Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters

Database
Country/Region as subject
Language
Publication year range
1.
Phys Rev Lett ; 125(19): 192001, 2020 Nov 06.
Article in English | MEDLINE | ID: mdl-33216591

ABSTRACT

The transverse-momentum-dependent (TMD) soft function is a key ingredient in QCD factorization of Drell-Yan and other processes with relatively small transverse momentum. We present a lattice QCD study of this function at moderately large rapidity on a 2+1 flavor CLS dynamic ensemble with a=0.098 fm. We extract the rapidity-independent (or intrinsic) part of the soft function through a large-momentum-transfer pseudoscalar meson form factor and its quasi-TMD wave function using leading-order factorization in large-momentum effective theory. We also investigate the rapidity-dependent part of the soft function-the Collins-Soper evolution kernel-based on the large-momentum evolution of the quasi-TMD wave function.

2.
Phys Rev Lett ; 120(3): 032001, 2018 Jan 19.
Article in English | MEDLINE | ID: mdl-29400490

ABSTRACT

We show that the combined effects of a rotation plus a magnetic field can cause charged pion condensation. We suggest that this phenomenon may yield to observable effects in current heavy ion collisions at collider energies, where large magnetism and rotations are expected in off-central collisions.

3.
Chemosphere ; 308(Pt 1): 136107, 2022 Dec.
Article in English | MEDLINE | ID: mdl-35998730

ABSTRACT

Organic matters from various sources such as the manufacturing, agricultural, and pharmaceuticals industries is continuously discharged into water bodies, leading to increasingly serious water pollution. Photocatalytic technology is a clean and green advanced oxidation process, that can successfully decompose various organic pollutants into small inorganic molecules such as carbon dioxide and water under visible light irradiation. Bismuth oxybromide (BiOBr) is an attractive visible light photocatalyst with good photocatalytic performance, suitable forbidden bandwidth, and a unique layered structure. However, the rapid combination of the electron-hole pairs generated in BiOBr leads to low photocatalytic activity, which limits its photocatalytic performance. Due to its unique electronic structure, BiOBr can be coupled with a variety of different functional materials to improve its photocatalytic performance. In this paper, We present the morphologically controllable BiOBr and its preparation process with the influence of raw materials, additives, solvents, synthesis methods, and synthesis conditions. Based on this, we propose design synthesis considerations for BiOBr-based nanocomplexes in four aspects: structure, morphology and crystalline phase, reduction of electron-hole pair complexation, photocorrosion resistance, and scale-up synthesis. The literature on BiOBr-based nanocomposites in the last 10 years (2012-2022) are summarized into seven categories, and the mechanism of enhanced photocatalytic activity of BiOBr-based nanocomposites is reviewed. Moreover, the applications of BiOBr-based nanocomposites in the fields of degradation of dye wastewater, antibiotic wastewater, pesticide wastewater, and phenol-containing wastewater are reviewed. Finally, the current challenges and prospects of BiOBr-based nanocomposites are briefly described. In general, this paper reviews the construction of BiOBr-based nanocomposites, the mechanism of photocatalytic activity enhancement and its research status and application prospects in the degradation of organic pollutants.


Subject(s)
Environmental Pollutants , Nanocomposites , Pesticides , Anti-Bacterial Agents , Bismuth/chemistry , Carbon Dioxide , Catalysis , Nanocomposites/chemistry , Pharmaceutical Preparations , Phenol , Solvents , Wastewater , Water
4.
Environ Pollut ; 249: 91-98, 2019 Jun.
Article in English | MEDLINE | ID: mdl-30884397

ABSTRACT

The Tibet Plateau, the so-called Third Pole of the world, is home to the headstreams of many great rivers. The levels of microplastic pollution in those rivers, however, are unknown. In this study, surface water and sediment samples were collected from six sampling sites along five different rivers. The surface water and sediment samples were collected with a large flow sampler and a stainless steel shovel, respectively. The abundance of microplastics ranged from 483 to 967 items/m3 in the surface water and from 50 to 195 items/kg in the sediment. A large amount of small, fibrous, transparent microplastics were found in this study. Five types of microplastics with different chemical compositions were identified using micro-Raman spectroscopy: polyethylene terephthalate (PET), polyethylene (PE), polypropylene (PP), polystyrene (PS), and polyamide (PA). These results demonstrate that rivers in the Tibet Plateau have been contaminated by microplastics, not only in developed areas with intense human activity but also in remote areas, where microplastic pollution requires further attention.


Subject(s)
Environmental Monitoring , Plastics/analysis , Water Pollutants, Chemical/analysis , Environmental Pollution , Polyethylene/analysis , Polypropylenes/analysis , Polystyrenes , Rivers/chemistry , Spectrum Analysis, Raman , Tibet , Water
5.
Article in English | MEDLINE | ID: mdl-30275431

ABSTRACT

Microplastic pollution was investigated in sediment and surface water in West Dongting Lake and South Dongting Lake for the first time. The abundance of microplastics ranged from 616.67 to 2216.67 items/m³ and 716.67 to 2316.67 items/m³ in the lakeshore surface water of West Dongting Lake and South Dongting Lake, respectively. The highest levels of microplastic pollution were found in the lakes' outlets. In the lake center sites of the West Dongting Lake and South Dongting Lake, the abundance of microplastics ranged from 433.33 to 1500 items/m³ and 366.67 to 1566.67 items/m³, respectively. Meanwhile, the study found that in lakeshore sediment of West Dongting Lake and South Dongting Lake, microplastic concentrations ranged from 320 to 480 items/m³ and 200⁻1150 items/m³. Polystyrene (PS) and polyethylene terephthalate (PET) were most common in the surface water and sediment samples, respectively. In addition, we suggest that the effects of polymer types in microplastics should be taken into account when considering abundance. This study can provide valuable points of reference to better understanding microplastic pollution in inland freshwater areas.


Subject(s)
Geologic Sediments/analysis , Lakes/analysis , Plastics/analysis , Water Pollutants, Chemical/analysis , China , Environmental Monitoring
SELECTION OF CITATIONS
SEARCH DETAIL