Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Aquac Nutr ; 2024: 3147505, 2024.
Article in English | MEDLINE | ID: mdl-38374819

ABSTRACT

This study developed a recombinant Bacillus subtilis to carry the LGSPDVIVIR peptide (cmP4) isolated from the hydrolyzed products of cottonseed meal with excellent antioxidant and immune-enhancing properties in vitro. It was carried as a tandem of five cmP4 peptides (cmP4') to be stably expressed on a large scale. Then, its effectiveness was evaluated in Chinese mitten crab (Eriocheir sinensis) based on growth performance, redox defense, and innate immunity. A total of 280 crabs (mean body weight: 41.40 ± 0.14) were randomly assigned to seven diets including a control one (without B. subtilis) and six experimental ones with different doses (107,108, and 109 CFU/kg) of unmodified and recombinant B. subtilis, respectively, for 12 weeks. Each diet was tested in four tanks of crabs (10/tank). In terms of bacterial dosages, the final weight (FW), weight gain (WG), hemolymph and hepatopancreatic activities of superoxide dismutase (SOD), catalase (CAT), lysosome (LZM), acid phosphatase (ACP) and alkaline phosphatase (AKP), and hepatopancreatic transcriptions of cat, mitochondrial manganese superoxide dismutase (mtmnsod), thioredoxin-1 (trx1), and prophenoloxidase (propo) all increased significantly with increasing B. subtilis dosages, while hemolymph and hepatopancreatic malondialdehyde (MDA) content and the transcriptions of toll like receptors (tlrs), NF-κB-like transcription factor (relish), and lipopolysaccharide-induced TNF-α factor (litaf) all decreased remarkably. In terms of bacterial species, the recombinant B. subtilis group obtained significantly high values of FW, WG, hemolymph, and hepatopancreatic activities of SOD, CAT, LZM, ACP, and AKP, and the transcriptions of mtmnsod, peroxiredoxin 6 (prx6), and propo compared with the unmodified B. subtilis, while opposite results were noted in hemolymph and hepatopancreatic MDA content and the transcriptions of tlrs, relish, and litaf. These results indicated that dietary supplementation with 109 CFU/kg of recombinant B. subtilis can improve the growth performance, redox defense, and nonspecific immunity of E. sinensis.

2.
Aquac Nutr ; 2023: 8347921, 2023.
Article in English | MEDLINE | ID: mdl-37415969

ABSTRACT

Growth retardation and prolonged marketing cycle have been noticed in the practical aquaculture of Chinese mitten crab (Eriocheir sinensis) fed with artificial feed. Plant protein hydrolysates contain a large number of small peptides and free amino acids, which can improve the growth performance of aquatic animals. However, the potential mechanisms are still not well elucidated. In this research, the influences of cottonseed meal protein hydrolysate (CPH) on the growth, feed utilization, muscle growth, and molting performance were investigated in E. sinensis. A total of 240 crabs (mean body weight 37.32 ± 0.38 g) were individually randomly distributed to six diets supplemented with 0%, 0.2%, 0.4%, 0.8%, 1.6%, and 3.2% of CPH for 12 weeks. These findings indicated that the addition of CPH at 0.4% significantly increased the survival rate, body protein gain, apparent protein utilization, trypsin and pepsin activities, and the methyl farnesoate content. When the dose reached 0.8%, the weight growth ratio, meat yield, ecdysone concentration, and the transcription of the ecdysteroid receptor all significantly increased, while the transcriptions of both myostatin and molt-inhibiting hormone significantly decreased. When CPH was added at 1.6%-3.2%, the feed conversion ratio, body crude protein content, Na+/K+-ATPase activity, and the molting ratio were all significantly improved, while the opposite was true for the transcription of the transforming growth factor-ß type I receptor. The investigation results indicated that when added above 0.4%, CPH could stimulate the growth performance of E. sinensis and promote the muscle growth and molting performance.

SELECTION OF CITATIONS
SEARCH DETAIL