Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Cancers (Basel) ; 15(21)2023 Oct 29.
Article in English | MEDLINE | ID: mdl-37958378

ABSTRACT

Juvenile myelomonocytic leukemia (JMML) is a deadly pediatric leukemia driven by RAS pathway mutations, of which >35% are gain-of-function in PTPN11. Although DNA hypermethylation portends severe clinical phenotypes, the landscape of histone modifications and chromatin profiles in JMML patient cells have not been explored. Using global mass cytometry, Epigenetic Time of Flight (EpiTOF), we analyzed hematopoietic stem and progenitor cells (HSPCs) from five JMML patients with PTPN11 mutations. These data revealed statistically significant changes in histone methylation, phosphorylation, and acetylation marks that were unique to JMML HSPCs when compared with healthy controls. Consistent with these data, assay for transposase-accessible chromatin with sequencing (ATAC-seq) analysis revealed significant alterations in chromatin profiles at loci encoding post-translational modification enzymes, strongly suggesting their mis-regulated expression. Collectively, this study reveals histone modification pathways as an additional epigenetic abnormality in JMML patient HSPCs, thereby uncovering a new family of potential druggable targets for the treatment of JMML.

2.
Leuk Res ; 33(5): 671-7, 2009 May.
Article in English | MEDLINE | ID: mdl-19010541

ABSTRACT

The biological hallmark of juvenile myelomonocytic leukemia (JMML) is selective GM-CSF hypersensitivity. We hypothesized that PTEN protein deficiency might lead to insufficient negative growth signals to counter the hyperactive Ras signaling and therefore aid in the acceleration of the malignant transformation of JMML. In screening 34 JMML patients we found: (1) decreased PTEN protein in 67% of patients; (2) significantly lower PTEN mRNA levels in patients compared to controls (p<0.01); (3) a hypermethylated PTEN promoter in 77% of patients; and (4) constitutive-hyperactive Akt and MAPK in 55% and 73% of patients, respectively. These findings suggest that PTEN deficiency is very common in JMML and is in part due to hypermethylation of the PTEN gene promoter.


Subject(s)
Leukemia, Myelomonocytic, Juvenile/genetics , PTEN Phosphohydrolase/genetics , Base Sequence , Blotting, Western , DNA Methylation , DNA Primers , Granulocyte-Macrophage Colony-Stimulating Factor/administration & dosage , Humans , Promoter Regions, Genetic , Protein Kinases/metabolism , RNA, Messenger/genetics , Reverse Transcriptase Polymerase Chain Reaction , Sirolimus/pharmacology , Transcription, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL