Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 489
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Plant J ; 119(1): 100-114, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38600835

ABSTRACT

As global climate change persists, ongoing warming exposes plants, including kiwifruit, to repeated cycles of drought stress and rewatering, necessitating the identification of drought-resistant genotypes for breeding purposes. To better understand the physiological mechanisms underlying drought resistance and recovery in kiwifruit, moderate (40-45% field capacity) and severe (25-30% field capacity) drought stresses were applied, followed by rewatering (80-85% field capacity) to eight kiwifruit rootstocks in this study. We then conducted a multivariate analysis of 20 indices for the assessment of drought resistance and recovery capabilities. Additionally, we identified four principal components, each playing a vital role in coping with diverse water conditions. Three optimal indicator groups were pinpointed, enhancing precision in kiwifruit drought resistance and recovery assessment and simplifying the evaluation system. Finally, MX-1 and HW were identified as representative rootstocks for future research on kiwifruit's responses to moderate and severe drought stresses. This study not only enhances our understanding of the response mechanisms of kiwifruit rootstocks to progressive drought stress and recovery but also provides theoretical guidance for reliable screening of drought-adaptive kiwifruit genotypes.


Subject(s)
Actinidia , Droughts , Genotype , Actinidia/genetics , Actinidia/physiology , Multivariate Analysis , Stress, Physiological/genetics , Plant Roots/physiology , Plant Roots/genetics , Water/metabolism , Fruit/genetics , Fruit/physiology , Drought Resistance
2.
Inorg Chem ; 63(15): 6714-6722, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38557020

ABSTRACT

Converting CO2 into valuable chemicals via sustainable energy sources is indispensable for human development. Photothermal catalysis combines the high selectivity of photocatalysis and the high yield of thermal catalysis, which is promising for CO2 reduction. However, the present photothermal catalysts suffer from low activity due to their poor light absorption ability and fast recombination of photogenerated electrons and holes. Here, a TiO2@Bi2WO6 heterojunction photocatalyst featuring a hierarchical hollow structure was prepared by an in situ growth method. The visible light absorption and photothermal effect of the TiO2@Bi2WO6 photocatalyst is promoted by a hierarchical hollow structure, while the recombination phenomenon is significantly mitigated due to the construction of the heterojunction interface and the existence of excited Bi(3-x)+ sites. Such a catalyst exhibits excellent photothermal performance with a CO yield of 43.7 µmol h-1 g-1, which is 15 and 4.7 times higher than that of pure Bi2WO6 and that of physically mixed TiO2/Bi2WO6, respectively. An in situ study shows that the pathway for the transformation of CO2 into CO over our TiO2@Bi2WO6 proceeds via two important intermediates, including COO- and COOH-. Our work provides a new idea of excited states for the design and synthesis of highly efficient photothermal catalysts for CO2 conversion.

3.
Macromol Rapid Commun ; 45(3): e2300526, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37877649

ABSTRACT

Nature with its abundant source offers numerous inspirations for structural and engineering designs. The oriented membranes stacked with bouligand structures in the fish scales show an outstanding combination of high strength and crack resistance. Although the applications of hard biomimetic composites are reported, the structures are rarely utilized in soft materials. Inspired by the scales of various fishes, electrospun membranes are used and stacked to fabricate bouligand elastomers, including orthogonal-plywood, single-bouligand, and double-bouligand structures. The effects of different structures on the properties of elastomers are systematically investigated and possible mechanism is explained using finite element analysis (FEA). The stiffness and fatigue characteristics of these biomimetic elastomers with the above structures are improved compared with the original membranes, especially the elastomers with a single-bouligand structure, which can undergo 5 000 cycles at a maximum strain of 35% without complete failure. The crack only propagates to half of the width of the elastomer with remaining strength of 50% of its original strength. Moreover, the mechanical performance can be adjusted by regulating the proportion of the components. The excellent crack-resistant properties and transparency promote its various potential applications.


Subject(s)
Elastomers , Fishes , Animals , Elastomers/chemistry
4.
J Oral Rehabil ; 51(5): 795-804, 2024 May.
Article in English | MEDLINE | ID: mdl-38131438

ABSTRACT

BACKGROUND: Unbalanced alterations of temporomandibular joint morphology were associated with unilaterally masticatory habits. OBJECTIVE: This study aimed to investigate the effect of unilateral mastication on the remodelling of the temporomandibular joint using dynamic joint space. METHODS: Twelve volunteers with non-maxillofacial deformity and healthy temporomandibular joints were recruited. The 3D models of the mandible and the maxilla were reconstructed according to computed tomography. The subjects were asked to masticate French fries and peanuts unilaterally, which was recorded by a 3D motion capture system. The dynamic joint space during unilateral mastication was analysed. RESULTS: During early closure, the joint space reduction on the non-masticatory side was significantly greater than on the masticatory side (p < .05). During later closure, the joint space reduction on the non-masticatory side was significantly lower than that on the masticatory side (p < .05). The difference in joint space reduction between both sides was greater than the French fries while masticating the peanuts. CONCLUSIONS: Unilateral mastication resulted in a different major pressure area on the bilateral TMJs. Therefore, unilateral mastication might be an essential factor in the bilateral asymmetrical remodelling of the TMJ.


Subject(s)
Mastication , Temporomandibular Joint Disorders , Humans , Temporomandibular Joint/diagnostic imaging , Mandible , Maxilla
5.
Mol Cancer ; 22(1): 72, 2023 04 22.
Article in English | MEDLINE | ID: mdl-37087475

ABSTRACT

BACKGROUND: Hypoxia is a hallmark of solid tumors and leads to the metabolic reprogramming of cancer cells. The role of epigenetic regulation between hypoxia and aberrant cholesterol metabolism in colorectal cancer (CRC) remains elusive. METHODS: Hypoxia-responsive circular RNAs (circRNAs) were identified by high throughput RNA sequencing between CRC cells cultured under normoxia or hypoxia. The protein-coding potential of circINSIG1 was identified by polysome profiling and LC-MS. The function of circINSIG1 was validated in vitro and in vivo by gain or loss of function assays. Mechanistic results were concluded by immunoprecipitation analyses. RESULTS: A novel hypoxia-responsive circRNA named circINSIG1 was identified, which was upregulated in CRC tissues and correlated with advanced clinical stages and poor survival. Mechanistically, circINSIG1 encoded a 121 amino acid protein circINSIG1-121 to promote K48-linked ubiquitination of the critical cholesterol metabolism regulator INSIG1 at lysine 156 and 158 by recruiting CUL5-ASB6 complex, a ubiquitin E3 ligase complex, thereby inducing cholesterol biosynthesis to promote CRC proliferation and metastasis. The orthotopic xenograft tumor models and patient-derived xenograft models further identified the role of circINSIG1 in CRC progression and potential therapeutic target of CRC. CONCLUSIONS: circINSIG1 presents an epigenetic mechanism which provides insights into the crosstalk between hypoxia and cholesterol metabolism, and provides a promising therapeutic target for the treatment of CRC.


Subject(s)
Cholesterol , Colorectal Neoplasms , RNA, Circular , Humans , Cell Proliferation , Cholesterol/metabolism , Colorectal Neoplasms/genetics , Colorectal Neoplasms/metabolism , Cullin Proteins/genetics , Epigenesis, Genetic , Gene Expression Regulation, Neoplastic , Hypoxia/genetics , Intracellular Signaling Peptides and Proteins/genetics , Intracellular Signaling Peptides and Proteins/metabolism , Membrane Proteins/genetics , Membrane Proteins/metabolism , RNA, Circular/genetics , RNA, Circular/metabolism , Ubiquitin/metabolism
6.
Plant Cell Physiol ; 2023 Nov 20.
Article in English | MEDLINE | ID: mdl-37982755

ABSTRACT

Improving soybean (Glycine max) seed composition by increasing the protein and oil components will add significant value to the crop and enhance environmental sustainability. Diacylglycerol acyltransferase (DGAT) catalyzes the final rate-limiting step in triacylglycerol (TAG) biosynthesis and has a major impact on seed oil accumulation. We previously identified a soybean DGAT1b variant with 14 amino acid substitutions (GmDGAT1b-MOD) that increases total oil content by 3 percentage points when overexpressed in soybean seeds. In the present study, additional GmDGAT1b variants were generated to further increase oil with a reduced number of substitutions. Variants with one to four amino acid substitutions were screened in the model systems S. cerevisiae and transient N. benthamiana leaf. Promising GmDGAT1b variants resulting in high oil accumulation in the model systems were selected for over-expression in soybeans. One GmDGAT1b variant with three novel amino acid substitutions (GmDGAT1b-3aa) increased total soybean oil to levels near the previously discovered GmDGAT1b-MOD variant. In a multiple location field trial, GmDGAT1b-3aa transgenic events had significantly increased oil and protein by up to 2.3 and 0.6 percentage points, respectively. Modeling of the GmDGAT1b-3aa protein structure provided insights into the potential function of the three substitutions. These findings will guide efforts to improve soybean oil content and overall seed composition by CRISPR editing.

7.
Small ; 19(33): e2301279, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37086130

ABSTRACT

The combination of hetero-elemental doping and vacancy engineering will be developed as one of the most efficient strategies to design excellent electrocatalysts for hydrogen evolution reaction (HER). Herein, a novel strategy for N-doping coupled with Co-vacancies is demonstrated to precisely activate inert S atoms adjacent to Co-vacancies and significantly improve charge transfer for CoS toward accelerating HER. In this strategy, N-doping favors the presence of Co-vacancies, due to greatly decreasing their formation energy. The as-developed strategy realizes the upshift of S 3p orbitals followed by more overlapping between S 3py and H 1s orbitals, which results in the favorable hydrogen atom adsorption free energy change (ΔGH ) to activate inert S atoms as newborn catalytical sites. Besides, this strategy synergistically decreases the bandgap of CoS, thereby achieving satisfactory electrical conductivity and low charge-transfer resistance for the as-obtained electrocatalysts. With an excellent HER activity of -89.0 mV at 10.0 mA cm-2 in alkaline environments, this work provides a new approach to unlocking inert sites and significantly improving charge transfer toward cobalt-based materials for highly efficient HER.

8.
Plant Physiol ; 189(2): 585-594, 2022 06 01.
Article in English | MEDLINE | ID: mdl-35191500

ABSTRACT

Gene targeting (GT) for precise gene insertion or swap into pre-defined genomic location has been a bottleneck for expedited soybean precision breeding. We report a robust selectable marker-free GT system in soybean, one of the most economically important crops. An efficient Oh H1-8 (Ochrobactrum haywardense H1-8)-mediated embryonic axis transformation method was used for the delivery of CRISPR-Cas9 components and donor template to regenerate T0 plants 6-8 weeks after transformation. This approach generated up to 3.4% targeted insertion of the donor sequence into the target locus in T0 plants, with ∼ 90% mutation rate observed at the genomic target site. The GT was demonstrated in two genomic sites using two different donor DNA templates without the need for a selectable marker within the template. High-resolution Southern-by-Sequencing analysis identified T1 plants with precise targeted insertion and without unintended plasmid DNA. Unlike previous low-frequency GT reports in soybean that involved particle bombardment-mediated delivery and extensive selection, the method described here is fast, efficient, reproducible, does not require a selectable marker within the donor DNA, and generates nonchimeric plants with heritable GT.


Subject(s)
Glycine max , Ochrobactrum , CRISPR-Cas Systems/genetics , Gene Editing/methods , Gene Targeting/methods , Ochrobactrum/genetics , Plant Breeding , Plants, Genetically Modified/genetics , Glycine max/genetics
9.
Neurochem Res ; 48(5): 1395-1411, 2023 May.
Article in English | MEDLINE | ID: mdl-36469163

ABSTRACT

We previously showed that kaempferol (KAE) could exert neuroprotective effects against PD. It has been demonstrated that abnormal autophagy plays a key role in the development of PD. Mitochondrial dysfunction, involved in the development of PD, can damage dopaminergic neurons. Whether the protective effects of KAE were exerted via regulating autophagy remains largely undefined, however. This study aimed to investigate whether KAE could protect dopaminergic neurons via autophagy and the underlying mechanisms using a MPTP/MPP+-stimulated PD model. Cell viability was detected by cell counting kit-8 (CCK-8) assay, and protein levels of autophagy mediators along with mTOR signaling pathway molecules were investigated by immunohistochemistry and Western blot analyses. The results showed that KAE could ameliorate the behavioral impairments of mice, reduce the loss of tyrosine hydroxylase (TH)-positive neurons in the substantia nigra pars compacta, and reduce α-synuclein (α-syn) levels. Furthermore, KAE upregulated levels of autophagy effector protein of Beclin-1 and autophagy microtubule associated protein of light chain 3 (LC3) in the substantia nigra (SN) while rescuing mitochondrial integrity, and downregulated levels of ubiquitin binding protein p62 and cleaved caspase-3, probably by decreasing the mammalian target of rapamycin (mTOR) signaling pathway. Further in vitro experiments demonstrated similar results. In conclusion, KAE exerts neuroprotective effects against PD potentially by promoting autophagy via inhibiting the mTOR signaling pathway.


Subject(s)
Neuroprotective Agents , Parkinson Disease , Mice , Animals , Parkinson Disease/drug therapy , Parkinson Disease/metabolism , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Neuroprotective Agents/metabolism , Dopaminergic Neurons , TOR Serine-Threonine Kinases/metabolism , Autophagy , Mice, Inbred C57BL , Mammals/metabolism
10.
Langmuir ; 39(1): 236-248, 2023 Jan 10.
Article in English | MEDLINE | ID: mdl-36525334

ABSTRACT

Besides improving charge transfer, there are two key factors, such as increasing active sites and promoting water dissociation, to be deeply investigated to realize high-performance MoS2-based electrocatalysts in alkaline hydrogen evolution reaction (HER). Herein, we have demonstrated the synergistic engineering to realize rich unsaturated sulfur atoms and activated O-H bonds toward the water for Ni-doped MoS2/CoS2 hierarchical structures by an approach to Ni doping coupled with in situ sulfurizing for excellent alkaline HER. In this work, the Ni-doped atoms are evolved into Ni(OH)2 during alkaline HER. Interestingly, the extra unsaturated sulfur atoms will be modulated into MoS2 nanosheets by breaking Ni-S bonds during the formation of Ni(OH)2. On the other hand, the higher the mass of the Ni precursor (mNi) for the fabrication of our samples, the more Ni(OH)2 is evolved, indicating a stronger ability for water dissociation of our samples during alkaline HER. Our results further reveal that regulating mNi is crucial to the HER activity of the as-synthesized samples. By regulating mNi to 0.300 g, a balance between increasing active sites and promoting water dissociation is achieved for the Ni-doped MoS2/CoS2 samples to boost alkaline HER. Consequently, the optimal samples present the highest HER activity among all counterparts, accompanied by reliable long-term stability. This work will promise important applications in the field of electrocatalytic hydrogen evolution in alkaline environments.

11.
Dig Dis ; 41(3): 447-457, 2023.
Article in English | MEDLINE | ID: mdl-36366818

ABSTRACT

BACKGROUND: Hepatocellular carcinoma (HCC) is a leading cancer worldwide. miRNA has been linked to cancer processes. We want to figure out what the underlying mechanism and functions of miR-3682-3p are in HCC. METHODS: Thirty pairs of tumor tissues and adjacent tissues were obtained from HCC patients. mRNA and protein expressions were detected by quantitative real-time PCR and Western blot, respectively. The migration and invasion were measured using transwell or wound-healing assays. Dual luciferase and ChIP assays were utilized to detect gene interactions. RESULTS: miR-3682-3p was highly expressed in HCC tissues and cell lines. Silencing of miR-3682-3p inhibited cell migration and invasion, increased E-cadherin expression, and decreased N-cadherin, vimentin, and snail expressions, as well as the SOX2, OCT4, and Bmi1 expression, thereby restraining EMT and stemness of HCC in vitro. miR-3682-3p was positively activated by c-Myc and could directly target PTEN to activate PI3K/AKT/ß-catenin pathway. In addition, inhibition of PTEN weakened the anti-migration and anti-stemness effects of miR-3682-3p downregulation in HCC cells. CONCLUSION: miR-3682-3p promoted HCC migration and stemness through PTEN/PI3K/AKT/ß-catenin signaling, implying that miR-3682-3p might be a promising target for HCC clinical treatment.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , MicroRNAs , Humans , Carcinoma, Hepatocellular/pathology , Proto-Oncogene Proteins c-akt/genetics , Proto-Oncogene Proteins c-akt/metabolism , Phosphatidylinositol 3-Kinases/genetics , Phosphatidylinositol 3-Kinases/metabolism , Liver Neoplasms/pathology , beta Catenin/genetics , beta Catenin/metabolism , Cell Line, Tumor , MicroRNAs/genetics , MicroRNAs/metabolism , Cell Movement/genetics , Gene Expression Regulation, Neoplastic , PTEN Phosphohydrolase/genetics , PTEN Phosphohydrolase/metabolism
12.
Appl Microbiol Biotechnol ; 107(23): 7031-7042, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37728626

ABSTRACT

Escherichia coli, a well-known prokaryotic organism, has been widely employed as a versatile host for heterologous overexpression of proteins/biocatalysts and the production of pharmaceutically important intermediates/small molecules. However, some E. coli endogenous enzymes showing substrate promiscuity may disturb the heterologous metabolic flux, which will result in the reduction of substrates, intermediates, and target products. Here we reported an unexpected E. coli-catalyzed regioselective O-acetylation of various glucosides. The regioselectively O-acetylated products, 6'-O-acetyl-loganin and 6'-O-acetyl-loganic acid, were obtained and characterized from the enzymatic reaction in which the supernatants of E. coli expressing either CaCYP72A565 and CaCPR, the key enzymes involved in camptothecin biosynthesis, or empty vector were used as catalyst and loganin and loganic acid as independent substrate. An alkaloidal glucoside strictosamide was converted into the regioselectively O-acetylated product 6'-O-acetyl-strictosamide, implying substrate promiscuity of the E. coli-catalyzed O-acetylation reaction. Furthermore, 8 glucosides, including 5 iridoid glucosides and 3 flavonoid glucosides, were successfully converted into the regioselectively O-acetylated products by E. coli, indicating the wide substrate range for the unexpected E. coli-catalyzed O-acetylation. E. coli maltose O-acetyltransferase was demonstrated to be responsible for the mentioned regioselective O-acetylation at the 6-OH of the glucopyranosyl group of multiple classes of natural product glucosides through candidate acetyltransferase-encoding gene analysis, gene knock-out, gene complementation, and the relevant enzymatic reaction activity assays. The present study not only provides an efficient biocatalyst for regioselective O-acetylation but also notifies cautions for metabolic engineering and synthetic biology applications in E. coli. KEY POINTS: • 6-OH of glucosyl of multiple glucosides was regioselectively O-acetylated by E. coli. • Endogenous EcMAT is responsible for the regioselective O-acetylation reaction.


Subject(s)
Escherichia coli , Glucosides , Escherichia coli/metabolism , Glucosides/metabolism , Maltose/metabolism , Acetylation , Acetyltransferases/genetics , Catalysis
13.
J Integr Neurosci ; 22(2): 48, 2023 Mar 06.
Article in English | MEDLINE | ID: mdl-36992603

ABSTRACT

BACKGROUND: Neuroinflammation triggered by chronic cerebral ischemia-induced microglial pyroptosis is a significant contributor to vascular cognitive impairment. It has been shown that emodin possesses anti-inflammatory and neuroprotective properties, however, it's potential molecular and signaling transduction pathway remains to be illuminated. This study researched the neuroprotective mechanisms of emodin focussing on emodin effects on lipopolysaccharide/adenosine triphosphate (LPS/ATP)-caused pyroptosis in BV2 cells and HT-22 hippocampal neurons. METHODS: To explore the neuroprotective effect of emodin, Emodin was applied to BV2 cells, HT-22 hippocampal neurons, and BV2/HT-22 co-cultures stimulated with LPS/ATP to evaluate the cell morphology, levels of inflammatory factors, NLRP3 inflammatory inflammasome activity and focal pyroptosis-related protein expression, as same as neuronal apoptosis. RESULTS: Emodin alleviated LPS/ATP-induced pyroptosis of BV2 cells by preventing the activity of the NLRP3 inflammasome and the cleavage of pyroptosis executive protein Gasdermin D (GSDMD). Furthermore, levels of interleukin (IL)-18, IL-1ß and tumor necrosis factor (TNF)-α were reduced, the apoptosis of HT-22 hippocampal neurons was attenuated, and cell viability was restored. CONCLUSIONS: Emodin can antagonize microglial neurotoxicity by inhibiting microglial pyroptosis, thereby exerting anti-inflammatory and neuroprotective effects.


Subject(s)
Emodin , Neuroprotective Agents , Adenosine Triphosphate/metabolism , Anti-Inflammatory Agents/pharmacology , Emodin/pharmacology , Inflammasomes/metabolism , Lipopolysaccharides , Microglia , Neuroprotection , Neuroprotective Agents/pharmacology , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Pyroptosis , Cell Line , Animals , Mice
14.
Perfusion ; : 2676591231222365, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-38100386

ABSTRACT

OBJECTIVE: The incidence of out-of-hospital cardiac arrest (OHCA) is high. Though extracorporeal cardiopulmonary resuscitation (ECPR) has been considered a potential treatment for refractory cardiac arrest after failure of conventional cardiopulmonary resuscitation (CCPR), the benefit of ECPR in refractory OHCA remains uncertain. METHODS: In this retrospective cohort study, we included patients with refractory OHCA who visited the Emergency Department of the Aerospace Center Hospital between January 2018 and April 2023. We divided the patients into the ECPR Group and the CCPR Group. The primary endpoint of the study was the neurological function of the patients in both groups 3 months after the cardiac arrest. We used propensity score matching to reduce selection bias and identified factors associated with good neurological function when OHCA was treated with ECPR by performing univariate and multivariate correlation analyses on surviving patients with good neurological function in the ECPR group. RESULTS: During the study period, we enrolled 133 patients, consisting of 33 in the ECPR group and 100 in the CCPR group. The survival rate of patients with good neurological function at discharge was 18.2% (6/33 cases) in the ECPR group and 9% (9/100 cases) in the CCPR group, p = .20. Three months after discharge, the survival rate of patients with good neurological function was 15.2% (5/33 cases) in the ECPR group and 8% (8/100 cases) in the CCPR group, p = .31. Using propensity score matching, we identified 22 pairs of patients for further analysis. Among these, 3 months after discharge, the survival rate of patients with good neurological function was 13.6% (3/22 cases) in the ECPR group and 4.5% (1/22 cases) in the CCPR group, p = .61, and the survival rate at discharge was 18.2% (4/22 cases) in the ECPR group and 4.5% (1/22 cases) in the CCPR group, p = .34. The univariate analysis of patients with good neurological function in the ECPR group showed that time without perfusion, hypoperfusion time, and PCI treatment were associated factors affecting the prognosis of neurological function in patients, while multivariate analysis showed that hypoperfusion time was independently associated with good neurological function, with an OR (95% CI) of 1.06 (1.00-1.14) and p = .05. CONCLUSION: Our findings suggested that ECPR failed to significantly improve neurological outcome in patients with refractory OHCA; however, the small sample size in this study may be insufficient to detect clinically relevant differences. In addition, hypoperfusion time may be a key predictive factor in identifying candidates for ECPR.

15.
Sensors (Basel) ; 23(20)2023 Oct 20.
Article in English | MEDLINE | ID: mdl-37896694

ABSTRACT

In the context of the relentless evolution of network and communication technologies, the need for enhanced communication content and quality continues to escalate. Addressing the demands of data collection from the abundance of terminals within Internet of Things (IoT) scenarios, this paper presents an advanced approach to multi-Unmanned Aerial Vehicle (UAV) data collection and path planning tailored for extensive terminal accessibility. This paper focuses on optimizing the complex interplay between task completion time and task volume equilibrium. To this end, a novel strategy is devised that integrates sensor area partitioning and flight trajectory planning for multiple UAVs, forming an optimization framework geared towards minimizing task completion duration. The core idea of this work involves designing an innovative k-means algorithm capable of balancing data quantities within each cluster, thereby achieving balanced sensor node partitioning based on data volume. Then, the UAV flight trajectory paths are discretely modeled, and a grouped, improved genetic algorithm is used to solve the Multiple Traveling Salesman Problem (MTSP). The algorithm introduces a 2-opt optimization operator to improve the computational efficiency of the genetic algorithm. Empirical validation through comprehensive simulations clearly underscores the efficacy of the proposed approach. In particular, the method demonstrates a remarkable capacity to rectify the historical issue of diverse task volumes among multiple UAVs, all the while significantly reducing task completion times. Moreover, its convergence rate substantially outperforms that of the conventional genetic algorithm, attesting to its computational efficiency. This paper contributes an innovative and efficient paradigm to improve the problem of data collection from IoT terminals through the use of multiple UAVs. As a result, it not only augments the efficiency and balance of task distribution but also showcases the potential of tailored algorithm solutions for realizing optimal outcomes in complex engineering scenarios.

16.
Int J Mol Sci ; 24(22)2023 Nov 19.
Article in English | MEDLINE | ID: mdl-38003694

ABSTRACT

Epithelial ovarian cancer (EOC) is a lethal gynecological cancer, of which paclitaxel resistance is the major factor limiting treatment outcomes, and identification of paclitaxel resistance-related genes is arduous. We obtained transcriptomic data from seven paclitaxel-resistant ovarian cancer cell lines and corresponding sensitive cell lines. Define genes significantly up-regulated in at least three resistant cell lines, meanwhile they did not down-regulate in the other resistant cell lines as candidate genes. Candidate genes were then ranked according to the frequencies of significant up-regulation in resistant cell lines, defining genes with the highest rankings as paclitaxel resistance-related genes (PRGs). Patients were grouped based on the median expression of PRGs. The lipid metabolism-related gene set and the oncological gene set were established and took intersections with genes co-upregulated with PRGs, obtaining 229 co-upregulated genes associated with lipid metabolism and tumorigenesis. The PPI network obtained 19 highly confidential synergistic targets (interaction score > 0.7) that directly associated with CPT1A. Finally, FASN and SCD were up-stream substrate provider and competitor of CPT1A, respectively. Western blot and qRT-PCR results confirmed the over-expression of CPT1A, SCD and FASN in the A2780/PTX cell line. The inhibition of CPT1A, SCD and FASN down-regulated cell viability and migration, pharmacological blockade of CPT1A and SCD increased apoptosis rate and paclitaxel sensitivity of A2780/PTX. In summary, our novel bioinformatic methods can overcome difficulties in drug resistance evaluation, providing promising therapeutical strategies for paclitaxel-resistant EOC via taregting lipid metabolism-related enzymes.


Subject(s)
Ovarian Neoplasms , Paclitaxel , Humans , Female , Paclitaxel/pharmacology , Paclitaxel/therapeutic use , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/genetics , Ovarian Neoplasms/metabolism , Cell Line, Tumor , Lipid Metabolism/genetics , Drug Resistance, Neoplasm/genetics , Carcinoma, Ovarian Epithelial/drug therapy , Carcinoma, Ovarian Epithelial/genetics , Apoptosis/genetics , Fatty Acid Synthase, Type I/metabolism
17.
Blood ; 135(17): 1484-1496, 2020 04 23.
Article in English | MEDLINE | ID: mdl-32078672

ABSTRACT

Factor VIII (FVIII) replacement products enable comprehensive care in hemophilia A. Treatment goals in severe hemophilia A are expanding beyond low annualized bleed rates to include long-term outcomes associated with high sustained FVIII levels. Endogenous von Willebrand factor (VWF) stabilizes and protects FVIII from degradation and clearance, but it also subjects FVIII to a half-life ceiling of ∼15 to 19 hours. Increasing recombinant FVIII (rFVIII) half-life further is ultimately dependent upon uncoupling rFVIII from endogenous VWF. We have developed a new class of FVIII replacement, rFVIIIFc-VWF-XTEN (BIVV001), that is physically decoupled from endogenous VWF and has enhanced pharmacokinetic properties compared with all previous FVIII products. BIVV001 was bioengineered as a unique fusion protein consisting of a VWF-D'D3 domain fused to rFVIII via immunoglobulin-G1 Fc domains and 2 XTEN polypeptides (Amunix Pharmaceuticals, Inc, Mountain View, CA). Plasma FVIII half-life after BIVV001 administration in mice and monkeys was 25 to 31 hours and 33 to 34 hours, respectively, representing a three- to fourfold increase in FVIII half-life. Our results showed that multifaceted protein engineering, far beyond a few amino acid substitutions, could significantly improve rFVIII pharmacokinetic properties while maintaining hemostatic function. BIVV001 is the first rFVIII with the potential to significantly change the treatment paradigm for severe hemophilia A by providing optimal protection against all bleed types, with less frequent doses. The protein engineering methods described herein can also be applied to other complex proteins.


Subject(s)
Factor VIII/metabolism , Hemophilia A/therapy , Hemorrhage/prevention & control , Recombinant Fusion Proteins/administration & dosage , von Willebrand Factor/metabolism , Animals , Factor VIII/genetics , Hemophilia A/metabolism , Hemophilia A/pathology , Hemostasis , Humans , Male , Mice , Mice, Inbred C57BL , Primates , von Willebrand Factor/genetics
18.
J Exp Bot ; 73(22): 7285-7297, 2022 12 08.
Article in English | MEDLINE | ID: mdl-36112496

ABSTRACT

The majority of plant protein in the world's food supply is derived from soybean (Glycine max). Soybean is a key protein source for global animal feed and is incorporated into plant-based foods for people, including meat alternatives. Soybean protein content is genetically variable and is usually inversely related to seed oil content. ABI3-interacting protein 2 (AIP2) is an E3-RING ubiquitin ligase that targets the seed-specific transcription factor ABI3. Silencing both soybean AIP2 genes (AIP2a and AIP2b) by RNAi enhanced seed protein content by up to seven percentage points, with no significant decrease in seed oil content. The protein content enhancement did not alter the composition of the seed storage proteins. Inactivation of either AIP2a or AIP2b by a CRISPR-Cas9-mediated mutation increased seed protein content, and this effect was greater when both genes were inactivated. Transactivation assays in transfected soybean hypocotyl protoplasts indicated that ABI3 changes the expression of glycinin, conglycinin, 2S albumin, and oleosin genes, indicating that AIP2 depletion increased seed protein content by regulating activity of the ABI3 transcription factor protein. These results provide an example of a gene-editing prototype directed to improve global food security and protein availability in soybean that may also be applicable to other protein-source crops.


Subject(s)
CRISPR-Cas Systems , Soybean Proteins , Soybean Proteins/genetics , Seeds/genetics , Transcription Factors , Plant Oils , Ubiquitin , Ligases
19.
Cell Biol Int ; 46(8): 1204-1214, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35293663

ABSTRACT

Colon cancer is a gastrointestinal malignancy that is one of the leading causes of tumor-associated deaths. It has been reported that the mammalian target of rapamycin (mTOR) can lead to the progression of colon cancer. However, the mechanism by which mTOR inhibitor (OSI-027) mediates the tumorigenesis of colon cancer remains largely unknown. Cell function of colon cancer was investigated by cell counting kit-8 flow cytometry and terminal deoxynucleotidyl transferase dUTP nick end labeling staining. In addition, quantitative real-time polymerase chain reaction and Western blot were used to investigate the mechanism underlying the function of OSI-027 in colon cancer. OSI-027 dose-dependently reduced colon cancer cell viability by inducing cell apoptosis. In addition, OSI-027 induced the apoptosis of colon cancer cells via upregulation of PUMA. OSI-027 promoted the expression of PUMA by activation of forkhead box protein O3a (FOXO3a), and c-Myc knockdown partially increased FOXO3a and PUMA levels. Moreover, OSI-027 attenuated the tumor growth of colon cancer through the mediation of the mTOR/c-Myc/FOXO3a axis. OSI-027 attenuates colon cancer progression through the mediation of the c-Myc/FOXO3a/PUMA axis. Thereby, this study might shed new insights on exploring the strategies against colon cancer.


Subject(s)
Apoptosis Regulatory Proteins , Colonic Neoplasms , Apoptosis , Apoptosis Regulatory Proteins/metabolism , Carcinogenesis , Cell Line, Tumor , Cell Transformation, Neoplastic , Colonic Neoplasms/metabolism , Forkhead Box Protein O3/metabolism , Forkhead Transcription Factors/metabolism , Humans , Imidazoles , Proto-Oncogene Proteins/metabolism , Proto-Oncogene Proteins c-akt/metabolism , TOR Serine-Threonine Kinases , Triazines
20.
J Cardiovasc Magn Reson ; 24(1): 23, 2022 04 04.
Article in English | MEDLINE | ID: mdl-35369885

ABSTRACT

BACKGROUND: While multiple cardiovascular magnetic resonance (CMR) methods provide excellent reproducibility of global circumferential and global longitudinal strain, achieving highly reproducible segmental strain is more challenging. Previous single-center studies have demonstrated excellent reproducibility of displacement encoding with stimulated echoes (DENSE) segmental circumferential strain. The present study evaluated the reproducibility of DENSE for measurement of whole-slice or global circumferential (Ecc), longitudinal (Ell) and radial (Err) strain, torsion, and segmental Ecc at multiple centers. METHODS: Six centers participated and a total of 81 subjects were studied, including 60 healthy subjects and 21 patients with various types of heart disease. CMR utilized 3 T scanners, and cine DENSE images were acquired in three short-axis planes and in the four-chamber long-axis view. During one imaging session, each subject underwent two separate DENSE scans to assess inter-scan reproducibility. Each subject was taken out of the scanner and repositioned between the scans. Intra-user, inter-user-same-site, inter-user-different-site, and inter-user-Human-Deep-Learning (DL) comparisons assessed the reproducibility of different users analyzing the same data. Inter-scan comparisons assessed the reproducibility of DENSE from scan to scan. The reproducibility of whole-slice or global Ecc, Ell and Err, torsion, and segmental Ecc were quantified using Bland-Altman analysis, the coefficient of variation (CV), and the intraclass correlation coefficient (ICC). CV was considered excellent for CV ≤ 10%, good for 10% < CV ≤ 20%, fair for 20% < CV ≤ 40%, and poor for CV > 40. ICC values were considered excellent for ICC > 0.74, good for ICC 0.6 < ICC ≤ 0.74, fair for ICC 0.4 < ICC ≤ 0.59, poor for ICC < 0.4. RESULTS: Based on CV and ICC, segmental Ecc provided excellent intra-user, inter-user-same-site, inter-user-different-site, inter-user-Human-DL reproducibility and good-excellent inter-scan reproducibility. Whole-slice Ecc and global Ell provided excellent intra-user, inter-user-same-site, inter-user-different-site, inter-user-Human-DL and inter-scan reproducibility. The reproducibility of torsion was good-excellent for all comparisons. For whole-slice Err, CV was in the fair-good range, and ICC was in the good-excellent range. CONCLUSIONS: Multicenter data show that 3 T CMR DENSE provides highly reproducible whole-slice and segmental Ecc, global Ell, and torsion measurements in healthy subjects and heart disease patients.


Subject(s)
Heart Diseases , Magnetic Resonance Imaging, Cine , Healthy Volunteers , Heart Diseases/diagnostic imaging , Humans , Magnetic Resonance Imaging, Cine/methods , Magnetic Resonance Spectroscopy , Predictive Value of Tests , Reproducibility of Results
SELECTION OF CITATIONS
SEARCH DETAIL