Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 306
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Cancer Immunol Immunother ; 73(6): 99, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38619623

ABSTRACT

PURPOSE: Neoadjuvant PD-1 blockade combined with chemotherapy is a promising treatment for resectable non-small cell lung cancer (NSCLC), yet the immunological mechanisms contributing to tumor regression and biomarkers corresponding to different pathological responses remain unclear. METHODS: Using dynamic and paired blood samples from NSCLC patients receiving neoadjuvant chemoimmunotherapy, we analyzed the frequencies of CD8 + T-cell and Treg subsets and their dynamic changes during neoadjuvant treatment through flow cytometry. Cytokine profiles and function-related gene expression of CD8 + T cells and Tregs were analyzed through flow cytometry and mRNA-seq. Infiltrating T-cell subsets in resected tissues from patients with different pathological responses were analyzed through multiplex immunofluorescence. RESULTS: Forty-two NSCLC patients receiving neoadjuvant chemoimmunotherapy were enrolled and then underwent surgical resection and pathological evaluation. Nineteen patients had pCR (45%), 7 patients had MPR (17%), and 16 patients had non-MPR (38%). In patients with pCR, the frequencies of CD137 + CD8 + T cells (P = 0.0475), PD-1 + Ki-67 + CD8 + T cells (P = 0.0261) and Tregs (P = 0.0317) were significantly different from those of non-pCR patients before treatment. pCR patients usually had low frequencies of CD137 + CD8 + T cells, PD-1 + Ki-67 + CD8 + T cells and Tregs, and their AUCs were higher than that of tissue PD-L1 expression. Neoadjuvant chemoimmunotherapy markedly improved CD8 + T-cell proliferation and activation, especially in pCR patients, as the frequencies of CD137 + CD8 + (P = 0.0136) and Ki-67 + CD8 + (P = 0.0391) T cells were significantly increased. The blood levels of cytokines such as IL-2 (P = 0.0391) and CXCL10 (P = 0.0195) were also significantly increased in the pCR group, which is consistent with the high density of activated cytotoxic T cells at the tumor site (P < 0.0001). CONCLUSION: Neoadjuvant chemoimmunotherapy drives CD8 + T cells toward a proliferative and active profile. The frequencies of CD137 + CD8 + T cells, PD-1 + Ki-67 + CD8 + T cells and Tregs at baseline might predict the response to neoadjuvant chemoimmunotherapy in NSCLC patients. The increase in IL-2 and CXCL10 might reflect the chemotaxis and enrichment of cytotoxic T cells at the tumor site and a better response to neoadjuvant chemoimmunotherapy.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , Carcinoma, Non-Small-Cell Lung/drug therapy , Neoadjuvant Therapy , Cytokines , Interleukin-2 , Ki-67 Antigen , Programmed Cell Death 1 Receptor , Lung Neoplasms/drug therapy , T-Lymphocyte Subsets
2.
Mol Pharm ; 21(5): 2238-2249, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38622497

ABSTRACT

Tuberculosis (TB) is a chronic disease caused byMycobacterium tuberculosis (Mtb), which shows a long treatment cycle often leads to drug resistance, making treatment more difficult. Immunogens present in the pathogen's cell membrane can stimulate endogenous immune responses. Therefore, an effective lipid-based vaccine or drug delivery vehicle formulated from the pathogen's cell membrane can improve treatment outcomes. Herein, we extracted and characterized lipids fromMycobacterium smegmatis, and the extracts contained lipids belonging to numerous lipid classes and compounds typically found associated with mycobacteria. The extracted lipids were used to formulate biomimetic lipid reconstituted nanoparticles (LrNs) and LrNs-coated poly(lactic-co-glycolic acid) nanoparticles (PLGA-LrNs). Physiochemical characterization and results of morphology suggested that PLGA-LrNs exhibited enhanced stability compared with LrNs. And both of these two types of nanoparticles inhibited the growth of M. smegmatis. After loading different drugs, PLGA-LrNs containing berberine or coptisine strongly and synergistically prevented the growth of M. smegmatis. Altogether, the bacterial membrane lipids we extracted with antibacterial activity can be used as nanocarrier coating for synergistic antibacterial treatment of M. smegmatis─an alternative model of Mtb, which is expected as a novel therapeutic system for TB treatment.


