Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 96
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Am J Respir Cell Mol Biol ; 70(1): 39-49, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37713305

ABSTRACT

Increasing evidence suggests that mitochondrial dysfunction in pulmonary endothelial cells (ECs) plays a causative role in the initiation and progression of pulmonary hypertension (PH); how mitochondria become dysfunctional in PH remains elusive. Mitochondria-derived vesicles (MDVs) are small subcellular vesicles that excise from mitochondria. Whether MDV deregulation causes mitochondrial dysfunction in PH is unknown. The aim of this study was to determine MDV regulation in ECs and to elucidate how MDV deregulation in ECs leads to PH. MDV formation and mitochondrial morphology/dynamics were examined in ECs of EC-specific liver kinase B1 (LKB1) knockout mice (LKB1ec-/-), in monocrotaline-induced PH rats, and in lungs of patients with PH. Pulmonary ECs of patients with PH and hypoxia-treated pulmonary ECs exhibited increased mitochondrial fragmentation and disorganized mitochondrial ultrastructure characterized by electron lucent-swelling matrix compartments and concentric layering of the cristae network, together with defective MDV shedding. MDVs actively regulated mitochondrial membrane dynamics and mitochondrial ultrastructure via removing mitofission-related cargoes. The shedding of MDVs from parental mitochondria required LKB1-mediated mitochondrial recruitment of Rab9 GTPase. LKB1ec-/- mice spontaneously developed PH with decreased mitochondrial pools of Rab9 GTPase, defective MDV shedding, and disequilibrium of the mitochondrial fusion-fission cycle in pulmonary ECs. Aerosol intratracheal delivery of adeno-associated virus LKB1 reversed PH, together with improved MDV shedding and mitochondrial function in rats in vivo. We conclude that LKB1 regulates MDV shedding and mitochondrial dynamics in pulmonary ECs by enhancing mitochondrial recruitment of Rab9 GTPase. Defects of LKB1-mediated MDV shedding from parental mitochondria instigate EC dysfunction and PH.


Subject(s)
Hypertension, Pulmonary , Mitochondrial Diseases , Rats , Humans , Mice , Animals , Hypertension, Pulmonary/metabolism , Endothelial Cells/metabolism , Mitochondria , GTP Phosphohydrolases/metabolism , Mice, Knockout , Mitochondrial Diseases/complications , Mitochondrial Diseases/metabolism
2.
Plant Biotechnol J ; 22(4): 929-945, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38009862

ABSTRACT

The control of flowering time in maize is crucial for reproductive success and yield, and it can be influenced by environmental stresses. Using the approaches of Ac/Ds transposon and transposable element amplicon sequencing techniques, we identified a Ds insertion mutant in the ZmPRR37 gene. The Ds insertion showed a significant correlation with days to anthesis. Further research indicated that ZmPRR37-CR knockout mutants exhibited early flowering, whereas ZmPRR37-overexpression lines displayed delayed flowering compared to WT under long-day (LD) conditions. We demonstrated that ZmPRR37 repressed the expression of ZmNF-YC2 and ZmNF-YA3 to delay flowering. Association analysis revealed a significant correlation between flowering time and a SNP2071-C/T located upstream of ZmPRR37. The SNP2071-C/T impacted the binding capacity of ZmELF6 to the promoter of ZmPRR37. ZmELF6 also acted as a flowering suppressor in maize under LD conditions. Notably, our study unveiled that ZmPRR37 can enhance salt stress tolerance in maize by directly regulating the expression of ABA-responsive gene ZmDhn1. ZmDhn1 negatively regulated maize salt stress resistance. In summary, our findings proposed a novel pathway for regulating photoperiodic flowering and responding to salt stress based on ZmPRR37 in maize, providing novel insights into the integration of abiotic stress signals into floral pathways.


Subject(s)
Flowers , Plant Proteins , Plant Proteins/genetics , Plant Proteins/metabolism , Flowers/physiology , Zea mays/genetics , Zea mays/metabolism , Photoperiod , Promoter Regions, Genetic , Gene Expression Regulation, Plant/genetics
3.
Hepatology ; 77(1): 213-229, 2023 01 01.
Article in English | MEDLINE | ID: mdl-35363898

