Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 52
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Chem Rev ; 123(5): 2349-2419, 2023 03 08.
Article in English | MEDLINE | ID: mdl-36512650

ABSTRACT

Recent advances in synthetic biology and materials science have given rise to a new form of materials, namely engineered living materials (ELMs), which are composed of living matter or cell communities embedded in self-regenerating matrices of their own or artificial scaffolds. Like natural materials such as bone, wood, and skin, ELMs, which possess the functional capabilities of living organisms, can grow, self-organize, and self-repair when needed. They also spontaneously perform programmed biological functions upon sensing external cues. Currently, ELMs show promise for green energy production, bioremediation, disease treatment, and fabricating advanced smart materials. This review first introduces the dynamic features of natural living systems and their potential for developing novel materials. We then summarize the recent research progress on living materials and emerging design strategies from both synthetic biology and materials science perspectives. Finally, we discuss the positive impacts of living materials on promoting sustainability and key future research directions.


Subject(s)
Materials Science , Synthetic Biology
2.
Chem Soc Rev ; 2024 Sep 10.
Article in English | MEDLINE | ID: mdl-39253782

ABSTRACT

Aqueous zinc-ion batteries (AZIBs) have garnered significant attention in the realm of large-scale and sustainable energy storage, primarily owing to their high safety, low cost, and eco-friendliness. Aqueous electrolytes, serving as an indispensable constituent, exert a direct influence on the electrochemical performance and longevity of AZIBs. Nonetheless, conventional aqueous electrolytes often encounter formidable challenges in AZIB applications, such as the limited electrochemical stability window and the zinc dendrite growth. In response to these hurdles, a series of advanced aqueous electrolytes have been proposed, such as "water-in-salt" electrolytes, aqueous eutectic electrolytes, molecular crowding electrolytes, and hydrogel electrolytes. This comprehensive review commences by presenting an in-depth overview of the fundamental compositions, principles, and distinctive characteristics of various advanced aqueous electrolytes for AZIBs. Subsequently, we systematically scrutinizes the recent research progress achieved with these advanced aqueous electrolytes. Furthermore, we summarizes the challenges and bottlenecks associated with these advanced aqueous electrolytes, along with offering recommendations. Based on the optimization of advanced aqueous electrolytes, this review outlines future directions and potential strategies for the development of high-performance AZIBs. This review is anticipated to provide valuable insights into the development of advanced electrolyte systems for the next generation of stable and sustainable multi-valent secondary batteries.

3.
J Am Chem Soc ; 146(5): 3293-3302, 2024 Feb 07.
Article in English | MEDLINE | ID: mdl-38277694

ABSTRACT

Aqueous redox flow batteries (ARFBs) hold great potential for large-scale energy storage. Recently, research on aqueous flow batteries has shifted toward water-soluble organic molecules with redox capabilities to reduce the use of mineral resources. The chemical and electrochemical stabilities of organic compounds are heavily influenced by their functional groups and reaction sites. In this study, we present a low-cost synthesis of the O-alkyl-carboxylate-functionalized derivatives of 2,3-dihydroxyphenazine, namely, phenazine-(2,3-diyl) dioxy dibutyric acid (DBEP) and phenazine-(2,3-diyl)dioxy diacetic acid (DAEP), which serve as negolytes and exhibit good reversibility and high redox kinetics. The evidence is provided to clarify the capacity degradation mechanisms of DAEP and DBEP by a series of comprehensive characterizations. Similar to anthraquinones functionalized with alkyl chains, the main degradation mechanism of DAEP modified with acetic acid is due to side chain loss. Longer side chains are more stable and can withstand long-term electrochemical reactions. DBEP modified with butyric acid exhibits superior chemical and electrochemical stability. Our results demonstrate that rational molecular design and suitable membranes, such as the alkaline ARFBs based on DBEP negolyte, potassium ferrocyanide (K4Fe(CN)6) posolyte, and custom sulfonated poly(ether ether ketone) membrane, can deliver a high open-circuit voltage of 1.17 V and high capacity retention of 99.997% per cycle for over 1000 cycles at 50 mA cm-2. This study highlights the importance of not only considering the modification position of the molecules but also focusing on the influence of various side chains on the redox core's stability toward sustainable grid-scale energy storage applications.

4.
J Am Chem Soc ; 146(10): 7018-7028, 2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38412508

ABSTRACT

Aqueous rechargeable magnesium batteries hold immense potential for intrinsically safe, cost-effective, and sustainable energy storage. However, their viability is constrained by a narrow voltage range and suboptimal compatibility between the electrolyte and electrodes. Herein, we introduce an innovative ternary deep eutectic Mg-ion electrolyte composed of MgCl2·6H2O, acetamide, and urea in a precisely balanced 1:1:7 molar ratio. This formulation was optimized by leveraging competitive solvation effects between Mg2+ ions and two organic components. The full batteries based on this ternary eutectic electrolyte, Mn-doped sodium vanadate (Mn-NVO) anode, and copper hexacyanoferrate cathode exhibited an elevated voltage plateau and high rate capability and showcased stable cycling performance. Ex-situ characterizations unveiled the Mg2+ storage mechanism of Mn-NVO involving initial extraction of Na+ followed by subsequent Mg2+ intercalation/deintercalation. Detailed spectroscopic analyses illuminated the formation of a pivotal solid-electrolyte interphase on the anode surface. Moreover, the solid-electrolyte interphase demonstrated a dynamic adsorption/desorption behavior, referred to as the "breathing effect", which substantially mitigated undesired dissolution and side reactions of electrode materials. These findings underscore the crucial role of rational electrolyte design in fostering the development of a favorable solid-electrolyte interphase that can significantly enhance compatibility between electrode materials and electrolytes, thus propelling advancements in aqueous multivalent-ion batteries.

5.
Opt Express ; 31(12): 20545-20558, 2023 Jun 05.
Article in English | MEDLINE | ID: mdl-37381447

ABSTRACT

The rapid detection and identification of the electronic waste (e-waste) containing rare earth (RE) elements is of great significance for the recycling of RE elements. However, the analysis of these materials is extremely challenging due to extreme similarities in appearance or chemical composition. In this research, a new system based on laser induced breakdown spectroscopy (LIBS) and machine learning algorithms is developed for identifying and classifying e-waste of rare-earth phosphors (REPs). Three different kinds of phosphors are selected and the spectra is monitored using this new developed system. The analysis of phosphor spectra shows that there are Gd, Yd, and Y RE element spectra in the phosphor. The results also verify that LIBS could be used to detect RE elements. An unsupervised learning method, principal component analysis (PCA), is used to distinguish the three phosphors and training data set is stored for further identification. Additionally, a supervised learning method, backpropagation artificial neural network (BP-ANN) algorithm is used to establish a neural network model to identify phosphors. The result show that the final phosphor recognition rate reaches 99.9%. The innovative system based on LIBS and machine learning (ML) has the potential to improve rapid in situ detection of RE elements for the classification of e-waste.

6.
Phys Chem Chem Phys ; 25(37): 25177-25190, 2023 Sep 27.
Article in English | MEDLINE | ID: mdl-37712428

ABSTRACT

With the explosion of data-centric applications, new in-memory computing technologies, based on nonvolatile memory devices, have become competitive due to their merged logic-memory functionalities. Herein, employing first-principles quantum transport simulation, we theoretically investigate for the first time the electronic and contact properties of two types of monolayer (ML)-MoS2 ferroelectric field-effect transistors (FeFETs) integrated with ferroelectric BiAlO3(0001) (BAO(0001)) polar surfaces. Our study finds that the interfacial properties of the investigated partial FeFET devices are highly tunable by switching the electric polarization of the ferroelectric BAO(0001) dielectric. Specifically, the transition from quasi-Ohmic to the Schottky contact, as well as opposite contact polarity of respective n-type and p-type Schottky contact under two polarization states can be obtained, suggesting their superior performance metrics in terms of nonvolatile information storage. In addition, due to the feature of (quasi-)Ohmic contact in some polarization states, the explored FeFET devices, even when operating in the regular field-effect transistor (FET) mode, can be extremely significant in realizing a desirable low threshold voltage and interfacial contact resistance. In conjunction with the formed van der Waals (vdW) interfaces in ML-MoS2/ferroelectric systems with an interlayer, the proposed FeFETs are expected to provide excellent device performance with regard to cycling endurance and memory density.

7.
Phys Chem Chem Phys ; 25(48): 33130-33140, 2023 Dec 13.
Article in English | MEDLINE | ID: mdl-38047441

ABSTRACT

In recent years, α-In2Se3 has attracted great attention in miniaturizing nonvolatile random memory devices because of its room temperature ferroelectricity and atomic thickness. In this work, we construct two-dimensional (2D) van der Waals (vdW) heterostructures α-In2Se3/MoS2 with different ferroelectric polarization and design a 2D graphene (Gr)/In2Se3/MoS2/Gr ferroelectric tunnel junction (FTJ) with the symmetric electrodes. Our calculations show that the band alignment of the heterostructures can be changed from type-I to type-II accompanied by the reversal of the ferroelectric polarization of In2Se3. Furthermore, the ferroelectricity persists in Gr/In2Se3/MoS2/Gr vdW FTJs, and the presence of dielectric layer MoS2 in the FTJs enables the effective modulation of the tunneling barrier by altering the ferroelectric polarization of α-In2Se3, which results in two distinct conducting states denoted as "ON" and "OFF" with a large tunneling electroresistance (TER) ratio exceeding 105%. These findings suggest the importance of ferroelectric vdW heterostructures in the design of FTJs and propose a promising route for applying the 2D ferroelectric/semiconductor heterostructures with out-of-plane polarization in high-density ferroelectric memory devices.

8.
Sensors (Basel) ; 23(10)2023 May 22.
Article in English | MEDLINE | ID: mdl-37430885

ABSTRACT

Intracellular pressure, a key physical parameter of the intracellular environment, has been found to regulate multiple cell physiological activities and impact cell micromanipulation results. The intracellular pressure may reveal the mechanism of these cells' physiological activities or improve the micro-manipulation accuracy for cells. The involvement of specialized and expensive devices and the significant damage to cell viability that the current intracellular pressure measurement methods cause significantly limit their wide applications. This paper proposes a robotic intracellular pressure measurement method using a traditional micropipette electrode system setup. First, the measured resistance of the micropipette inside the culture medium is modeled to analyze its variation trend when the pressure inside the micropipette increases. Then, the concentration of KCl solution filled inside the micropipette electrode that is suitable for intracellular pressure measurement is determined according to the tested electrode resistance-pressure relationship; 1 mol/L KCl solution is our final choice. Further, the measurement resistance of the micropipette electrode inside the cell is modeled to measure the intracellular pressure through the difference in key pressure before and after the release of the intracellular pressure. Based on the above work, a robotic measurement procedure of the intracellular pressure is established based on a traditional micropipette electrode system. The experimental results on porcine oocytes demonstrate that the proposed method can operate on cells at an average speed of 20~40 cells/day with measurement efficiency comparable to the related work. The average repeated error of the relationship between the measured electrode resistance and the pressure inside the micropipette electrode is less than 5%, and no observable intracellular pressure leakage was found during the measurement process, both guaranteeing the measurement accuracy of intracellular pressure. The measured results of the porcine oocytes are in accordance with those reported in related work. Moreover, a 90% survival rate of operated oocytes was obtained after measurement, proving limited damage to cell viability. Our method does not rely on expensive instruments and is conducive to promotion in daily laboratories.


Subject(s)
Robotic Surgical Procedures , Animals , Swine , Culture Media , Cell Survival , Electrodes , Laboratories
9.
Virol J ; 19(1): 226, 2022 12 28.
Article in English | MEDLINE | ID: mdl-36578037

ABSTRACT

BACKGROUND: Porcine hemagglutinating encephalomyelitis virus (PHEV), a member of the genus Betacoronavirus, is the causative agent of neurological disease in pigs. No effective therapeutics are currently available for PHEV infection. Resveratrol has been shown to exert neuroprotective and antiviral effects. Here resveratrol was investigated for its ability to inhibit PHEV replication in nerve cells and central nervous system tissues. METHODS: Anti-PHEV effect of resveratrol was evaluated using an in vitro cell-based PHEV infection model and employing a mouse PHEV infection model. The collected cells or tissues were used for quantitative PCR analysis, western blot analysis, or indirect immunofluorescence assay. The supernatants were collected to quantify viral loads by TCID50 assay in vitro. EC50 and CC50 were determined by dose-response experiments, and the ratio (EC50/CC50) was used as a selectivity index (SI) to measure the antiviral versus cytotoxic activity. RESULTS: Our results showed that resveratrol treatment reduced PHEV titer in a dose-dependent manner, with a 50% inhibition concentration of 6.24 µM. A reduction of > 70% of viral protein expression and mRNA copy number and a 19-fold reduction of virus titer were achieved when infected cells were treated with 10 µM resveratrol in a pre-treatment assay. Quantitative PCR analysis and TCID50 assay results revealed that the addition of 10 µM resveratrol to cells after adsorption of PHEV significantly reduced 56% PHEV mRNA copy number and eightfold virus titer. 10 µM resveratrol treatment reduced 46% PHEV mRNA copy number and fourfold virus titer in virus inactivation assay. Moreover, the in vivo data obtained in this work also demonstrated that resveratrol inhibited PHEV replication, and anti-PHEV activities of resveratrol treatment via intranasal installation displayed better than oral gavage. CONCLUSION: These results indicated that resveratrol exerted antiviral effects under various drug treatment and virus infection conditions in vitro and holds promise as a treatment for PHEV infection in vivo.


Subject(s)
Betacoronavirus 1 , Mice , Swine , Animals , Resveratrol/pharmacology , Resveratrol/metabolism , Betacoronavirus 1/genetics , Betacoronavirus 1/metabolism , Neurons , Antiviral Agents/pharmacology , Antiviral Agents/metabolism , Virus Replication
10.
Opt Express ; 29(24): 39811-39823, 2021 Nov 22.
Article in English | MEDLINE | ID: mdl-34809337

ABSTRACT

The spectral analysis based on laser-induced breakdown spectroscopy (LIBS) is an effective approach to carbon concentration monitoring. In this work, a novel LIBS-based method, together with a system designed independently, was developed for carbon monitoring. The experiments were conducted in two modes: static and dynamic. In static monitoring, gases in three scenarios were selected to represent different carbon concentrations, based on which measurements of carbon concentrations were performed through a mathematical model. Then, K-nearest Neighbors (KNN) was adopted for classification, and its accuracy could reach 99.17%, which can be applied for the identification of gas composition and pollution traceability. In dynamic monitoring, respiration and fossil fuel combustion were selected because of their important roles in increasing carbon concentration. In addition, the simulation of combustion degree was performed by the radial basis function (RBF) based on the spectral information, where the accuracy reached 96.41%, which is the first time that LIBS is proposed to be used for combustion prediction. The innovative approach derived from LIBS and machine learning algorithms is fast, online, and in-situ, showing far-reaching application prospects in real-time monitoring of carbon concentrations.

11.
Opt Express ; 28(13): 18750, 2020 Jun 22.
Article in English | MEDLINE | ID: mdl-32672169

ABSTRACT

One misprint in our manuscript is reported and corrected.

12.
Opt Express ; 28(15): 22844-22855, 2020 Jul 20.
Article in English | MEDLINE | ID: mdl-32752538

ABSTRACT

Volatile organic compounds (VOCs) are one of the major pollutants in the atmospheric and indoor environment. The direct detection of halogen atoms in VOCs via laser induced breakdown spectroscopy (LIBS) is highly challenging work because of the high ionization energy of these halogen elements. In this paper, the LIBS system combined with a self-designed single particle aerosol mass spectrometry (SPAMS) system were applied to the direct online detection of VOCs in the atmosphere. The experimental parameters of LIBS experiment were optimized in the measurement of ambient air. Under the best experimental conditions, the characteristic peaks of nitrogen, hydrogen, oxygen, as well as argon, were observed in the LIBS spectra of air. Then, LIBS and SPAMS measurements were performed on Halon 2402, Freon R11 and iodomethane samples under the atmospheric pressure. The characteristic spectral lines of fluorine, chlorine, bromine and iodine were observed and recorded in LIBS spectra. The SPAMS measurements also provide the elemental compositional information of individual VOCs aerosol particles in real time, which is an effective supplement to LIBS analysis. In addition, the different isotopes of bromine and chlorine can be clearly distinguished at the same time. Finally, the home-built portable Raman spectrometer was utilized to analyze the vibrational modes and get the "spectral fingerprint" of VOCs. All the results indicate that the direct online detection performed by the LIBS and SPAMS techniques could provide elemental and isotopic information of halogen atoms in atmospheric VOCs.

13.
Opt Express ; 27(12): A790-A799, 2019 Jun 10.
Article in English | MEDLINE | ID: mdl-31252855

ABSTRACT

The smoke of burning mosquito-repellent incense was taken as an example for the local air pollution to be detected and analyzed in situ and in real time. And the spectra of the ambient air, human breathing, and smoke were detected in situ with the LIBS technique. There are some additional spectral lines being found in human breathing, such as the C, Hß line, and the CN molecular bands. Some characteristic peaks of the elements Fe, Ca, Ti, Sr, and Cr have been observed in the smoke. Moreover, the vibrational and rotational temperature of the CN molecule were calculated. The mosquito-repellent incense was dipped into the solutions containing Mn and Pb to simulate heavy metal pollution in the atmosphere.

14.
Fish Shellfish Immunol ; 90: 134-140, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31055019

ABSTRACT

Toll-like receptors (TLRs) are a large family of pattern recognition receptors (PRRs) that play a critical role in innate immunity. TLRs are activated when they recognize microbial associated molecular patterns (MAMPs) of bacteria, viruses, or fungus. In the present study, two TLRs were isolated from the mantle of the hard-shelled mussel (Mytilus coruscus) and designated McTLR2 and McTLR3 based on their sequence similarity and phylogenetic clustering with Crassostrea gigas, CgiTLR2 and CgiTLR3, respectively. Quantitative RT-PCR analysis demonstrated that McTLR2 and McTLR3 were constitutively expressed in many tissues but at low abundance.


Subject(s)
Hemocytes/immunology , Immunity, Innate/genetics , Mytilus/genetics , Mytilus/immunology , Toll-Like Receptors/genetics , Toll-Like Receptors/immunology , Amino Acid Sequence , Animals , Gene Expression Profiling , Hemocytes/metabolism , Phylogeny , Sequence Alignment , Toll-Like Receptors/chemistry
15.
Guang Pu Xue Yu Guang Pu Fen Xi ; 37(3): 679-84, 2017 Mar.
Article in Zh, English | MEDLINE | ID: mdl-30148339

ABSTRACT

Halon-1301 (CF3Br) can make Br radicals with UV radiation, which poses a great threat to the ozone layer in the atmosphere. Necessary methods should be taken for the degradation of the exhausts of Halon-1301. In this paper, density functional (DFT) theory at B3LYP/6-311G++(d,p) level are employed for the study of dissociation properties and spectra of Halon-1301 in external electric field, including bond length, total energy, HOMO-LUMO energy gap, infrared spectra and dissociation potential energy surface (PES). The obtained results show that, with gradually increasing the external field from 0 to 0.03 a.u. along the molecular axis Z (C­Br bond direction), the total energy decreases, while the dipole moment decreases at the beginning and then increases. With the climbing of the field, HOMO-LUMO energy gap increases, and C­Br bond length increases while C­F bond length decreases. The variations of vibrational frequency and intensity of molecular IR spectra in external electric field are also investigated. Further studies show that with increasing the external electric field from 0 to 0.03 a.u., the dissociation PES along C­Br bond becomes unbound with disappearing of the barrier for the dissociation. The external electric field of 0.03 a.u. is sufficient to induce the degradation of CF3Br with C­Br bond breaking. Such results provide an important reference for the degradation of Halons via the external electric field.


Subject(s)
Bromochlorofluorocarbons/chemistry , Electricity , Models, Molecular , Molecular Conformation , Quantum Theory , Spectrophotometry, Ultraviolet , Spectroscopy, Fourier Transform Infrared , Spectrum Analysis, Raman , Thermodynamics , Vibration
16.
Opt Lett ; 41(10): 2274-7, 2016 May 15.
Article in English | MEDLINE | ID: mdl-27176981

ABSTRACT

One method for enhancement and manipulation of light absorption with monolayer graphene covered on a single-layer guided mode resonant Brewster filter surface is demonstrated. By means of the rigorous coupled-wave analysis method, the effect of geometrical parameters on the optical response of the structure is investigated. It is possible to achieve a maximum absorption of 60% at the Brewster angle; dual-band optical absorption can also be realized when the depth of the grating is increased. The situation of oblique incidence for TM polarization is studied as well; the absorption property can be controlled by adjusting the incident angle without changing the structural parameters. The proposed structure has the advantage of more free geometry parameters compared to the graphene disk and ribbon, so the absorption could be tuned more flexibly.

17.
J Chem Phys ; 144(8): 084201, 2016 Feb 28.
Article in English | MEDLINE | ID: mdl-26931694

ABSTRACT

A complementary measurement method based on a home-built double-sided velocity map imaging setup is introduced. This method can simultaneously obtain time-resolved photoelectron imaging and fragment ion imaging. It has been successfully applied to investigate the ultrafast dynamics of the second singlet electronically excited state (S2) in m-xylene. Time-resolved photoelectron and ion signals derived from the initial populated S2 state are tracked following two-photon absorption of a pump pulse. Time-of-flight mass spectra (TOFMS) show that there are dominant parent ions and one fragment ions with methyl loss during such a process. According to the measured photoelectron images and fragment ions images, transient kinetic energy distributions and angular distributions of the generated photoelectrons and fragments are obtained and analyzed. Compared to stand-alone photoelectron imaging, the obtained fragment ion imaging is powerful for further understanding the mechanisms especially when the dissociation occurs during the pump-probe ionization. Two competing channels intersystem crossing T3←S2 and internal conversion S1←S2 are attributed to the deactivation of the S2 state. A lifetime of ∼50 fs for the initially excited S2 state, of ∼276 fs for the secondary populated S1 state, and of 5.76 ps for the T3 state is inferred.

18.
Spectrochim Acta A Mol Biomol Spectrosc ; 318: 124526, 2024 Oct 05.
Article in English | MEDLINE | ID: mdl-38810434

ABSTRACT

Petroleum hydrocarbon (PHC) contamination in soils is considered one of the most serious problems currently, of which the detection and identification is a fairly significant but challenging work. Conventional methods to do such work usually need complex sample pretreatment, consume much time and fail to do the in-situ detection. This paper set out to create a novel systematic methodology to realize the goals accurately and efficiently. Based on laser-induced breakdown spectroscopy (LIBS) and self-improved machine learning methods, the innovative methodology only uses extremely simple devices to do the real-time in situ detection and identification work and even realize the quantitative analysis of pollution level accurately. In the study, clean soils mixed with petroleum were served as polluted samples, clean soils to be the blank group for comparison. Based on the elemental information from the spectra obtained by LIBS, machine learning methods were improved and helped optimized the algorithm to identify the PHC polluted soil samples for the first time. Furthermore, a novel model was designed to perform the quantitative analysis of the concentration of PHC pollution in soils, which can be applied to detect the degree of PHC contamination in soils accurately. Finally, the harmful volatile component of the PHC polluted soils was also successfully and identified despite its extremely minimal content in the air. The newly-designed methodology is novel and efficient, which has extensive application prospect in the real-time in situ detection of petroleum hydrocarbon pollution.

19.
China CDC Wkly ; 6(18): 385-389, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38737481

ABSTRACT

What is already known on this topic?: Foodborne diseases present a substantial global health risk. Traditional diagnostic methods have constraints, but advancements in molecular techniques, like quantitative polymerase chain reaction (qPCR), provide a hopeful solution. What is added by this report?: We examined 1,011 stool samples from individuals suspected of foodborne illnesses. Our analysis indicated a significant presence of Clostridium perfringens, Salmonella enterica, enterotoxigenic Escherichia coli (ETEC), and adenovirus. Notably, co-infections were identified in 71.22% of the samples. What are the implications for public health practice?: The data emphasize a notable prevalence of co-infections, highlighting the complexity of foodborne illnesses. This study underscores the significance of utilizing contemporary diagnostic methods in densely populated urban areas such as Beijing Municipality.

20.
Magn Reson Imaging ; 114: 110234, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-39288886

ABSTRACT

PURPOSE: This study aimed to assess changes in white matter microstructure among patients undergoing obstructive sleep apnea hypopnea syndrome (OSAHS) complicated by cognitive impairment through neurite orientation dispersion and density imaging (NODDI), and evaluate the relationship to cognitive impairment as well as the diagnostic performance in early intervention. METHODS: Totally 23 OSAHS patients, 43 OSAHS patients complicated by cognitive impairment, and 15 healthy controls were enrolled in OSA, OSACI and HC groups of this work. NODDI toolbox and FMRIB's Software Library (FSL) were used to calculate neurite density index (NDI), Fractional anisotropy (FA), volume fraction of isotropic water molecules (Viso), and orientation dispersion index (ODI). Tract-based spatial statistics (TBSS) were carried out to examine the above metrics with one-way ANOVA. This study explored the correlations of the above metrics with mini-mental state examination (MMSE), and montreal cognitive assessment (MoCA) scores. Furthermore, receiver operating characteristic (ROC) curves were plotted. Meanwhile, area under curve (AUC) values were calculated to evaluate the diagnostic performance of the above metrics. RESULTS: NDI, ODI, Viso, and FA were significantly different among different brain white matter regions, among which, difference in NDI showed the greatest statistical significance. In comparison with HC group, OSA group had reduced NDI and ODI, whereas elevated Viso levels. Conversely, compared to the OSA group, the OSACI group displayed a slight increase in NDI and ODI values, which remained lower than HC group, viso values continued to rise. Post-hoc analysis highlighted significant differences in these metrics, except for FA, which showed no notable changes or correlations with neuropsychological tests. ROC analysis confirmed the diagnostic efficacy of NDI, ODI, and Viso with AUCs of 0.6908, 0.6626, and 0.6363, respectively, whereas FA's AUC of 0.5042, indicating insufficient diagnostic efficacy. CONCLUSIONS: This study confirmed that NODDI effectively reveals microstructural changes in white matter of OSAHS patients with cognitive impairment, providing neuroimaging evidence for early clinical diagnosis and intervention.

SELECTION OF CITATIONS
SEARCH DETAIL