic PNP pincer-Pd complex was readily prepared from optically pure 2,6-bis[(boranato(tert-butyl)methylphosphino)methyl]pyridine. It was used in the asymmetric intramolecular hydroamination of amino-1,3-dienes, with the desired products being obtained in good yields and with excellent regioselectivities and up to moderate enantioselectivities. The absolute configuration of one of the hydroamination products was determined by X-ray crystallography studies. This simple and efficient procedure can be used for the synthesis of allyl-type chiral pyrrolidine derivatives.


Subject(s)
Alkadienes/chemical synthesis , Amines/chemical synthesis , Organometallic Compounds/chemistry , Palladium/chemistry , Pyridines/chemistry , Alkadienes/chemistry , Amination , Amines/chemistry , Catalysis , Models, Molecular , Molecular Structure , Stereoisomerism
16.
Angew Chem Int Ed Engl ; 54(7): 2260-4, 2015 Feb 09.
Article in English | MEDLINE | ID: mdl-25557070

ABSTRACT

A new catalytic system has been developed for the asymmetric hydrogenation of ß-secondary-amino ketones using a highly efficient P-chiral bisphosphine-rhodium complex in combination with ZnCl2 as the activator of the catalyst. The chiral γ-secondary-amino alcohols were obtained in 90-94 % yields, 90-99 % enantioselectivities, and with high turnover numbers (up to 2000 S/C; S/C=substrate/catalyst ratio). A mechanism for the promoting effect of ZnCl2 on the catalytic system has been proposed on the basis of NMR spectroscopy and HRMS studies. This method was successfully applied to the asymmetric syntheses of three important drugs, (S)-duloxetine, (R)-fluoxetine, and (R)-atomoxetine, in high yields and with excellent enantioselectivities.


Subject(s)
Amino Alcohols/chemical synthesis , Chlorides/chemistry , Ketones/chemistry , Rhodium/chemistry , Zinc Compounds/chemistry , Amination , Atomoxetine Hydrochloride , Catalysis , Coordination Complexes/chemistry , Duloxetine Hydrochloride , Fluoxetine/chemical synthesis , Hydrogenation , Phosphines/chemistry , Propylamines/chemical synthesis , Stereoisomerism , Thiophenes/chemical synthesis
17.
J Biol Chem ; 288(25): 18219-27, 2013 Jun 21.
Article in English | MEDLINE | ID: mdl-23673656

ABSTRACT

Acute T-cell lymphoblastic leukemia/lymphoma (T-ALL) is an aggressive hematopoietic malignancy affecting both children and adults. Previous studies of T-ALL mouse models induced by different genetic mutations have provided highly diverse results on the issues of T-cell leukemia/lymphoma-initiating cells (T-LICs) and potential mechanisms contributing to T-LIC transformation. Here, we show that oncogenic Kras (Kras G12D) expressed from its endogenous locus is a potent inducer of T-ALL even in a less sensitized BALB/c background. Notch1 mutations, including exon 34 mutations and recently characterized type 1 and 2 deletions, are detected in 100% of Kras G12D-induced T-ALL tumors. Although these mutations are not detected at the pre-leukemia stage, incremental up-regulation of NOTCH1 surface expression is observed at the pre-leukemia and leukemia stages. As secondary genetic hits in the Kras G12D model, Notch1 mutations target CD8(+) T-cells but not hematopoietic stem cells to further promote T-ALL progression. Pre-leukemia T-cells without detectable Notch1 mutations do not induce T-ALL in secondary recipient mice compared with T-ALL tumor cells with Notch1 mutations. We found huge variations in T-LIC frequency and immunophenotypes of cells enriched for T-LICs. Unlike Pten deficiency-induced T-ALL, oncogenic Kras-initiated T-ALL is not associated with up-regulation of the Wnt/ß-catenin pathway. Our results suggest that up-regulation of NOTCH1 signaling, through either overexpression of surface NOTCH1 or acquired gain-of-function mutations, is involved in both T-ALL initiation and progression. Notch1 mutations and Kras G12D contribute cooperatively to leukemogenic transformation of normal T-cells.


Subject(s)
CD8-Positive T-Lymphocytes/metabolism , Cell Transformation, Neoplastic/genetics , Mutation , Proto-Oncogene Proteins p21(ras)/genetics , Receptor, Notch1/genetics , Adult , Animals , Bone Marrow Transplantation , Cell Transformation, Neoplastic/metabolism , Flow Cytometry , Humans , Kaplan-Meier Estimate , Mice , Mice, Inbred BALB C , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/genetics , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/metabolism , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/surgery , Preleukemia/genetics , Preleukemia/metabolism , Proto-Oncogene Proteins p21(ras)/metabolism , Receptor, Notch1/metabolism , Signal Transduction , Wnt Proteins/metabolism , beta Catenin/metabolism
18.
Angew Chem Int Ed Engl ; 53(26): 6776-80, 2014 Jun 23.
Article in English | MEDLINE | ID: mdl-24848670

ABSTRACT

Allylic alcohols were directly used in Pd-catalyzed allylic alkylations of simple ketones under mild reaction conditions. The reaction proceeded smoothly at 20 °C by the concerted action of a Pd catalyst, a pyrrolidine co-catalyst, and a hydrogen-bonding solvent, and does not require any additional reagents. A computational study suggested that methanol plays a crucial role in the formation of the π-allylpalladium complex by lowering the activation barrier.


Subject(s)
Ketones/chemistry , Palladium/chemistry , Propanols/chemistry , Aldehydes/chemistry , Alkylation , Catalysis , Coordination Complexes/chemistry , Hydrogen Bonding , Methanol/chemistry , Thermodynamics
19.
Pharmaceutics ; 16(9)2024 Aug 23.
Article in English | MEDLINE | ID: mdl-39339151

ABSTRACT

Diseases transmitted by arthropod-borne viruses such as West Nile virus (WNV) and chikungunya virus (CHIKV) pose threat to global public health. Unfortunately, to date, there is no available approved drug for severe symptoms caused by both viruses. It has been reported that reverse transcriptase inhibitors can effectively inhibit RNA polymerase activity of RNA viruses. We screened the anti-WNV activity of the FDA-approved reverse transcriptase inhibitor library and found that 4 out of 27 compounds showed significant antiviral activity. Among the candidates, etravirine markedly inhibited WNV infection in both Huh 7 and SH-SY5Y cells. Further assays revealed that etravirine inhibited the infection of multiple arboviruses, including yellow fever virus (YFV), tick-borne encephalitis virus (TBEV), and CHIKV. A deeper study at the phase of action showed that the drug works primarily during the viral replication process. This was supported by the strong interaction potential between etravirine and the RNA-dependent RNA polymerase (RdRp) of WNV and alphaviruses, as evaluated using molecular docking. In vivo, etravirine significantly rescued mice from WNV infection-induced weight loss, severe neurological symptoms, and death, as well as reduced the viral load and inflammatory cytokines in target tissues. Etravirine showed antiviral effects in both arthrophlogosis and lethal mouse models of CHIKV infection. This study revealed that etravirine is an effective anti-WNV and CHIKV arbovirus agent both in vitro and in vivo due to the inhibition of viral replication, providing promising candidates for clinical application.

20.
Viruses ; 16(8)2024 Aug 19.
Article in English | MEDLINE | ID: mdl-39205296

ABSTRACT

Chikungunya virus (CHIKV) is a reemerging arbovirus causing disease on a global scale, and the potential for its epidemics remains high. CHIKV has caused millions of cases and heavy economic burdens around the world, while there are no available approved antiviral therapies to date. In this study, nifuroxazide, an FDA-approved antibiotic for acute diarrhea or colitis, was found to significantly inhibit a variety of arboviruses, although its antiviral activity varied among different target cell types. Nifuroxazide exhibited relatively high inhibitory efficiency in yellow fever virus (YFV) infection of the hepatoma cell line Huh7, tick-borne encephalitis virus (TBEV) and west nile virus (WNV) infection of the vascular endothelial cell line HUVEC, and CHIKV infection of both Huh7 cells and HUVECs, while it barely affected the viral invasion of neurons. Further systematic studies on the action stage of nifuroxazide showed that nifuroxazide mainly inhibited in the viral replication stage. In vivo, nifuroxazide significantly reduced the viral load in muscles and protected mice from CHIKV-induced footpad swelling, an inflammation injury within the arthrosis of infected mice. These results suggest that nifuroxazide has a potential clinical application as an antiviral drug, such as in the treatment of CHIKV infection.


Subject(s)
Antiviral Agents , Chikungunya Fever , Chikungunya virus , Hydroxybenzoates , Nitrofurans , Virus Replication , Animals , Mice , Humans , Chikungunya virus/drug effects , Chikungunya virus/physiology , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Virus Replication/drug effects , Nitrofurans/pharmacology , Nitrofurans/therapeutic use , Chikungunya Fever/drug therapy , Chikungunya Fever/virology , Hydroxybenzoates/pharmacology , Hydroxybenzoates/therapeutic use , Cell Line , Viral Load/drug effects , Human Umbilical Vein Endothelial Cells
SELECTION OF CITATIONS
SEARCH DETAIL