ABSTRACT

BACKGROUND AND AIMS: Metabolism in the liver is dysregulated in obesity, contributing to various health problems including steatosis and insulin resistance. While the pathogenesis of lipid accumulation has been extensively studied, the protective mechanism against lipid challenge in the liver remains unclear. Here, we report that Src homology 3 domain binding kinase 1 (SBK1) is a regulator of hepatic lipid metabolism and systemic insulin sensitivity in response to obesity. APPROACH AND RESULTS: Enhanced Sbk1 expression was found in the liver of high-fat diet (HFD)-induced obese mice and fatty acid (FA)-challenged hepatocytes. SBK1 knockdown in mouse liver cells augmented FA uptake and lipid accumulation. Similarly, liver-specific SBK1 knockout ( Lsko ) mice displayed more severe hepatosteatosis and higher expression of genes in FA uptake and lipogenesis than the Flox/Flox ( Fl/Fl ) control mice when fed the HFD. The HFD-fed Lsko mice also showed symptoms of hyperglycemia, poor systemic glucose tolerance, and lower insulin sensitivity than the Fl/Fl mice. On the other hand, hepatic Sbk1 overexpression alleviated the high-fructose diet-induced hepatosteatosis, hyperlipidemia, and hyperglycemia in mice. White adipose tissue browning was also observed in hepatic SBK1 -overexpressed mice. Moreover, we found that SBK1 was a positive regulator of FGF21 in the liver during energy surplus conditions. Mechanistically, SBK1 phosphorylates the orphan nuclear receptor 4A1 (Nur77) on serine 344 to promote hepatic FGF21 expression and inhibit the transcription of genes involved in lipid anabolism. CONCLUSIONS: Collectively, our data suggest that SBK1 is a regulator of the metabolic adaption against obesity through the Nur77-FGF21 pathway.


Subject(s)
Fatty Liver , Insulin Resistance , Protein Kinases , Animals , Mice , Diet, High-Fat/adverse effects , Fatty Liver/metabolism , Fatty Liver/pathology , Hyperglycemia/complications , Hyperglycemia/metabolism , Hyperglycemia/pathology , Lipids , Liver/pathology , Mice, Inbred C57BL , Mice, Knockout , Obesity/complications , Nuclear Receptor Subfamily 4, Group A, Member 1
4.
Plant Cell Environ ; 2024 May 15.
Article in English | MEDLINE | ID: mdl-38747469

ABSTRACT

Drought, as a primary environmental factor, imposes significant constraints on developmental processes and productivity of plants. PHDs were identified as stress-responsive genes in a wide range of eukaryotes. However, the regulatory mechanisms governing PHD genes in maize under abiotic stress conditions are still largely unknown and require further investigation. Here, we identified a mutant, zmvil2, in the EMS mutant library with a C to T mutation in the exon of the Zm00001d053875 (VIN3-like protein 2, ZmVIL2), resulting in premature termination of protein coding. ZmVIL2 belongs to PHD protein family. Compared to WT, zmvil2 mutant exhibited increased sensitivity to drought stress. Consistently, overexpression of ZmVIL2 enhances drought resistance in maize. Y2H, BiFC, and Co-IP experiments revealed that ZmVIL2 directly interacts with ZmFIP37 (FKBP12-interacting protein of 37). zmfip37 knockout mutants also exhibit decreased drought tolerance. Interestingly, we demonstrated that ZmABF4 directly binds to the ZmVIL2 promoter to enhance its activity in yeast one hybrid (Y1H), electrophoretic mobility shift assay (EMSA) and dual luciferase reporter assays. Therefore, we uncovered a novel model ZmABF4-ZmVIL2/ZmFIP37 that promotes drought tolerance in maize. Overall, these findings have enriched the knowledge of the functions of PHD genes in maize and provides genetic resources for breeding stress-tolerant maize varieties.

5.
Plant Cell Environ ; 47(3): 885-899, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38164019

ABSTRACT

Drought is a major abiotic stress that limits maize production worldwide. Therefore, it is of great importance to improve drought tolerance in crop plants for sustainable agriculture. In this study, we examined the roles of Cys2 /His2 zinc-finger-proteins (C2H2-ZFPs) in maize's drought tolerance as C2H2-ZFPs have been implicated for plant stress tolerance. By subjecting 150 Ac/Ds mutant lines to drought stress, we successfully identified a Ds-insertion mutant, zmc2h2-149, which shows increased tolerance to drought stress. Overexpression of ZmC2H2-149 in maize led to a decrease in both drought tolerance and crop yield. DAP-Seq, RNA-Seq, Y1H and LUC assays additionally showed that ZmC2H2-149 directly suppresses the expression of a positive drought tolerance regulator, ZmHSD1 (hydroxysteroid dehydrogenase 1). Consistently, the zmhsd1 mutants exhibited decreased drought tolerance and grain yield under water deficit conditions compared to their respective wild-type plants. Our findings thus demonstrated that ZmC2H2-149 can regulate ZmHSD1 for drought stress tolerance in maize, offering valuable theoretical and genetic resources for maize breeding programmes that aim for improving drought tolerance.


