Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 62
Filter
Add more filters

Country/Region as subject
Affiliation country
Publication year range
1.
J Org Chem ; 89(17): 12508-12513, 2024 Sep 06.
Article in English | MEDLINE | ID: mdl-39135492

ABSTRACT

Thioesters make up an important class of bioactive compounds. Due to their chemoselectivity, they have been widely used in the synthesis of a wide range of complex bioactive molecules and natural products. At present, chemists have developed a variety of methods for the preparation of thioester compounds. However, these methods usually require the use of transition metal catalysis or harsh reaction conditions. The strategy of synthesizing thioester compounds via visible light-induced electron donor-acceptor (EDA) complex reactions avoids the problems associated with conventional methods through the development of photocatalysis. Here we report a sustainable method for thiocarbonylating aryl sulfonium salts via a visible light-induced EDA complex process without transition metals.

2.
J Org Chem ; 88(20): 14351-14356, 2023 Oct 20.
Article in English | MEDLINE | ID: mdl-37802501

ABSTRACT

Herein, we present a decarboxylative thiocarbonylation of aryl and alkenyl sulfonium salts with oxalic acid monothioethers (OAMs), which can be achieved by visible light-accelerated palladium catalysis. Sulfonium salts are widely available, and OAM is an easily accessible and stored reagent; this mild reaction method can also be used for the synthesis of different types of thioester compounds. The reaction represents a new application of visible light-accelerated palladium catalysis in catalytic decarboxylative cross-couplings.

3.
Environ Sci Technol ; 57(1): 810-821, 2023 01 10.
Article in English | MEDLINE | ID: mdl-36459424

ABSTRACT

The thawing of dormant plateau permafrost emits nitrous oxide (N2O) through wetlands; however, the N2O production mechanism in plateau wetlands is still unclear. Here, we used the 15N-18O double tracer technique and metagenomic sequencing to analyze the N2O production mechanism in the Yunnan-Kweichow and Qinghai-Tibet plateau wetlands during the summer of 2020. N2O production activity was detected in all 16 sediment samples (elevation 1020-4601 m: 2.55 ± 0.42-26.38 ± 3.25 ng N g-1 d-1) and was promoted by nitrifier denitrification (ND). The key functional genes of ND (amoA, hao, and nirK) belonged to complete ammonia oxidizing (comammox) bacteria, and the key ND species was the comammox bacterium Nitrospira nitrificans. We found that the comammox bacterial species N. nitrificans and the ammonia oxidizing bacterial (AOB) species Nitrosomonas europaea cooperate to produce N2O in the plateau wetland sediments. Furthermore, we inferred that environmental factors (elevation and total organic matter (TOM)) influence the cooperation pattern via N. nitrificans, thus affecting the N2O production activity in the plateau wetland sediments. Our findings advance the mechanistic understanding of nitrifiers in biogeochemical cycles and global climate change.


Subject(s)
Archaea , Nitrous Oxide , Nitrous Oxide/analysis , Wetlands , Ammonia , Oxidation-Reduction , China , Bacteria/genetics , Nitrification , Soil Microbiology
4.
Ecotoxicol Environ Saf ; 225: 112738, 2021 Dec 01.
Article in English | MEDLINE | ID: mdl-34481352

