Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
J Biol Chem ; 300(9): 107649, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39122011

ABSTRACT

Amaryllidaceae alkaloids are a diverse group of alkaloids exclusively reported from the Amaryllidaceae plant family. In planta, their biosynthesis is still not fully characterized; however, a labeling study established 4'-O-methylnorbelladine as the key intermediate compound of the pathway. Previous reports have characterized O-methyltransferases from several Amaryllidaceae species. Nevertheless, the formation of the different O-methylnorbelladine derivatives (3'-O-methylnorbelladine, 4'-O-methylnorbelladine, and 3'4'-O-dimethylnorbelladine), the role, and the preferred substrates of O-methyltransferases are not clearly understood. In this study, we performed the biochemical characterization of an O-methyltransferase candidate from Narcissus papyraceus (NpOMT) in vitro and in vivo, following biotransformation of norbelladine in Nicotiana benthamiana having transient expression of NpOMT. Docking analysis was further used to investigate substrate preferences, as well as key interacting residues of NpOMT. Our study shows that NpOMT methylates norbelladine preferentially at the 4'-OH position in vitro and in planta. Interestingly, NpOMT also catalyzed the synthesis of 3',4'-O-dimethylnorbelladine from norbelladine and 4'-O-methylnorbelladine during in vitro enzymatic assay. Furthermore, we show that NpOMT methylates 3,4-dihydroxybenzylaldehyde and caffeic acid in a nonregiospecific manner to produce meta/para monomethylated products. This study reveals a novel catalytic potential of an Amaryllidaceae O-methyltransferase and its ability to regioselectively methylate norbelladine in the heterologous host N. benthamiana.


Subject(s)
Methyltransferases , Plant Proteins , Methyltransferases/metabolism , Methyltransferases/chemistry , Methyltransferases/genetics , Plant Proteins/metabolism , Plant Proteins/chemistry , Plant Proteins/genetics , Kinetics , Amaryllidaceae Alkaloids/metabolism , Amaryllidaceae Alkaloids/chemistry , Nicotiana/metabolism , Nicotiana/genetics , Narcissus/metabolism , Narcissus/chemistry , Narcissus/enzymology , Substrate Specificity , Molecular Docking Simulation
2.
Nat Prod Rep ; 41(5): 721-747, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38131392

ABSTRACT

Covering: 2017 to 2023 (now)Amaryllidaceae alkaloids (AAs) are a unique class of specialized metabolites containing heterocyclic nitrogen bridging that play a distinct role in higher plants. Irrespective of their diverse structures, most AAs are biosynthesized via intramolecular oxidative coupling. The complex organization of biosynthetic pathways is constantly enlightened by new insights owing to the advancement of natural product chemistry, synthetic organic chemistry, biochemistry, systems and synthetic biology tools and applications. These promote novel compound identification, trace-level metabolite quantification, synthesis, and characterization of enzymes engaged in AA catalysis, enabling the recognition of biosynthetic pathways. A complete understanding of the pathway benefits biotechnological applications in the long run. This review emphasizes the structural diversity of the AA specialized metabolites involved in biogenesis although the process is not entirely defined yet. Moreover, this work underscores the pivotal role of synthetic and enantioselective studies in justifying biosynthetic conclusions. Their prospective candidacy as lead constituents for antiviral drug discovery has also been established. However, a complete understanding of the pathway requires further interdisciplinary efforts in which antiviral studies address the structure-activity relationship. This review presents current knowledge on the topic.


Subject(s)
Amaryllidaceae Alkaloids , Antiviral Agents , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Antiviral Agents/metabolism , Amaryllidaceae Alkaloids/pharmacology , Amaryllidaceae Alkaloids/chemistry , Amaryllidaceae Alkaloids/metabolism , Biosynthetic Pathways , Molecular Structure , Structure-Activity Relationship
3.
J Exp Bot ; 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38652148

ABSTRACT

Amaryllidaceae alkaloid (AAs) biosynthesis has garnered significant attention in recent years, particularly with the commercialisation of galanthamine as a treatment for the symptoms of Alzheimer's disease. A significant amount of research work over the last 8 decades has focused on the understanding of AA biosynthesis, starting from early radiolabelling studies to recent multi-omics analysis with modern biotechnological advancements. Those studies enabled the identification of hundreds of metabolites, the characterisation of biochemical pathway, an understanding of the environmental stimuli, and of the molecular regulation of these pharmaceutically and agriculturally important metabolites. Despite the numerous works there remain significant gaps in understanding their biosynthesis in Amaryllidaceae plants. As such, further research is needed to fully elucidate the metabolic pathway and facilitate their production. This review aims to provide a comprehensive overall summary of the current state of knowledge on AAs biosynthesis, from elicitation of transcription factors expression in the cell nucleus to alkaloid transport in the apoplast, and to highlight the challenges that need to be overcome for further advancement.

4.
Biomolecules ; 12(7)2022 06 25.
Article in English | MEDLINE | ID: mdl-35883449

ABSTRACT

Amaryllidaceae alkaloids (AAs) are plant specialized metabolites with therapeutic properties exclusively produced by the Amaryllidaceae plant family. The two most studied representatives of the family are galanthamine, an acetylcholinesterase inhibitor used as a treatment of Alzheimer's disease, and lycorine, displaying potent in vitro and in vivo cytotoxic and antiviral properties. Unfortunately, the variable level of AAs' production in planta restricts most of the pharmaceutical applications. Several biotechnological alternatives, such as in vitro culture or synthetic biology, are being developed to enhance the production and fulfil the increasing demand for these AAs plant-derived drugs. In this review, current biotechnological approaches to produce different types of bioactive AAs are discussed.


Subject(s)
Amaryllidaceae Alkaloids , Amaryllidaceae , Acetylcholinesterase , Amaryllidaceae Alkaloids/pharmacology , Cholinesterase Inhibitors/pharmacology , Galantamine
SELECTION OF CITATIONS
SEARCH DETAIL