Subject(s)
Drought Resistance , Zea mays , Zea mays/physiology , Plant Proteins/genetics , Plant Proteins/metabolism , Droughts , Stress, Physiological/genetics , Gene Expression Regulation, Plant
6.
Acc Chem Res ; 55(23): 3417-3429, 2022 12 06.
Article in English | MEDLINE | ID: mdl-36380600

ABSTRACT

Hyaluronic acid (HA), which contains multiple carboxyl, hydroxyl, and acetylamino groups and is an agent that targets tumors, has drawn great attention in supramolecular diagnosis and treatment research. It can not only assemble directly with macrocyclic host-guest complexes through hydrogen bonding and electrostatic interactions but also can be modified with macrocyclic compounds or functional guest molecules by an amidation reaction and used for further assembly. Macrocycles play a main role in the construction of supramolecular drug carriers, targeted imaging agents, and hydrogels, such as cyclodextrins and cucurbit[n]urils, which can encapsulate photosensitizers, drugs, or other functional guest molecules via host-guest interactions. Therefore, the formed supramolecular assemblies can respond to various stimuli, such as enzymes, light, electricity, and magnetism for controlled drug delivery, enhance the luminescence intensity of the assembly, and improve drug loading capacity. In addition, the nanosupramolecular assembly formed with HA can also improve the biocompatibility of drugs, reduce drug toxicity and side effects, and enhance cell permeability; thus, the assembly has extensive application value in biomedical research. This Account mainly focuses on macrocyclic supramolecular assemblies based on HA, especially their biological applications and progress in the field, and these assemblies include (i) guest-modified HA, such as pyridinium-, adamantane-, peptide-, and other functional-group-modified HA, along with their cyclodextrin and cucurbit[n]uril assemblies; (ii) macrocycle-modified HA, such as HA modified with cyclodextrins and cucurbit[n]uril derivatives and their assembly with various guests; (iii) direct assembly between unmodified HA and cyclodextrin- or cucurbit[n]uril-based host-guest complexes. Particularly, we discussed the important role of macrocyclic host-guest complexes in HA-based supramolecular assembly, and the roles included improving the water solubility and efficacy of hydrophobic drugs, enhancing the luminescent intensity of assemblies, inducing room temperature phosphorescence and providing energy transfer systems, constructing multi-stimulus-responsive supramolecular assemblies, and in situ formation of hydrogels. Additionally, we believe that obtaining in-depth knowledge of these HA-based macrocyclic supramolecular assemblies and their biological applications encompasses many challenges regarding drug carriers, targeted imaging agents, wound healing, and biomedical soft materials and would certainly contribute to the rapid development of supramolecular diagnosis and treatment.


Subject(s)
Cyclodextrins , Macrocyclic Compounds , Hyaluronic Acid , Cyclodextrins/chemistry , Hydrogels/chemistry , Drug Carriers/chemistry , Macrocyclic Compounds/chemistry , Biocompatible Materials
7.
Chem Soc Rev ; 51(11): 4786-4827, 2022 Jun 06.
Article in English | MEDLINE | ID: mdl-35593232

ABSTRACT

Multicharged cyclodextrin (CD) supramolecular assemblies, including those based on positively/negatively charged modified mono-6-deoxy-CDs, per-6-deoxy-CDs, and random 2,3,6-deoxy-CDs, as well as parent CDs binding positively/negatively charged guests, have been extensively applied in chemistry, materials science, medicine, biological science, catalysis, and other fields. In this review, we primarily focus on summarizing the recent advances in positively/negatively charged CDs and parent CDs encapsulating positively/negatively charged guests, especially the construction process of supramolecular assemblies and their applications. Compared with uncharged CDs, multicharged CDs display remarkably high antiviral and antibacterial activity as well as efficient protein fibrosis inhibition. Meanwhile, charged CDs can interact with oppositely charged dyes, drugs, polymers, and biomacromolecules to achieve effective encapsulation and aggregation. Consequently, multicharged CD supramolecular assemblies show great advantages in improving drug-delivery efficiency, the luminescence properties of materials, molecular recognition and imaging, and the toughness of supramolecular hydrogels, in addition to enabling the construction of multistimuli-responsive assemblies. These features are anticipated to not only promote the development of CD-based supramolecular chemistry but also contribute to the rapid exploitation of these assemblies in diverse interdisciplinary applications.


Subject(s)
Cyclodextrins , Cyclodextrins/chemistry , Drug Delivery Systems , Hydrogels/chemistry , Materials Science , Polymers/chemistry
8.
Plant Cell Environ ; 45(2): 312-328, 2022 02.
Article in English | MEDLINE | ID: mdl-34873716

ABSTRACT

Drought stress adversely impacts crop development and yield. Maize frequently encounters drought stress during its life cycle. Improvement of drought tolerance is a priority of maize breeding programs. Here, we identified a novel transcription factor encoding gene, APETALA2 (AP2)/Ethylene response factor (ERF), which is tightly associated with drought tolerance in maize seedlings. ZmERF21 is mainly expressed in the root and leaf and it can be highly induced by polyethylene glycol treatment. Genetic analysis showed that the zmerf21 mutant plants displayed a reduced drought tolerance phenotype, accompanied by phenotypical and physiological changes that are commonly observed in drought conditions. Overexpression of ZmERF21 in maize significantly increased the chlorophyll content and activities of antioxidant enzymes under drought conditions. RNA-Seq and DNA affinity purification sequencing analysis further revealed that ZmERF21 may directly regulate the expression of genes related to hormone (ethylene, abscisic acid) and Ca signaling as well as other stress-response genes through binding to the promoters of potential target genes. Our results thereby provided molecular evidence of ZmERF21 is involved in the drought stress response of maize.


Subject(s)
Droughts , Gene Expression/physiology , Plant Growth Regulators/pharmacology , Plant Proteins/genetics , Signal Transduction/genetics , Zea mays/physiology , Gene Expression Regulation, Plant/physiology , Plant Proteins/metabolism , Seedlings/genetics , Seedlings/physiology , Stress, Physiological/genetics , Zea mays/genetics
9.
Biomacromolecules ; 23(9): 3549-3559, 2022 09 12.
Article in English | MEDLINE | ID: mdl-35921592

ABSTRACT

The construction of supramolecular multivalent assemblies with unique photoluminescence behaviors and biological functions has become a research hot spot recently in the biomaterial field. Herein, we report an adaptive supramolecular assembly via a multivalent co-assembly strategy prepared in two stages by using an adamantane-connected pyrenyl pyridinium derivative (APA2), sulfonated aluminum phthalocyanine (PcS), and folic acid-modified ß-cyclodextrin (FA-CD) for efficient dual-organelle targeted photodynamic cancer cell ablation. Benefiting from π-π and electrostatic interactions, APA2 and PcS could first assemble into non-fluorescent irregular nanoaggregates because of the heterodimer aggregation-induced quenching and then secondarily assemble with FA-CD to afford targeted spherical nanoparticles (NPs) with an average diameter of around 50 nm, which could be specifically taken up by HeLa cancer cells through endocytosis in comparison with 293T normal cells. Intriguingly, such multivalent NPs could adaptively disaggregate in an intracellular physiological environment of cancer cells and further respectively and selectively accumulate in mitochondria and lysosomes, which not only displayed near-infrared two-organelle localization in situ but also aroused efficient singlet oxygen generation under light irradiation to effectively eliminate cancer cells up to 99%. This supramolecular multivalent assembly with an adaptive feature in a specific cancer cell environment provides a feasible strategy for precise organelle-targeted imaging and an efficiently synergetic photodynamic effect in situ for cancer cell ablation.


Subject(s)
Cyclodextrins , Nanoparticles , Photochemotherapy , Folic Acid , HeLa Cells , Humans
10.
J Org Chem ; 87(12): 7658-7664, 2022 Jun 17.
Article in English | MEDLINE | ID: mdl-35658514

ABSTRACT

The photoisomerization behavior of cyanostilbene molecules is a hotspot in supramolecular configuration transformation research. Here, we reported a cyanostilbene derivative that converted from the Z,Z-isomer to the E,E-isomer under UV light irradiation at 365 nm. This process can be reversibly converted only in the presence of cucurbit[8]uril under the same light source, accompanied by the reversible conversion of fluorescence from green to yellow. No effective configuration transformation occurred with guest molecules only or upon the addition of cucurbit[7]uril. The photoisomerization was fully characterized by UV-vis and fluorescence spectroscopy, NMR, high-resolution mass spectrometry, and transmission electron microscopy. This work provides a new method for the supramolecular macrocyclic-activated configuration transformation.

11.
Physiol Mol Biol Plants ; 28(2): 425-437, 2022 Feb.
Article in English | MEDLINE | ID: mdl-35400885

ABSTRACT

Drought is the main limiting factor of maize productivity, therefore improving drought tolerance in maize has potential practical importance. Cloning and functional verification of drought-tolerant genes is of great importance to understand molecular mechanisms under drought stress. Here, we employed a bioinformatic pipeline to identify 42 ZmHDZ drought responsive genes using previously reported maize transcriptomic datasets. The coding sequences, exon-intron structure and domain organization of all the 42 genes were identified. Phylogenetic analysis revealed evolutionary conservation of members of the ZmHDZ genes in maize. Several regulatory elements associated with drought tolerance were identified in the promoter regions of ZmHDZ genes, indicating the implication of these genes in plant response to drought stress. 42 ZmHDZ genes were distributed unevenly on 10 chromosomes, and 24 pairs of gene duplications were the segmental duplication. The expression of several ZmHDZ genes was upregulated under drought stress, and ZmHDZ9 overexpressing transgenic plants exhibited higher SOD and POD activities and higher accumulation of soluble proteins under drought stress which resulted in enhanced developed phenotype and improved resistance. The present study provides evidence for the evolutionary conservation of HD-ZIP transcription factors homologs in maize. The results further provide a comprehensive insight into the roles of ZmHDZ genes in regulating drought stress tolerance in maize.

12.
J Exp Bot ; 72(22): 7792-7807, 2021 12 04.
Article in English | MEDLINE | ID: mdl-34338753

ABSTRACT

Flowering time is an important agronomic trait that determines the distribution and adaptation of plants. The accurate prediction of flowering time in elite germplasm is critical for maize breeding. However, the molecular mechanisms underlying the photoperiod response remain elusive in maize. Here we cloned the flowering time-controlling gene, ZmNF-YC2, by map-based cloning and confirmed that ZmNF-YC2 is the nuclear transcription factor Y subunit C-2 protein and a positive regulator of flowering time in maize under long-day conditions. Our results show that ZmNF-YC2 promotes the expression of ZmNF-YA3. ZmNF-YA3 negatively regulates the transcription of ZmAP2. ZmAP2 suppresses the expression of ZMM4 to delay flowering time. We then developed a gene regulatory model of flowering time in maize using ZmNF-YC2, ZmNF-YA3, ZmAP2, ZMM4, and other key genes. The cascading regulation by ZmNF-YC2 of maize flowering time has not been reported in other species.


Subject(s)
Gene Expression Regulation, Plant , Zea mays , Flowers/genetics , Flowers/metabolism , Photoperiod , Plant Proteins/genetics , Plant Proteins/metabolism , Zea mays/genetics , Zea mays/metabolism
13.
Soft Matter ; 17(30): 7227-7235, 2021 Aug 05.
Article in English | MEDLINE | ID: mdl-34286804

ABSTRACT

A C3-symmetric acylhydrazone-based low molecular weight gelator (BHTP) bearing three pyridine units was synthesized and it was found to form a stable supramolecular gel in the mixture solvent of DMSO-H2O. The morphology of the gel as observed by FE-SEM showed a dense sheet structure. Hydrogen bonding and π-π stacking between the gelators were determined as the non-covalent interactions for the gelation, which were investigated thoroughly using XRD, UV-Vis, 1H NMR and FT-IR instruments. BHTP could form pH tolerant supramolecular gels in the widest range of pH values from 1 to 11. The DMSO-H2O (v : v = 1 : 1) gel exhibited selective response to OH- over a series of other anions through the color change from a white gel to a yellow solution, and the OH- response mechanism was proved by 1H NMR experiments. In solution, the lowest detection limit of BHTP for OH- was calculated to be as low as 1.62 × 10-7 M via UV-Vis titration experiments. Finally, encapsulation and controlled release of small molecules such as rhodamine B, crystal violet and methyl orange have been successfully carried out, demonstrating the potential for drug delivery application of this C3-symmetric supramolecular gel. This work opens a novel avenue for the preparation of supramolecular gel-based multiple functional smart materials.