ABSTRACT

Arsenic is a significant food safety and environmental concern due to its mutagenic and carcinogenic effect on living organism. Soybean (Glycine max [L.] Merrill) is a global staple crop grown intensively in arsenic-contaminated regions of the world (e.g., Southern Province of China). Therefore, the objective of this study was to investigate whether Se-NPs and/or ZnO-NPs could be used as an eco-friendly and efficient amendment to reduce arsenic uptake and toxicity in soybean. Ten-days-old seedling, grown in vermiculite, were transferred to hydroponic media and further grown till V2 growth stage appeared. AsV (25 µM Na2HAsO4) stressed plants were treated with ZnONP (25 µM ZnO) and SeNP (25 µM Se) separately and in combination, which were grown for another 10 d. The result demonstrated that arsenic-treated soybean plants displayed a reduction in photosynthetic efficiency, increased proline and glycine betaine accumulation in tissues, and altered antioxidant activity compared to an untreated control. The application of zinc oxide and selenium nanoparticles, both independently and in tandem, reduced arsenic stress in root and shoot tissues and rescued plant health. This was reflected through increased levels of reduced glutathione content, ascorbic acid, and various photosynthesis- and antioxidant-relevant enzymes. In addition, nanoparticle-treated soybean plants displayed higher expression of defense- and detoxification-related genes compared to controls. Cellular toxicants (i.e., oxidized glutathione, reactive oxygen species, and malondialdehyde) were reduced upon nanoparticle treatment. These data collectively suggest that selenium and zinc oxide nanoparticles may be a solution to ameliorate arsenic toxicity in agricultural soils and crop plants.


Subject(s)
Nanoparticles , Zinc Oxide , Antioxidants , Nanoparticles/toxicity , Photosynthesis , Plant Roots , Seedlings , Glycine max , Zinc Oxide/toxicity
5.
J Environ Sci (China) ; 102: 273-282, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33637253

ABSTRACT

Ammonia-oxidizing bacteria (AOB) and archaea (AOA) are two microbial groups mediating nitrification, yet little is presently known about their abundances and community structures at the transcriptional level in wastewater treatment systems (WWTSs). This is a significant issue, as the numerical abundance of AOA or AOB at the gene level may not necessarily represent their functional role in ammonia oxidation. Using amoA genes as molecular markers, this study investigated the transcriptional abundance and community structure of active AOA and AOB in 14 WWTSs. Quantitative PCR results indicated that the transcriptional abundances of AOB amoA (averaged: 1.6 × 108 copies g-1 dry sludge) were higher than those of AOA (averaged: 3.4 × 107 copies g-1 dry sludge) in all WWTSs despite several higher abundances of AOA amoA at the gene level. Moreover, phylogenetic analysis demonstrated that Nitrosomonas europaea and unknown clusters accounted for 37.66% and 49.96% of the total AOB amoA transcripts, respectively, suggesting their dominant role in driving ammonia oxidation. Meanwhile, AOA amoA transcripts were only successfully retrieved from 3 samples, and the Nitrosospaera sister cluster dominated, accounting for 83.46%. Finally, the substrate utilization kinetics of different AOA and AOB species might play a fundamental role in shaping their niche differentiation, community composition, and functional activity. This study provides a basis for evaluating the relative contributions of ammonia-oxidizing microorganisms (AOMs) to nitrogen conversions in WWTSs.


Subject(s)
Archaea , Water Purification , Ammonia , Archaea/genetics , Nitrification , Oxidation-Reduction , Phylogeny , Soil Microbiology
6.
BMC Genomics ; 21(1): 286, 2020 Apr 07.
Article in English | MEDLINE | ID: mdl-32264859

ABSTRACT

BACKGROUND: Recent studies have suggested that the gut microbiota is altered in children with juvenile idiopathic arthritis (JIA). However, age, sex, and body mass index (BMI) were not matched in the previous studies, and the results are inconsistent. We conducted an age-, sex-, and BMI-matched cross-sectional study to characterize the gut microbiota in children with JIA, and evaluate its potential in clinical prediction. METHODS: A total of 40 patients with JIA and 42 healthy controls, ranging from 1 to 16 years, were enrolled in this study. Fecal samples were collected for 16S rDNA sequencing. The data were analyzed using QIIME software and R packages. Specifically, the random forest model was used to identify biomarkers, and the receiver operating characteristic curve and the decision curve analysis were used to evaluate model performance. RESULTS: A total of 39 fecal samples from patients with JIA, and 42 fecal samples from healthy controls were sequenced successfully. The Chao 1 and Shannon-Wiener index in the JIA group were significantly lower than those in the control group, and the Bray-Curtis dissimilarity also differed significantly between the two groups. The relative abundance of 4 genera, Anaerostipes, Dialister, Lachnospira, and Roseburia, decreased significantly in the JIA group compared to those in the control group. The 4 genera included microbes that produce short-chain fatty acids (SCFAs) and were negatively correlated with some rheumatic indices. Moreover, 12 genera were identified as potential biomarkers by using the nested cross-validation function of the random forest. A random forest model constructed using these genera was able to differentiate the patients with JIA from the healthy controls, and the area under the receiver operating characteristic curve was 0.7975. The decision curve analysis indicated that the model had usefulness in clinical practice. CONCLUSIONS: The gut microbiota in patients with JIA is altered and characterized by a decreased abundance of 4 SCFA-producing genera. The decreases in the 4 genera correlated with more serious clinical indices. Twelve genera could be used as biomarkers and predictors in clinical practice. TRIAL REGISTRATION: The study is registered online at the Chinese Clinical Trial Registry on 11 May 2018 (registration number: ChiCTR1800016110).


Subject(s)
Arthritis, Juvenile/microbiology , Bacteria/classification , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA/methods , Adolescent , Bacteria/genetics , Case-Control Studies , Child , Child, Preschool , Cross-Sectional Studies , DNA, Bacterial/genetics , DNA, Ribosomal/genetics , Feces/microbiology , Female , Gastrointestinal Microbiome , Humans , Infant , Male , Phylogeny
7.
Yi Chuan ; 42(5): 506-518, 2020 May 20.
Article in English | MEDLINE | ID: mdl-32431301

ABSTRACT

The root-associated bacterial microbiota is closely related to life activities of land plants, and its composition is affected by geographic locations and plant genotypes. However, the influence of plant genotypes on root microbiota in rice grown in northern China remains to be explained. In this study, we performed 16S rRNA gene amplicon sequencing to generate bacterial community profiles of two representative rice cultivars, Nipponbare and IR24. They are planted in Changping and Shangzhuang farms in Beijing and have reached the reproductive stage. We compared their root microbiota in details by Random Forest machine learning algorithm and network analysis. We found that the diversity of rice root microbiota was significantly affected by geographic locations and rice genotypes. Nipponbare and IR24 showed distinct taxonomic composition of the root microbiota and the interactions between different bacteria. Moreover, the root bacteria could be used as biomarkers to distinguish Nipponbare from IR24 across regions. Our study provides a theoretical basis for the in-depth understanding of rice root microbiota in Northern China and the improvement of rice breeding from the perspective of the interaction between root microorganisms and plants.


Subject(s)
Bacteria/classification , Microbiota , Oryza/microbiology , Plant Roots/microbiology , China , RNA, Ribosomal, 16S
8.
Phys Rev Lett ; 122(18): 185002, 2019 May 10.
Article in English | MEDLINE | ID: mdl-31144895

ABSTRACT

We report the first experimental observation of nonlinear standing waves excited by plasma-series-resonance-enhanced harmonics in low pressure, very high frequency, parallel plate, capacitively coupled plasmas. Spatial structures of the harmonics of the magnetic field, measured by a magnetic probe, are in very good agreement with simulations based on a nonlinear electromagnetics model. At relatively low pressure, the nonlinear sheath motion generates high-order harmonics that can be strongly enhanced near the series resonance frequencies. Satisfying certain conditions, such nonlinear harmonics induce radial standing waves, with voltage and current maxima on axis, resulting in center-high plasma density. Excitation of higher harmonics is suppressed at higher pressures.

9.
Plant J ; 88(5): 854-866, 2016 12.
Article in English | MEDLINE | ID: mdl-27531446

ABSTRACT

The inheritance and function of centromeres are not strictly dependent on any specific DNA sequence, but involve an epigenetic component in most species. CENH3, a centromere histone H3 variant, is one of the best-described epigenetic factors in centromere identity, but the chromatin features required during centromere formation have not yet been revealed. We previously identified two de novo centromeres on Zea mays (maize) minichromosomes derived from euchromatic sites with high-density gene distributions but low-density transposon distributions. The distribution of gene location and gene expression in these sites indicates that transcriptionally active regions can initiate de novo centromere formation, and CENH3 seeding shows a preference for gene-free regions or regions with no gene expression. The locations of the expressed genes detected were at relatively hypomethylated loci, and the altered gene expression resulted from de novo centromere formation, but not from the additional copy of the minichromosome. The initial overall DNA methylation level of the two de novo regions was at a low level, but increased substantially to that of native centromeres after centromere formation. These results illustrate the dynamic chromatin changes during euchromatin-originated de novo centromere formation, which provides insight into the mechanism of de novo centromere formation and regulation of subsequent consequences.


Subject(s)
Centromere/metabolism , Chromatin/metabolism , Euchromatin/metabolism , Zea mays/metabolism , DNA Methylation/genetics , Euchromatin/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Zea mays/genetics
10.
Sheng Li Xue Bao ; 69(6): 751-758, 2017 Dec 25.
Article in Zh | MEDLINE | ID: mdl-29270590

ABSTRACT

To investigate the anti-oxidative effect of celastrol on H2O2-induced oxidative stress in the cell model of amyotrophic lateral sclerosis (ALS) and its molecular mechanism, NSC34 motor neuron-like cells were transfected with EGFP-G93A-SOD1 plasmid and used as in vitro ALS cell model. SOD1G93A transfected NSC34 cells were treated with different doses of H2O2 and celastrol. The survival rate of the cells was detected by CCK-8 assay, and malondialdehyde (MDA) content was detected by corresponding kit. The mRNA expression of glutamate-cysteine ligase catalytic subunit (GCLC) and glutathione S-transferases (GST) were detected by real-time PCR. The activation of intracellular MEK/ERK and PI3K/Akt signal pathways was detected by Western blot. The results showed that pre-incubation of celastrol (50 nmol/L) for 4 h prior to H2O2 (10 µmol/L) co-treatment for another 24 h significantly attenuated H2O2-induced cell death and MDA level in SOD1G93A transfected NSC34 cells. Real-time PCR showed that the mRNA expressions of GCLC and GST were enhanced with pre-incubation of celastrol. Celastrol quickly induced phosphorylation of ERK1/2 and Akt within 30 min and 1 h respectively in SOD1G93A transfected NSC34 cells. Pharmacological inhibitors of MEK (PD98059, 10 µmol/L) or Akt (MK2206, 10 µmol/L) could reverse the phosphorylation of ERK1/2 and Akt, and abolish up-regulation of GCLC and GST induced by celastrol at mRNA levels. Taken together, we conclude that celastrol exerts a beneficial antioxidant effect in SOD1G93ANSC34 cells, which might be dependent on MEK/ERK and PI3K/Akt signaling pathway activation.


Subject(s)
Amyotrophic Lateral Sclerosis/drug therapy , Antioxidants/pharmacology , Hydrogen Peroxide/pharmacology , Oxidative Stress/drug effects , Triterpenes/pharmacology , Amyotrophic Lateral Sclerosis/metabolism , Animals , Extracellular Signal-Regulated MAP Kinases/metabolism , Glutamate-Cysteine Ligase/genetics , Mice , Pentacyclic Triterpenes , Phosphorylation , Triterpenes/therapeutic use
11.
Phys Rev Lett ; 116(25): 255002, 2016 Jun 24.
Article in English | MEDLINE | ID: mdl-27391730

ABSTRACT

Self-organized spatial structures in the light emission from the ion-ion capacitive rf plasma of a strongly electronegative gas (CF_{4}) are observed experimentally for the first time. Their formation is analyzed and understood based on particle-based kinetic simulations. These "striations" are found to be generated by the resonance between the driving radio frequency and the eigenfrequency of the ion-ion plasma (derived from an analytical model) that establishes a modulation of the electric field, the ion densities, as well as the energy gain and loss processes of electrons in the plasma. The growth of the instability is followed by the numerical simulations.

12.
Guang Pu Xue Yu Guang Pu Fen Xi ; 36(2): 445-8, 2016 Feb.
Article in Zh | MEDLINE | ID: mdl-27209747

ABSTRACT

The Laser-induced fluorescence spectra combined with pattern recognition method has been widely applied in discrimination of different spilled oil, such as diesel, gasoline, and crude oil. However, traditional three-dimension fluorescence analysis method, which is not adapted to requirement of field detection, is limited to laboratory investigatio ns. The development of oil identification method for field detection is significant to quick response and operation of oil spill. In this paper, a new method based on laser-induced time-resolved fluorescence combined with support vector machine (SVM) model was introduced to discriminate crude oil samples. In this method, time-resolved spectra data was descended into two dimensions with selecting appropriate range in time and wavelength domains respectively to form a SVM data base. It is found that the classification accurate rate increased with an appropriate selection. With a selected range from 54 to 74 ns in time domain, the classification accurate rate has been increased from 83.3% (without selection) to 88.1%. With a selected wavelength range of 387.00~608.87 nm, the classification accurate rate of suspect oil was improved from 84% (without selection) to 100%. Since the detection delay of fluorescence lidar fluctuates due to wave and platform swing, the identification method with optimizing in both time and wavelength domains could offer a better flexibility for field applications. It is hoped that the developed method could provide some useful reference with data reduction for classification of suspect crude oil in the future development.

13.
Imeta ; 3(5): e236, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39429875

ABSTRACT

The well-known bioinformatic software USEARCH v12 was open sourced. Its meaning encourages the microbiome research community to constantly develop excellent bioinformatic software based on the codes. The open source and popularization of artificial intelligence (AI) will make a better infrastructure for microbiome research.

14.
Imeta ; 3(1): e175, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38868508

ABSTRACT

The increasing application of meta-omics approaches to investigate the structure, function, and intercellular interactions of microbial communities has led to a surge in available data. However, this abundance of human and environmental microbiome data has exposed new scalability challenges for existing bioinformatics tools. In response, we introduce Wekemo Bioincloud-a specialized platform for -omics studies. This platform offers a comprehensive analysis solution, specifically designed to alleviate the challenges of tool selection for users in the face of expanding data sets. As of now, Wekemo Bioincloud has been regularly equipped with 22 workflows and 65 visualization tools, establishing itself as a user-friendly and widely embraced platform for studying diverse data sets. Additionally, the platform enables the online modification of vector outputs, and the registration-independent personalized dashboard system ensures privacy and traceability. Wekemo Bioincloud is freely available at https://www.bioincloud.tech/.

15.
Imeta ; 3(3): e184, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38898979

ABSTRACT

Venn diagrams serve as invaluable tools for visualizing set relationships due to their ease of interpretation. Widely applied across diverse disciplines such as metabolomics, genomics, transcriptomics, and proteomics, their utility is undeniable. However, the operational complexity has been compounded by the absence of standardized data formats and the need to switch between various platforms for generating different Venn diagrams. To address these challenges, we introduce the EVenn platform, a versatile tool offering a unified interface for efficient data exploration and visualization of diverse Venn diagrams. EVenn (http://www.ehbio.com/test/venn) streamlines the data upload process with a standardized format, enhancing the capabilities for multimodule analysis. This comprehensive protocol outlines various applications of EVenn, featuring representative results of multiple Venn diagrams, data uploads in the centralized data center, and step-by-step case demonstrations. Through these functionalities, EVenn emerges as a valuable and user-friendly tool for the in-depth exploration of multiomics data.

16.
Microbiol Res ; 285: 127747, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38739956

ABSTRACT

BACKGROUND: The global dissemination of the multidrug resistance efflux pump gene cluster tmexCD-toprJ has greatly weakened the effects of multiple antibiotics, including tigecycline. However, the potential origin and transmission mechanisms of the gene cluster remain unclear. METHODS: Here, we concluded a comprehensive bioinformatics analysis on integrated 73,498 bacterial genomes, including Pseudomonas spp., Klebsiella spp., Aeromonas spp., Proteus spp., and Citrobacter spp., along with 1,152 long-read metagenomic datasets to trace the origin and propagation of tmexCD-toprJ. RESULTS: Our results demonstrated that tmexCD-toprJ was predominantly found in Pseudomonas aeruginosa sourced from human hosts in Asian countries and North American countries. Phylogenetic and genomic feature analyses showed that tmexCD-toprJ was likely evolved from mexCD-oprJ of some special clones of P. aeruginosa. Furthermore, metagenomic analysis confirmed that P. aeruginosa is the only potential ancestral bacterium for tmexCD-toprJ. A putative mobile genetic structure harboring tmexCD-toprJ, int-int-hp-hp-tnfxB-tmexCD-toprJ, was the predominant genetic context of tmexCD-toprJ across various bacterial genera, suggesting that the two integrase genes play a pivotal role in the horizontal transmission of tmexCD-toprJ. CONCLUSIONS: Based on these findings, it is almost certain that the tmexCD-toprJ gene cluster was derived from P. aeruginosa and further spread to other bacteria.


Subject(s)
Anti-Bacterial Agents , Genome, Bacterial , Metagenomics , Multigene Family , Phylogeny , Pseudomonas aeruginosa , Tigecycline , Pseudomonas aeruginosa/genetics , Pseudomonas aeruginosa/drug effects , Tigecycline/pharmacology , Anti-Bacterial Agents/pharmacology , Humans , Drug Resistance, Multiple, Bacterial/genetics , Genomics , Bacterial Proteins/genetics , Computational Biology , Microbial Sensitivity Tests , Drug Resistance, Bacterial/genetics
17.
Imeta ; 3(4): e210, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39135693

ABSTRACT

Within dynamic agroecosystems, microbes can act as key intermediaries, facilitating spatiotemporal communication among plants. Future research could categorize key plant genes involved in plant-microbe interactions into microbiome-shaping genes (Ms genes) and microbiome-responsive genes (Mr genes), potentially leading to the construction of spatiotemporal molecular networks with microbes as intermediaries.

18.
Theranostics ; 14(12): 4622-4642, 2024.
Article in English | MEDLINE | ID: mdl-39239516

ABSTRACT

Rationale: Consumption of a high-fat diet (HFD) has been implicated in cognitive deficits and gastrointestinal dysfunction in humans, with the gut microbiota emerging as a pivotal mediator of these diet-associated pathologies. The introduction of plant-based polysaccharides into the diet as a therapeutic strategy to alleviate such conditions is gaining attention. Nevertheless, the mechanistic paradigm by which polysaccharides modulate the gut microbiota remains largely undefined. This study investigated the mechanisms of action of Eucommiae cortex polysaccharides (EPs) in mitigating gut dysbiosis and examined their contribution to rectifying diet-related cognitive decline. Methods: Initially, we employed fecal microbiota transplantation (FMT) and gut microbiota depletion to verify the causative role of changes in the gut microbiota induced by HFD in synapse engulfment-dependent cognitive impairments. Subsequently, colonization of the gut of chow-fed mice with Escherichia coli (E. coli) from HFD mice confirmed that inhibition of Proteobacteria by EPs was a necessary prerequisite for alleviating HFD-induced cognitive impairments. Finally, supplementation of HFD mice with butyrate and treatment of EPs mice with GW9662 demonstrated that EPs inhibited the expansion of Proteobacteria in the colon of HFD mice by reshaping the interactions between the gut microbiota and colonocytes. Results: Findings from FMT and antibiotic treatments demonstrated that HFD-induced cognitive impairments pertaining to neuronal spine loss were contingent on gut microbial composition. Association analysis revealed strong associations between bacterial taxa belonging to the phylum Proteobacteria and cognitive performance in mice. Further, introducing E. coli from HFD-fed mice into standard diet-fed mice underscored the integral role of Proteobacteria proliferation in triggering excessive synaptic engulfment-related cognitive deficits in HFD mice. Crucially, EPs effectively counteracted the bloom of Proteobacteria and subsequent neuroinflammatory responses mediated by microglia, essential for cognitive improvement in HFD-fed mice. Mechanistic insights revealed that EPs promoted the production of bacteria-derived butyrate, thereby ameliorating HFD-induced colonic mitochondrial dysfunction and reshaping colonocyte metabolism. This adjustment curtailed the availability of growth substrates for facultative anaerobes, which in turn limited the uncontrolled expansion of Proteobacteria. Conclusions: Our study elucidates that colonocyte metabolic disturbances, which promote Proteobacteria overgrowth, are a likely cause of HFD-induced cognitive deficits. Furthermore, dietary supplementation with EPs can rectify behavioral dysfunctions associated with HFD by modifying gut microbiota-colonocyte interactions. These insights contribute to the broader understanding of the modulatory effects of plant prebiotics on the microbiota-gut-brain axis and suggest a potential therapeutic avenue for diet-associated cognitive dysfunction.


Subject(s)
Cognitive Dysfunction , Diet, High-Fat , Dysbiosis , Fecal Microbiota Transplantation , Gastrointestinal Microbiome , Mice, Inbred C57BL , Polysaccharides , Gastrointestinal Microbiome/drug effects , Animals , Diet, High-Fat/adverse effects , Mice , Cognitive Dysfunction/therapy , Polysaccharides/pharmacology , Male , Dysbiosis/therapy , Colon/microbiology , Escherichia coli , Butyrates/metabolism , Proteobacteria/isolation & purification , Proteobacteria/drug effects , Disease Models, Animal
19.
Imeta ; 3(2): e178, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38882492

ABSTRACT

The advent of generative artificial intelligence (AI) technologies marks a transformative moment for the scientific sphere, unlocking novel avenues to elevate scientific writing's efficiency and quality, expedite insight discovery, and enhance code development processes. Essential to leveraging these advancements is prompt engineering, a method that enhances AI interaction efficiency and quality. Despite its benefits, effective application requires blending researchers' expertise with AI, avoiding overreliance. A balanced strategy of integrating AI with independent critical thinking ensures the advancement and quality of scientific research, leveraging innovation while maintaining research integrity.

20.
J Genet Genomics ; 2024 Sep 16.
Article in English | MEDLINE | ID: mdl-39293510

ABSTRACT

Over the past decade, nanopore sequencing has experienced significant advancements and changes, transitioning from an initially emerging technology to a significant instrument in the field of genomic sequencing. However, as advancements in next-generation sequencing technology persist, nanopore sequencing also improves. This paper reviews the developments, applications, and outlook on nanopore sequencing technology. Currently, nanopore sequencing supports both DNA and RNA sequencing, making it widely applicable in areas such as telomere-to-telomere (T2T) genome assembly, direct RNA sequencing (DRS), and metagenomics. The openness and versatility of nanopore sequencing have established it as a preferred option for an increasing number of research teams, signaling a transformative influence on life science research. As nanopore sequencing technology advances, it provides a faster, more cost-effective approach with extended read lengths, demonstrating the significant potential for complex genome assembly, pathogen detection, environmental monitoring, and human disease research, offering a fresh perspective in sequencing technologies.

SELECTION OF CITATIONS
SEARCH DETAIL