Subject(s)
Mycobacterium smegmatis , Nanoparticles , Polylactic Acid-Polyglycolic Acid Copolymer , Polylactic Acid-Polyglycolic Acid Copolymer/chemistry , Nanoparticles/chemistry , Mycobacterium smegmatis/drug effects , Lipids/chemistry , Drug Synergism , Cell Membrane/drug effects , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Microbial Sensitivity Tests , Mycobacterium tuberculosis/drug effects , Antitubercular Agents/pharmacology , Antitubercular Agents/chemistry , Antitubercular Agents/administration & dosage , Mycobacterium/drug effects , Berberine/pharmacology , Berberine/chemistry , Drug Carriers/chemistry , Tuberculosis/drug therapy
3.
Entropy (Basel) ; 26(3)2024 Feb 22.
Article in English | MEDLINE | ID: mdl-38539698

ABSTRACT

Dissolved gas analysis (DGA) in transformer oil, which analyzes its gas content, is valuable for promptly detecting potential faults in oil-immersed transformers. Given the limitations of traditional transformer fault diagnostic methods, such as insufficient gas characteristic components and a high misjudgment rate for transformer faults, this study proposes a transformer fault diagnosis model based on multi-scale approximate entropy and optimized convolutional neural networks (CNNs). This study introduces an improved sparrow search algorithm (ISSA) for optimizing CNN parameters, establishing the ISSA-CNN transformer fault diagnosis model. The dissolved gas components in the transformer oil are analyzed, and the multi-scale approximate entropy of the gas content under different fault modes is calculated. The computed entropy values are then used as feature parameters for the ISSA-CNN model to derive diagnostic results. Experimental data analysis demonstrates that multi-scale approximate entropy effectively characterizes the dissolved gas components in the transformer oil, significantly improving the diagnostic efficiency. Comparative analysis with BPNN, ELM, and CNNs validates the effectiveness and superiority of the proposed ISSA-CNN diagnostic model across various evaluation metrics.

4.
Zhongguo Zhong Yao Za Zhi ; 49(4): 924-931, 2024 Feb.
Article in Zh | MEDLINE | ID: mdl-38621899

ABSTRACT

Odor is one of the important indicators evaluating the quality of traditional Chinese medicines. Research data has shown that there are increasing methods available for evaluating the odors of traditional Chinese medicines. Compared with conventional odor sensing techniques, electronic noses stand out for their convenience, high speed, and objectivity. The progress in the pharmaceutical technology of traditional Chinese medicines has provided new formulas and dosage forms for the innovative development in this field. The electronic nose with versatility can be customized to be equipped with a variety of cross-sensors, which can well satisfy the needs of the traditional Chinese medicine preparation technology. This study summarizes the characteristics, application status, and representative products of the current electronic nose, and analyzes the application and feasibility of electronic nose in the production of traditional Chinese medicine preparations based on the current status of odor evaluation. This review is expected to provide new methods, techno-logies, and ideas for electronic nose to play its unique role in the whole-process quality control and pharmaceutical process of traditional Chinese medicine preparations.


Subject(s)
Drugs, Chinese Herbal , Medicine, Chinese Traditional , Electronic Nose , Quality Control , Electronics
5.
J Med Virol ; 95(1): e28224, 2023 01.
Article in English | MEDLINE | ID: mdl-36238984

ABSTRACT

In March 2022, the Omicron variant of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) surged during the Coronavirus Disease 2019 (COVID-19) pandemic in Shanghai, but over 90% of patients were mild. This study included 1139 COVID-19 patients mildly infected with the Omicron variant of SARS-CoV-2 in Shanghai from May 1 to 10, 2022, aiming to clarify the demographic characteristics and clinical symptoms of patients with mild Omicron infection. The clinical phenotypes of Omicron infection were identified by model-based cluster analysis to explore the features of different clusters. The median age of the patients was 41.0 years [IQR: 31.0-52.0 years] and 73.0% were male. The top three clinical manifestations are cough (57.5%), expectoration (48.3%), and nasal congestion and runny nose (43.4%). The prevalence of nasal congestion and runny nose varied significantly across the doses of vaccinations, with 23.1% in the unvaccinated population and 30%, 45.9%, and 44.3% in the 1-dose, 2-dose and 3-dose vaccinated populations, respectively. In addition, there were significant differences for fever (23.1%, 26.0%, 28.6%, 18.4%), head and body heaviness (15.4%, 14.0%, 26.7%, 22.4%), and loss of appetite (25.6%, 30.0%, 33.6%, 27.7%). The unvaccinated population had a lower incidence of symptoms than the vaccinated population. Cluster analysis revealed that all four clusters had multisystemic symptoms and were dominated by both general and respiratory symptoms. The more severe the degree of the symptoms was, the higher the prevalence of multisystemic symptoms will be. The Omicron variant produced a lower incidence of symptoms in mildly infected patients than previous SARS-CoV-2 variants, but the clinical symptoms caused by the Omicron variant are more complex, so that it needs to be differentiated from influenza.


Subject(s)
COVID-19 , Male , Female , Humans , COVID-19/epidemiology , SARS-CoV-2 , China/epidemiology , Rhinorrhea
6.
Eur J Nucl Med Mol Imaging ; 50(3): 937-950, 2023 02.
Article in English | MEDLINE | ID: mdl-36346437

ABSTRACT

PURPOSE: This prospective study was aimed to investigate the potential utility of [18F]fibroblast activation protein inhibitor (FAPI) PET/CT for evaluating focal liver lesions (FLLs) with [18F]FDG non-avidity. METHODS: From January 2021 to March 2022, this prospective study included 80 FLLs that were not avid on [18F]FDG PET/CT from 37 patients, then underwent [18F]FAPI PET/CT. All patients with FLL(s) with biopsy-proof or follow-up confirmation were categorized into four subgroups (20 hepatocellular carcinomas [HCCs]/5 non-HCC malignancies/4 inflammatory FLLs/8 benign noninflammatory FLLs). The diagnostic value of [18F]FAPI for detecting liver malignancy was determined by visual evaluation. Differences in the maximum standardized uptake value (SUVmax) and lesion-to-background ratio (LBR) obtained from [18F]FAPI PET/CT among the four subgroups were analyzed by semiquantitative analysis. RESULTS: Among the thirty-seven enrolled participants (34 males; median age 57 years, range 48-67 years), on visual evaluation, the sensitivity, specificity, and accuracy of [18F]FAPI PET for detecting liver malignancy in the patient-based analysis were 96.0% (24/25), 58.3% (7/12), and 83.8% (31/37), respectively. On semiquantitative analysis, the SUVmax and LBR of [18F]FAPI PET in liver malignancy (33 HCC lesions; 19 non-HCC malignant lesions) were significantly higher than those in 11 benign noninflammatory FLLs [HCC: SUVmax: 6.4 vs. 4.5, P = 0.017; LBR: 5.1 vs. 1.5, P = 0.003; non-HCC: SUVmax: 5.5 vs. 4.5, P = 0.008; LBR: 4.4 vs. 1.5, P = 0.042]. Notably, there was no significant difference in the SUVmax of [18F]FAPI PET between 33 HCC lesions and 17 inflammatory FLLs (6.4 vs. 8.2, P = 0.37), but the LBR of [18F]FAPI PET in HCC were significantly lower than that in inflammatory FLLs (5.1 vs. 9.1, P = 0.003). CONCLUSIONS: [18F]FAPI PET/CT shows high sensitivity in detecting HCC and non-HCC malignancy with [18F]FDG non-avidity. [18F]FAPI might be a promising radiopharmaceutical for the differential diagnosis of benign noninflammatory FLLs and liver malignancy with [18F]FDG non-avidity.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Male , Humans , Middle Aged , Aged , Positron Emission Tomography Computed Tomography , Fluorodeoxyglucose F18 , Prospective Studies , Carcinoma, Hepatocellular/diagnostic imaging , Liver Neoplasms/diagnostic imaging , Gallium Radioisotopes
7.
J Nanobiotechnology ; 21(1): 280, 2023 Aug 19.
Article in English | MEDLINE | ID: mdl-37598147

ABSTRACT

Sustained inflammatory invasion leads to joint damage and progressive disability in several autoimmune rheumatic diseases. In recent decades, targeting M1 macrophage polarization has been suggested as a promising therapeutic strategy for autoimmune arthritis. P300/CBP-associated factor (PCAF) is a histone acetyltransferase (HAT) that exhibits a strong positive relationship with the proinflammatory microenvironment. However, whether PCAF mediates M1 macrophage polarization remains poorly studied, and whether targeting PCAF can protect against autoimmune arthritis in vivo remains unclear. Commonly used drugs can cause serious side effects in patients because of their extensive and nonspecific distribution in the human body. One strategy for overcoming this challenge is to develop drug nanocarriers that target the drug to desirable regions and reduce the fraction of drug that reaches undesirable targets. In this study, we demonstrated that PCAF inhibition could effectively inhibit M1 polarization and alleviate arthritis in mice with collagen-induced arthritis (CIA) via synergistic NF-κB and H3K9Ac blockade. We further designed dextran sulfate (DS)-based nanoparticles (DSNPs) carrying garcinol (a PCAF inhibitor) to specifically target M1 macrophages in inflamed joints of the CIA mouse model via SR-A-SR-A ligand interactions. Compared to free garcinol, garcinol-loaded DSNPs selectively targeted M1 macrophages in inflamed joints and significantly improved therapeutic efficacy in vivo. In summary, our study indicates that targeted PCAF inhibition with nanoparticles might be a promising strategy for treating autoimmune arthritis via M1 macrophage polarization inhibition.


Subject(s)
Arthritis , NF-kappa B , Humans , Animals , Mice , Terpenes , Macrophages
8.
Risk Anal ; 43(1): 156-182, 2023 01.
Article in English | MEDLINE | ID: mdl-35568692

ABSTRACT

With the recurrence of infectious diseases caused by coronaviruses, which pose a significant threat to human health, there is an unprecedented urgency to devise an effective method to identify and assess who is most at risk of contracting these diseases. China has successfully controlled the spread of COVID-19 through the disclosure of track data belonging to diagnosed patients. This paper proposes a novel textual track-data-based approach for individual infection risk measurement. The proposed approach is divided into three steps. First, track features are extracted from track data to build a general portrait of COVID-19 patients. Then, based on the extracted track features, we construct an infection risk indicator system to calculate the infection risk index (IRI). Finally, individuals are divided into different infection risk categories based on the IRI values. By doing so, the proposed approach can determine the risk of an individual contracting COVID-19, which facilitates the identification of high-risk populations. Thus, the proposed approach can be used for risk prevention and control of COVID-19. In the empirical analysis, we comprehensively collected 9455 pieces of track data from 20 January 2020 to 30 July 2020, covering 32 provinces/provincial municipalities in China. The empirical results show that the Chinese COVID-19 patients have six key features that indicate infection risk: place, region, close-contact person, contact manner, travel mode, and symptom. The IRI values for all 9455 patients vary from 0 to 43.19. Individuals are classified into the following five infection risk categories: low, moderate-low, moderate, moderate-high, and high risk.


Subject(s)
COVID-19 , Humans , COVID-19/epidemiology , SARS-CoV-2 , Travel , Risk Factors , China/epidemiology
9.
Environ Toxicol ; 38(2): 381-391, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36448377

ABSTRACT

Hydroquinone (HQ) is one of the major metabolites of benzene and can cause abnormal gene expression. It is a known carcinogen that alters cell cycle disruption and cell proliferation. However, its chemical mechanism remain a mystery. Circular RNAs (circRNAs) are a subtype of noncoding RNAs (ncRNAs) that play a variety of roles in biological processes. Hsa_circ_001944 expression was upregulated in 30 leukemia patients and HQ-induced malignant transformed TK6 cells. Hsa_circ_001944 silencing inhibited the growth of HQ-TK6 cells and halted the cell cycle. The silencing of hsa_circ_0001944 led to increased cell accumulation in G1 versus S phase, increased apoptosis in the sh1944 versus the shNC group, and increased levels of DNA damage (γ-H2AX), leading to cell cycle arrest. In summary, inhibition of hsa_circ_001944 restricted cell growth by inhibiting cell cycle arrest and induced growth of HQ-TK6 cells by modulating PARP1 expression. Hsa_circ_0001944 targeted HuR, which is a kind of RNA-binding protein, to control PARP1 expression via RNAinter, RBPmap, and RBPdb. Fluorescence in situ hybridization combined with immunofluorescent labeling and western blotting experiments showed that hsa_circ_001944 was able to dissociate HuR and PARP1 binding in HQ-TK6 cells, control PARP1 production, and ultimately alter the PARP1/H-Ras pathway.


Subject(s)
Hydroquinones , MicroRNAs , Humans , Apoptosis/genetics , Cell Line, Tumor , Cell Proliferation , Gene Expression Regulation, Neoplastic , Hydroquinones/toxicity , In Situ Hybridization, Fluorescence , MicroRNAs/genetics , MicroRNAs/metabolism , Poly (ADP-Ribose) Polymerase-1/genetics , Poly (ADP-Ribose) Polymerase-1/metabolism
10.
Sensors (Basel) ; 23(3)2023 Jan 18.
Article in English | MEDLINE | ID: mdl-36772157

ABSTRACT

Micro-motion jamming is a new jamming method to inverse synthetic aperture radar (ISAR) in recent years. Compared with traditional jamming methods, it is more flexible and controllable, and is a great threat to ISAR. The prerequisite of taking relevant anti-jamming measures is to recognize the patterns of micro-motion jamming. In this paper, a method of micro-motion jamming pattern recognition based on complex-valued convolutional neural network (CV-CNN) is proposed. The micro-motion jamming echo signals are serialized and input to the network, and the result of recognition is output. Compared with real-valued convolutional neural network (RV-CNN), it can be found that the proposed method has a higher recognition accuracy rate. Additionally, the recognition accuracy rate is analyzed with different signal-to-noise ratio (SNR) and number of training samples. Simulation results prove the effectiveness of the proposed recognition method.

11.
Sensors (Basel) ; 23(15)2023 Jul 27.
Article in English | MEDLINE | ID: mdl-37571514

ABSTRACT

The diagnosis of bearing faults is an important guarantee for the healthy operation of mechanical equipment. Due to the time-varying working conditions of mechanical equipment, it is necessary to achieve bearing fault diagnosis under time-varying working conditions. However, the superposition of the two-dimensional working conditions of speed and acceleration brings great difficulties to diagnosis via data-driven models. The long short-term memory (LSTM) model based on the infinitesimal method is an effective method to solve this problem, but its performance still has certain limitations. On this basis, this article proposes a model for fault diagnosis under time-varying operating conditions that combines a residual network model (ResNet) and a gate recurrent unit (model) (GRU). Firstly, the samples were segmented, and feature extraction was performed using ResNet. We then used GRU to process the information. Finally, the classification results were output through the output network. This model could ignore the influence of acceleration and achieve high fault diagnosis accuracy under time-varying working conditions. In addition, we used t-SNE to reduce the dimensionality of the features and analyzed the role of each layer in the model. Experiments showed that this method had a better performance compared with existing bearing fault diagnosis methods.

12.
BMC Bioinformatics ; 23(1): 266, 2022 Jul 08.
Article in English | MEDLINE | ID: mdl-35804303

ABSTRACT

BACKGROUND: Protein-protein interaction (PPI) is vital for life processes, disease treatment, and drug discovery. The computational prediction of PPI is relatively inexpensive and efficient when compared to traditional wet-lab experiments. Given a new protein, one may wish to find whether the protein has any PPI relationship with other existing proteins. Current computational PPI prediction methods usually compare the new protein to existing proteins one by one in a pairwise manner. This is time consuming. RESULTS: In this work, we propose a more efficient model, called deep hash learning protein-and-protein interaction (DHL-PPI), to predict all-against-all PPI relationships in a database of proteins. First, DHL-PPI encodes a protein sequence into a binary hash code based on deep features extracted from the protein sequences using deep learning techniques. This encoding scheme enables us to turn the PPI discrimination problem into a much simpler searching problem. The binary hash code for a protein sequence can be regarded as a number. Thus, in the pre-screening stage of DHL-PPI, the string matching problem of comparing a protein sequence against a database with M proteins can be transformed into a much more simpler problem: to find a number inside a sorted array of length M. This pre-screening process narrows down the search to a much smaller set of candidate proteins for further confirmation. As a final step, DHL-PPI uses the Hamming distance to verify the final PPI relationship. CONCLUSIONS: The experimental results confirmed that DHL-PPI is feasible and effective. Using a dataset with strictly negative PPI examples of four species, DHL-PPI is shown to be superior or competitive when compared to the other state-of-the-art methods in terms of precision, recall or F1 score. Furthermore, in the prediction stage, the proposed DHL-PPI reduced the time complexity from [Formula: see text] to [Formula: see text] for performing an all-against-all PPI prediction for a database with M proteins. With the proposed approach, a protein database can be preprocessed and stored for later search using the proposed encoding scheme. This can provide a more efficient way to cope with the rapidly increasing volume of protein datasets.


Subject(s)
Drug Discovery , Proteins , Amino Acid Sequence , Databases, Protein , Proteins/metabolism
13.
Crit Rev Eukaryot Gene Expr ; 32(5): 1-10, 2022.
Article in English | MEDLINE | ID: mdl-35993940

ABSTRACT

Long non-coding RNA (lncRNA) Linc00511 has been demonstrated as an oncogenic lncRNA in some types of cancer, such as bladder cancer and breast cancer. However, whether Linc00551 plays critical roles in non-small-cell lung cancer (NSCLC) is still unknown. To examine the role of Linc00511 in the pathogenesis of NSCLC, 62 stage I NSCLC patients and the age- and gender-matched healthy controls were enrolled in this investigation. Patients were followed up for three years. Linc00511, microRNA-98-5p (miR-98-5p) and transforming growth factor beta receptor 1 (TGFBR1) mRNA levels were measured by reverse transcription quantitative polymerase chain reaction (RT-qPCR). TGFBR1 protein level was determined by Western blot. The putative interaction between Linc00511 and miR-98-5p was predicted by bioinformatics and confirmed by dual luciferase activity and RNA pull-down. Cell proliferation was assessed by Cell Counting Kit-8 (CCK-8) assay. Cell migration and invasion were measured by Transwell assay. Serum Linc00511 level at admission was higher in patients than in healthy controls and decreased on the day of discharge than before surgical resection. During the 3-years of follow-up, plasma Linc00511 level was upregulated only in patients with distant recurrence. Linc00511 was predicted to interact with miR-98-5p, and Linc00511 overexpression inhibited miR-98-5p expression but upregulated TGFBR1, a downstream target for miR-98-5p. Moreover, the elevation of Linc00511 and TGFBR1 both promoted NSCLC cell proliferation, invasion, and migration. However, miR-98-5p overexpression had opposite effects, reversing the effects of TGFBR1. In conclusion, Linc00511 was elevated in NSCLC, which might participate NSCLC postoperative distant recurrence and promoted NSCLC cell proliferation, migration and invasion via targeting and regulating miR-98-5p/TGFBR1 axis.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , MicroRNAs , RNA, Long Noncoding , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/metabolism , Carcinoma, Non-Small-Cell Lung/surgery , Cell Proliferation/genetics , Humans , Lung Neoplasms/genetics , Lung Neoplasms/metabolism , Lung Neoplasms/surgery , MicroRNAs/genetics , MicroRNAs/metabolism , RNA, Long Noncoding/genetics , Receptor, Transforming Growth Factor-beta Type I/genetics , Receptor, Transforming Growth Factor-beta Type I/metabolism , Up-Regulation/genetics
14.
Neurochem Res ; 47(2): 264-278, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34468932

ABSTRACT

Further understanding the mechanism for microglia activation is necessary for developing novel anti-inflammatory strategies. Our previous study found that the activation of sigma-1 receptor can effectively inhibit the neuroinflammation, independent of the canonical mechanisms, such as NF-κB, JNK and ERK inflammatory pathways. Thus, it is reasonable that an un-identified, non-canonical pathway contributes to the activation of microglia. In the present study, we found that a sigma-1 receptor agonist of 2-morpholin-4-ylethyl 1-phenylcyclohexane-1-carboxylate (PRE-084) suppressed lipopolysaccharide (LPS) elevated nitric oxide (NO) content in BV-2 microglia culture supernatant and LPS-raised mRNA levels of tumor necrosis factor-α (TNF-α), interleukin-1ß (IL-1ß), inducible nitric oxide synthase (iNOS) in BV-2 microglia. Moreover, PRE-084 alleviated LPS-increased Ser 9 de-phosphorylation of glycogen synthase kinase-3 beta (GSK-3ß), LPS-elevated catalytic activity of calcineurin, and LPS-raised percent and frequency of Ca2+ oscillatory BV-2 cells. We further found that the inhibitory effect of PRE-084 was reversed by a calcineurin activator of chlorogenic acid and a GSK-3ß activator of pyrvinium. Moreover, an IP3 receptor inhibitor of 2-aminoethoxydiphenyl borate mimicked the anti-inflammatory activity of PRE-084. Thus, we identified a noncanonical pro-neuroinflammary pathway of Ca2+ oscillation/Calcineurin/GSK-3ß and the inhibition of this pathway is necessary for the anti-inflammatory activity of sigma-1 receptor activation.


Subject(s)
Calcineurin , Microglia , Anti-Inflammatory Agents/pharmacology , Calcineurin/metabolism , Cell Line , Glycogen Synthase Kinase 3 beta/metabolism , Lipopolysaccharides/pharmacology , Microglia/metabolism , NF-kappa B/metabolism , Nitric Oxide/metabolism , Nitric Oxide Synthase Type II/metabolism , Receptors, sigma , Tumor Necrosis Factor-alpha/metabolism , Sigma-1 Receptor
15.
Mol Pharm ; 19(11): 3831-3845, 2022 11 07.
Article in English | MEDLINE | ID: mdl-36067066

ABSTRACT

The present study was to evaluate the potential effectiveness of low-molecular-weight chitosan-coated baicalin methoxy poly(ethylene glycol)-poly(d,l-lactic-co-glycolic acid) (mPEG-PLGA) nanoparticles (BA LCH NPs) for the treatment of cataract. mPEG-PLGA NPs were optimized by the Box-Behnken design and the central composite design based on the encapsulation efficiency and drug loading. Then, the BA LCH NPs were characterized based on morphology, particle size, and zeta potentials. The analytical data of differential scanning calorimetry, X-ray diffraction, and transmission electron microscopy depicted the drug excipient compatibility. In vitro, we evaluated cell viability, cellular uptake, potential ocular irritation, transcorneal permeability, and the precorneal retention of BA LCH NPs. In vivo, the chronic selenium cataract model was selected to assess the therapeutic effect of BA LCH NPs. The size of BA LCH NPs was within the range from 148 to 219 nm and the zeta potential was 19-25 mV. Cellular uptake results showed that the fluorescence intensity of the preparations in each group increased with time, and the fluorescence intensity of the LCH NP group was significantly higher than that of the solution group. The optimized BA LCH NPs improved precorneal residence time without causing eye irritation and also showed a sustained release of BA through the cornea for effective management of cataract. Also, fluorescence tracking on the rabbit cornea showed increased corneal retention of the LCH NPs. In addition, the results of therapeutic efficacy demonstrated that BA LCH NPs can significantly reduce the content of malondialdehyde and enhanced the activities of catalase, superoxide dismutase, and glutathione peroxidase, which was comparable to positive control and better than the BA solution group. Thus, it can be inferred that the BA LCH NPs are a promising drug delivery system for enhancing the ophthalmic administration of BA to the posterior segment of the eye and improving cataract symptoms.


Subject(s)
Cataract , Chitosan , Nanoparticles , Animals , Rabbits , Chitosan/chemistry , Drug Carriers/chemistry , Polyethylene Glycols/chemistry , Nanoparticles/chemistry , Lactic Acid/chemistry , Particle Size , Cataract/chemically induced , Cataract/drug therapy
16.
J Biochem Mol Toxicol ; 36(9): e23142, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35698848

ABSTRACT

The upstream regulators of microRNAs were rarely reported. Hydroquinone (HQ) is the main metabolite of benzene, one of the important environmental factors contributing to leukemia and lymphoma. In HQ-induced malignant transformed TK6 (TK6-HT) cells, the expression of PARP-1 and miR-223 were upregulated. When in PARP-1 silencing TK6-HT cells, miR-223 was downregulated and the apoptotic cell number correspondingly increased. In TK6 cells treated with HQ for different terms, the expression of miR-223 and PARP-1 were dynamically observed and found to be decreased and increased, respectively. Trichostatin A could increase the expression of miR-223, then the expression of HDAC1-2 and nuclear factor kappa B were found to be increased, but that of mH2A was decreased. PARP-1 silencing inhibited the protein expression of H3Ac, mH2A, and H3K27ac. By co-immunoprecipitation experiment, PARP-1 and HDAC2 were found to form a regulatory complex. In conclusion, we demonstrated that the upregulation of PARP-1 mediated activation of acetylation to promote the transcription of miR-223 possibly via coregulating with HDAC2, an epigenetic regulation mechanism involved in cell malignant transformation resulting from long-term exposure to HQ, in which course, H3K27ac might be a specific marker for the activation of histone H3, which also gives hints for benzene exposure research.


Subject(s)
Hydroquinones , MicroRNAs , Acetylation , Benzene , Cell Transformation, Neoplastic , Epigenesis, Genetic , Histones/metabolism , Humans , Hydroquinones/toxicity , MicroRNAs/genetics , MicroRNAs/metabolism , NF-kappa B/metabolism , Poly(ADP-ribose) Polymerase Inhibitors
17.
J Nanobiotechnology ; 20(1): 425, 2022 Sep 24.
Article in English | MEDLINE | ID: mdl-36153589

ABSTRACT

BACKGROUND: Poor in vivo targeting of tumors by chemotherapeutic drugs reduces their anti-cancer efficacy in the clinic. The discovery of over-expressed components on the tumor cell surface and their specific ligands provide a basis for targeting tumor cells. However, the differences in the expression levels of these receptors on the tumor cell surface limit the clinical application of anti-tumor preparations modified by a single ligand. Meanwhile, toxicity of chemotherapeutic drugs leads to poor tolerance to anti-tumor therapy. The discovery of natural active products antagonizing these toxic side effects offers an avenue for relieving cancer patients' pain during the treatment process. Since the advent of nanotechnology, interventions, such as loading appropriate drug combinations into nano-sized carriers and multiple tumor-targeting functional modifications on the carrier surface to enhance the anti-tumor effect and reduce toxic and side effects, have been widely used for treating tumors. RESULTS: Nanocarriers containing doxorubicin hydrochloride (DOX) and salvianolic acid A (Sal A) are spherical with a diameter of about 18 nm; the encapsulation efficiency of both DOX and salvianolic acid A is greater than 80%. E-[c(RGDfK)2]/folic acid (FA) co-modification enabled nanostructured lipid carriers (NLC) to efficiently target a variety of tumor cells, including 4T1, MDA-MB-231, MCF-7, and A549 cells in vitro. Compared with other preparations (Sal A solution, NLC-Sal A, DOX solution, DOX injection, Sal A/DOX solution, NLC-DOX, NLC-Sal A/DOX, and E-[c(RGDfK)2]/FA-NLC-Sal A/DOX) in this experiment, the prepared E-[c(RGDfK)2]/FA-NLC-Sal A/DOX had the best anti-tumor effect. Compared with the normal saline group, it had the highest tumor volume inhibition rate (90.72%), the highest tumor weight inhibition rate (83.94%), led to the highest proportion of apoptosis among the tumor cells (61.30%) and the lowest fluorescence intensity of proliferation among the tumor cells (0.0083 ± 0.0011). Moreover, E-[c(RGDfK)2]/FA-NLC-Sal A/DOX had a low level of nephrotoxicity, with a low creatinine (Cre) concentration of 52.58 µmoL/L in the blood of mice, and no abnormalities were seen on pathological examination of the isolated kidneys at the end of the study. Sal A can antagonize the nephrotoxic effect of DOX. Free Sal A reduced the Cre concentration of the free DOX group by 61.64%. In NLC groups, Sal A reduced the Cre concentration of the DOX group by 42.47%. The E-[c(RGDfK)2]/FA modification reduced the side effects of the drug on the kidney, and the Cre concentration was reduced by 46.35% compared with the NLC-Sal A/DOX group. These interventions can potentially improve the tolerance of cancer patients to chemotherapy. CONCLUSION: The E-[c(RGDfK)2]/FA co-modified DOX/Sal A multifunctional nano-drug delivery system has a good therapeutic effect on tumors and low nephrotoxicity and is a promising anti-cancer strategy.


Subject(s)
Antibiotics, Antineoplastic , Doxorubicin , Drug Carriers , Animals , Caffeic Acids , Cell Line, Tumor , Creatinine , Doxorubicin/pharmacology , Drug Carriers/pharmacology , Drug Combinations , Folic Acid , Lactates , Ligands , Lipids , Mice , Mice, Inbred BALB C , Saline Solution
18.
BMC Pulm Med ; 22(1): 346, 2022 Sep 14.
Article in English | MEDLINE | ID: mdl-36104786

ABSTRACT

BACKGROUND: To monitor dypsnea and mortality at 5 and 10 years, respectively, after surgical treatment of tuberculosis-destroyed lung (TDL) patients. METHODS: TDL patients treated surgically at Beijing Chest Hospital from November 2007 to June 2019 were monitored in this observational study. Follow-up assessments of respiratory function indicators and survival conducted 5 and 10 years post-surgery led to patient grouping based on mMRC score into a dyspnea group (mMRC ≥ 1) and a non-dyspnea group (mMRC = 0). Cox regression analysis detected effects of patient demographics, clinical characteristics, surgical factors and respiratory function on 5 year post-surgical survival. RESULTS: By study completion (June 30, 2020), 32 of 104 patients were lost and 72 completed follow-up for a study total of 258.9 person-years. 45 patients (62.5%, 45/72) had mMRC scores of 0, while 12 (16.7%, 12/72), 21 (36.2%, 21/58) and 27 (60.0%, 27/45) patients exhibited dyspnea by 1, 3 and 5 years post-surgery, respectively. Low lung carbon monoxide diffusion score (DLCO% pred) and scoliosis contributed to dyspnea occurrence. CONCLUSIONS: Most TDL patients lacked subjective dyspnea signs post-surgery, while dyspnea rates increased with time. Preoperative low lung diffusion function and Scoliosis were associated with factors for postoperative dyspnea. Surgical treatment increased TDL patient survival overall.


Subject(s)
Scoliosis , Tuberculosis , Dyspnea/epidemiology , Follow-Up Studies , Humans , Lung/surgery
19.
J Med Internet Res ; 24(3): e28978, 2022 03 24.
Article in English | MEDLINE | ID: mdl-35323120

ABSTRACT

BACKGROUND: Telemedicine plays an important role in the management of inflammatory bowel disease (IBD), particularly during a pandemic such as COVID-19. However, the effectiveness and efficiency of telemedicine in managing IBD are unclear. OBJECTIVE: This systematic review and meta-analysis aimed to compare the impact of telemedicine with that of standard care on the management of IBD. METHODS: We systematically searched the PubMed, Cochrane Library, EMBASE, Web of Science, and Scopus databases on April 22, 2020. Randomized controlled trials comparing telemedicine with standard care in patients with IBD were included, while conference abstracts, letters, reviews, laboratory studies, and case reports were excluded. The IBD-specific quality of life (QoL), disease activity, and remission rate in patients with IBD were assessed as primary outcomes, and the number of in-person clinic visits per patient, patient satisfaction, psychological outcome, and medication adherence were assessed as secondary outcomes. Review Manage 5.3 and Stata 15.1 were used for data analysis. RESULTS: A total of 17 randomized controlled trials (2571 participants) were included in this meta-analysis. The telemedicine group had higher IBD-specific QoL than the standard care group (standard mean difference 0.18, 95% CI 0.01 to 0.34; P.03). The number of clinic visits per patient in the telemedicine group was significantly lower than that in the standard care group (standard mean difference -0.71, 95% CI -1.07 to -0.36; P<.001). Subgroup analysis showed that adolescents in the telemedicine group had significantly higher IBD-specific QoL than those in the standard care group (standard mean difference 0.42, 95% CI 0.15 to 0.69; I2=0; P.002), but there was no significant difference between adults in the 2 groups. There were no significant differences in disease activity, remission rate, patient satisfaction, depression, self-efficacy, generic QoL, and medication adherence outcomes between the telemedicine and standard care groups. CONCLUSIONS: Telemedicine intervention showed a promising role in improving IBD-specific QoL among adolescents and decreased the number of clinic visits among patients with IBD. Further research is warranted to identify the group of patients with IBD who would most benefit from telemedicine.


Subject(s)
COVID-19 , Inflammatory Bowel Diseases , Telemedicine , Adolescent , Adult , Humans , Inflammatory Bowel Diseases/therapy , Quality of Life , Randomized Controlled Trials as Topic
20.
Sensors (Basel) ; 22(6)2022 Mar 14.
Article in English | MEDLINE | ID: mdl-35336416

ABSTRACT

Interrupted sampling repeater jamming (ISRJ) is an attracted coherent jamming method to inverse synthetic aperture radar (ISAR) in the past decades. By means of different jamming parameters settings, realistic dense false targets can be formed around the true target. This paper proposed an adaptive anti-jamming method against ISRJ by adjusting the number of measurements based on compressed sensing (CS). The jamming signal is energy concentrated and segmented sparse in the frequency domain. The measurements number of the reconstructed target signal and the jamming signal is different. According to the restricted isometry property (RIP) condition of CS theory, signal reconstructing performance depends on the number of measurements that varies with the sparsity of the vector. Thus, the jamming signal is suppressed, and the true target signal is retained by altering the measurements number of echo signals. Besides, the two-dimensional (2D) anti-jamming method is derived in detail. The anti-jamming effect is analyzed with different signal-to-noise ratios (SNR), sampling rates, and jam-to-signal ratios (JSR). Simulations prove the effectiveness of the proposed anti-jamming method.

SELECTION OF CITATIONS
SEARCH DETAIL