14.
J Biol Chem ; 294(3): 772-782, 2019 01 18.
Article in English | MEDLINE | ID: mdl-30429217

ABSTRACT

Autophagy is of key importance for eliminating aggregated proteins during the maintenance of cellular proteostasis in response to endoplasmic reticulum (ER) stress. However, the upstream signaling that mediates autophagy activation in response to ER stress is incompletely understood. In this study, in vivo and in vitro approaches were utilized that include gain- and loss-of-function assays and mouse livers and human cell lines with tunicamycin-induced pharmacological ER stress. We report that calreticulin, a quality control chaperone that binds to misfolded glycoproteins for refolding in the ER, is induced under ER stress. Calreticulin overexpression stimulated the formation of autophagosomes and increased autophagic flux. Interestingly, calreticulin was sufficient for attenuating ER stress in tunicamycin- or thapsigargin-treated HeLa cells, whereas lentivirus-mediated shRNA calreticulin knockdown exacerbated ER stress. Mechanistically, we noted that calreticulin induces autophagy by interacting with microtubule-associated protein 1A/1B-light chain 3 (LC3). Confocal microscopy revealed that the colocalization of calreticulin and LC3 at the autophagosome was enhanced under ER stress conditions. Importantly, a conserved LC3-interacting region was necessary for calreticulin-mediated stimulation of autophagy and for reducing ER stress. These findings indicate a calreticulin-based mechanism that couples ER stress to autophagy activation, which, in turn, attenuates cellular stress, likely by alleviating the formation of aberrantly folded proteins. Pharmacological or genetic approaches that activate calreticulin-autophagy signaling may have potential for managing ER stress and related cellular disorders.


Subject(s)
Autophagosomes/metabolism , Autophagy , Calreticulin/metabolism , Endoplasmic Reticulum Stress , Endoplasmic Reticulum/metabolism , Microtubule-Associated Proteins/metabolism , Calreticulin/genetics , Endoplasmic Reticulum/genetics , HEK293 Cells , HeLa Cells , Humans , Microtubule-Associated Proteins/genetics
15.
EMBO J ; 35(5): 496-514, 2016 Mar 01.
Article in English | MEDLINE | ID: mdl-26834238

ABSTRACT

The Beclin1-VPS34 complex is recognized as a central node in regulating autophagy via interacting with diverse molecules such as ATG14L for autophagy initiation and UVRAG for autophagosome maturation. However, the underlying molecular mechanism that coordinates the timely activation of VPS34 complex is poorly understood. Here, we identify that PAQR3 governs the preferential formation and activation of ATG14L-linked VPS34 complex for autophagy initiation via two levels of regulation. Firstly, PAQR3 functions as a scaffold protein that facilitates the formation of ATG14L- but not UVRAG-linked VPS34 complex, leading to elevated capacity of PI(3)P generation ahead of starvation signals. Secondly, AMPK phosphorylates PAQR3 at threonine 32 and switches on PI(3)P production to initiate autophagosome formation swiftly after glucose starvation. Deletion of PAQR3 leads to reduction of exercise-induced autophagy in mice, accompanied by a certain degree of disaggregation of ATG14L-associated VPS34 complex. Together, this study uncovers that PAQR3 can not only enhance the capacity of pro-autophagy class III PI3K due to its scaffold function, but also integrate AMPK signal to activation of ATG14L-linked VPS34 complex upon glucose starvation.


Subject(s)
AMP-Activated Protein Kinases/metabolism , Autophagy/physiology , Class III Phosphatidylinositol 3-Kinases/metabolism , Intracellular Signaling Peptides and Proteins/metabolism , Vesicular Transport Proteins/metabolism , Animals , Apoptosis Regulatory Proteins/metabolism , Autophagy-Related Proteins , Beclin-1 , Glucose/deficiency , HEK293 Cells , HeLa Cells , Humans , Intracellular Signaling Peptides and Proteins/genetics , Liver/metabolism , Male , Membrane Proteins , Mice, Knockout , Muscle, Skeletal/metabolism , Running/physiology , Signal Transduction
16.
Plant Cell Environ ; 43(9): 2272-2286, 2020 09.
Article in English | MEDLINE | ID: mdl-32562291

ABSTRACT

The growth and development of maize are negatively affected by various abiotic stresses including drought, high salinity, extreme temperature, and strong wind. Therefore, it is important to understand the molecular mechanisms underlying abiotic stress resistance in maize. In the present work, we identified that a novel NAC transcriptional factor, ZmNST3, enhances maize lodging resistance and drought stress tolerance. ChIP-Seq and expression of target genes analysis showed that ZmNST3 could directly regulate the expression of genes related to cell wall biosynthesis which could subsequently enhance lodging resistance. Furthermore, we also demonstrated that ZmNST3 affected the expression of genes related to the synthesis of antioxidant enzyme secondary metabolites that could enhance drought resistance. More importantly, we are the first to report that ZmNST3 directly binds to the promoters of CESA5 and Dynamin-Related Proteins2A (DRP2A) and activates the expression of genes related to secondary cell wall cellulose biosynthesis. Additionally, we revealed that ZmNST3 directly binds to the promoters of GST/GlnRS and activates genes which could enhance the production of antioxidant enzymes in vivo. Overall, our work contributes to a comprehensive understanding of the regulatory network of ZmNST3 in regulating maize lodging and drought stress resistance.


Subject(s)
Droughts , Plant Proteins/genetics , Transcription Factors/genetics , Zea mays/physiology , Cell Wall/genetics , Cell Wall/metabolism , Cellulose/genetics , Cellulose/metabolism , Dehydration , Enzymes/genetics , Enzymes/metabolism , Gene Expression Regulation, Plant , Genome-Wide Association Study , Lignin/genetics , Lignin/metabolism , Mutation , Plant Proteins/metabolism , Plants, Genetically Modified , Sequence Analysis, RNA , Transcription Factors/metabolism
17.
Biomacromolecules ; 21(12): 5369-5379, 2020 12 14.
Article in English | MEDLINE | ID: mdl-33252219

ABSTRACT

The construction of supramolecular assembly whose singlet oxygen (1O2) generation capability can be controllably regulated in water still remains challenging. Herein, a novel cyclodextrin secondary assembly was fabricated from the photochromic-switch moiety diarylethene-bridged dicyclodextrin, the adamantane-polypyridyl ruthenium photosensitizer, and the cancer-cell-targeting ligand ß-cyclodextrin-grafted hyaluronic acid, which not only possessed cancer-cell-targeting ability but also served as cell imaging and photodynamic therapy agents with noninvasive controllability. In virtue of the multivalent interactions between the three components, they could self-assemble in two stages to form uniform spherical nanoparticles (OF-NPs) with average diameters of about 80 nm, as indicated by scanning electron microscopy, high-resolution transmission electron microscopy, atomic force microscopy, and dynamic light scattering. Significantly, the prepared OF-NPs exhibited excellent photochromic performance and can transform into their ring-closed form (CF-NPs), accompanied by the efficient energy transfer from donor 2 to CF-1 and gradual quenching of 1O2 generation. Cellular imaging experiments showed that OF-NPs could specifically target the mitochondria of A549 cancer cells, while CF-NPs displayed a negligible red fluorescence signal in A549 cells due to the energy-transfer process. Furthermore, in vitro cytotoxicity tests revealed that upon irradiation with 450 nm light, OF-NPs with 10 µM concentration displayed a remarkable higher cytotoxicity with the cell death rate of up to 88% toward A549 cancer cells, which was approximately 4.4 times higher than that of CF-NPs. Additionally, the apoptosis rate of A549 cells induced by OF-NPs under light irradiation was 4.68 times higher than that of CF-NPs. These well-designed cyclodextrin secondary assemblies successfully achieve noninvasive control over the generation of 1O2 both in water and in cancer cells by irradiation at distinct wavelengths and are further applied in targeted PDT, which avoid the inadvertent photosensitizer activation and provide a new approach for cancer therapy with more safety and high efficiency.


Subject(s)
Cyclodextrins , Nanoparticles , Photochemotherapy , Photosensitizing Agents/pharmacology , Singlet Oxygen , Water
18.
Physiol Mol Biol Plants ; 26(4): 705-717, 2020 Apr.
Article in English | MEDLINE | ID: mdl-32255934

ABSTRACT

The plant-specific NAC transcription factor (TFs) plays crucial role in plant growth as well as in stress resistance. In the present study, 87 Zea mays NAC TFs were obtained from the transcriptome analysis using drought-resistant maize inbred line Y882 as experimental material under PEG stress and rewatering treatment. Comprehensive analyses were conducted including genes structure, chromosomal localization, phylogenetic tree and motif prediction, cis-elements and expression patterns. The results showed that the 87 ZmNAC genes distributed on 10 chromosomes and were categorized into 15 groups based on their conserved gene structure and motifs. Phylogenetic tree analysis was also constructed referencing to the counterparts of Arabidopsis and rice, and the stress-related cis-elements in the promoter region were also analyzed. 87 ZmNAC genes exhibited different expression levels at 3 treatment points, indicating different response to drought stress. This genome-wide analysis of 87 ZmNAC genes will provide basis for further gene function detection.

19.
Cell Physiol Biochem ; 46(4): 1536-1554, 2018.
Article in English | MEDLINE | ID: mdl-29689560

ABSTRACT

BACKGROUND/AIMS: This study determined the role and mechanism of action of transcription factor EB (TFEB) in H2O2-induced neuronal apoptosis. METHODS: SH-SY5Y cells were treated with Akt inhibitor/activator and different concentrations of H2O2. Cell apoptosis was detected by flow cytometric analysis. Akt and TFEB phosphorylation and PARP cleavage were determined by Western blotting. HEK293T cells were transfected with different truncated TFEB mutants and HA-Akt-WT; SH-SY5Y cells were transfected with Flag-vector, Flag-TFEB, Flag-TFEB-S467A or Flag-TFEB-S467D; and TFEB interaction with Akt was determined by co-immunoprecipitation and GST pull-down assays. RESULTS: A low concentration of H2O2 induces TFEB phosphorylation at Ser467 and nuclear translocation, facilitating neuronal survival, whereas a high concentration of H2O2 promotes SH-SY5Y cell apoptosis via suppressing TFEB Ser467 phosphorylation and nuclear translocation. The TFEB-S467D mutant is more easily translocated into the nucleus than the non-phosphorylated TFEB-S467A mutant. Further, Akt physically binds to TFEB via its C-terminal tail interaction with the HLH domain of TFEB and phosphorylates TFEB at Ser467. Mutation of TFEB-Ser467 can prevent the phosphorylation of TFEB by Akt, preventing inhibition of oxidative stress-induced apoptosis. CONCLUSIONS: Oxidative stress induces neuronal apoptosis through suppressing TFEB phosphorylation at Ser467 by Akt, providing a novel therapeutic strategy for neurodegenerative diseases.


Subject(s)
Apoptosis/drug effects , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/metabolism , Hydrogen Peroxide/toxicity , Oxidative Stress/drug effects , Androstadienes/pharmacology , Animals , Cell Line, Tumor , Flavonoids/pharmacology , HEK293 Cells , Humans , Male , Mice, Inbred C57BL , Neurons/cytology , Neurons/metabolism , Phosphorylation/drug effects , Protein Kinase Inhibitors/pharmacology , Proto-Oncogene Proteins c-akt/antagonists & inhibitors , Proto-Oncogene Proteins c-akt/metabolism , Reactive Oxygen Species/metabolism , Serine/metabolism , Signal Transduction/drug effects , Wortmannin
20.
BMC Plant Biol ; 17(1): 243, 2017 Dec 19.
Article in English | MEDLINE | ID: mdl-29258431

ABSTRACT

BACKGROUND: In Arabidopsis, the tapetum and microsporocytes are critical for pollen formation. Previous studies have shown that ARF17 is expressed in microsporocytes and tetrads and directly regulates tetrad wall synthesis for pollen formation. ARF17 is the direct target of miR160, and promoterARF17::5mARF17 (5mARF17/WT) transgenic plants, which have five silent mutations within the miR160-complementary domain, are sterile. RESULTS: Here, we found that ARF17 is also expressed in the tapetum, which was defective in arf17 mutants. Compared with arf17 mutants, 5mARF17/WT plants had abnormal tapetal cells and tetrads but were less vacuolated in the tapetum. Immunocytochemical assays showed that the ARF17 protein over-accumulated in tapetum, microsporocytes and tetrads of 5mARF17/WT plants at early anther stages, but its expression pattern was not affected during anther development. 5mARF17 driven by its native promoter did not rescue the arf17 male-sterile phenotype. The expression of 5mARF17 driven by the tapetum-specific promoter A9 led to a defective tapetum and male sterility in transgenic plants. These results suggest that the overexpression of ARF17 in the tapetum and microsporocytes of 5mARF17/WT plants leads to male sterility. Microarray data revealed that an abundance of genes involved in transcription and translation are ectopically expressed in 5mARF17/WT plants. CONCLUSIONS: Our work shows that ARF17 plays an essential role in anther development and pollen formation, and ARF17 expression under miR160 regulation is critical for its function during anther development.


Subject(s)
Arabidopsis Proteins/genetics , Arabidopsis/growth & development , Arabidopsis/genetics , Flowers/growth & development , Gene Expression Regulation, Plant , Pollen/growth & development , Transcription Factors/genetics , Arabidopsis/metabolism , Arabidopsis Proteins/metabolism , Flowers/genetics , Plants, Genetically Modified/genetics , Plants, Genetically Modified/growth & development , Plants, Genetically Modified/metabolism , Pollen/genetics , Transcription Factors/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL