Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 67
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Cell Mol Life Sci ; 80(8): 237, 2023 Aug 02.
Article in English | MEDLINE | ID: mdl-37530856

ABSTRACT

Lipids in cell membranes and subcellular compartments play essential roles in numerous cellular processes, such as energy production, cell signaling and inflammation. A specific organelle lipidome is characterized by lipid synthesis and metabolism, intracellular trafficking, and lipid homeostasis in the organelle. Over the years, considerable effort has been directed to the identification of the lipid fingerprints of cellular organelles. However, these fingerprints are not fully characterized due to the large variety and structural complexity of lipids and the great variability in the abundance of different lipid species. The process becomes even more challenging when considering that the lipidome differs in health and disease contexts. This review summarizes the information available on the lipid composition of mammalian cell organelles, particularly the lipidome of the nucleus, mitochondrion, endoplasmic reticulum, Golgi apparatus, plasma membrane and organelles in the endocytic pathway. The lipid compositions of extracellular vesicles and lamellar bodies are also described. In addition, several examples of subcellular lipidome dynamics under physiological and pathological conditions are presented. Finally, challenges in mapping organelle lipidomes are discussed.


Subject(s)
Lipidomics , Lipids , Animals , Lipids/analysis , Lipid Metabolism , Organelles/metabolism , Cell Nucleus/metabolism , Mitochondria/metabolism , Mammals
2.
Cell Mol Life Sci ; 80(7): 177, 2023 Jun 07.
Article in English | MEDLINE | ID: mdl-37285022

ABSTRACT

Cells release extracellular vesicles (EVs) of different sizes. Small EVs (< 200 nm) can originate from the fusion of multivesicular bodies with the plasma membrane, i.e. exosomes, and from budding of the plasma membrane, i.e. small ectosomes. To investigate the molecular machinery required for the release of small EVs, we developed a sensitive assay based on incorporation of radioactive cholesterol in EV membranes and used it in a siRNA screening. The screening showed that depletion of several SNARE proteins affected the release of small EVs. We focused on SNAP29, VAMP8, syntaxin 2, syntaxin 3 and syntaxin 18, the depletion of which reduced the release of small EVs. Importantly, this result was verified using gold standard techniques. SNAP29 depletion resulted in the largest effect and was further investigated. Immunoblotting analysis of small EVs showed that the release of several proteins considered to be associated with exosomes like syntenin, CD63 and Tsg101 was reduced, while the level of several proteins that have been shown to be released in ectosomes (annexins) or by secretory autophagy (LC3B and p62) was not affected by SNAP29 depletion. Moreover, these proteins appeared in different fractions when the EV samples were further separated by a density gradient. These results suggest that SNAP29 depletion mainly affects the secretion of exosomes. To investigate how SNAP29 affects exosome release, we used microscopy to study the distribution of MBVs using CD63 labelling and CD63-pHluorin to detect fusion events of MVBs with the plasma membrane. SNAP29 depletion caused a redistribution of CD63-labelled compartments but did not change the number of fusion events. Further experiments are therefore needed to fully understand the function of SNAP29. To conclude, we have developed a novel screening assay that has allowed us to identify several SNAREs involved in the release of small EVs.


Subject(s)
Exosomes , Extracellular Vesicles , Exosomes/genetics , Exosomes/metabolism , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , Multivesicular Bodies/metabolism , Autophagy
3.
FASEB J ; 36(4): e22218, 2022 04.
Article in English | MEDLINE | ID: mdl-35218567

ABSTRACT

An immunoregulatory role of stem cells, often mediated by their secretome, has been claimed by several studies. Stem cell-derived extracellular vesicles (EVs) are crucial components of the secretome. EVs, a heterogeneous group of membranous vesicles released by many cell types into the extracellular space, are now considered as an additional mechanism for intercellular communication. In this study, we aimed at investigating whether human amniotic stem cell-derived extracellular vesicles (HASC-EVs) were able to interfere with inflammasome activation in the THP-1 cell line. Two subsets of HASC-EVs were collected by sequential centrifugation, namely HASC-P10 and HASC-P100. We demonstrated that HASC-EVs were neither internalized into nor undertake a direct interaction with THP-1 cells. We showed that HASC-P10 and P100 were able to intrinsically produce ATP, which was further converted to adenosine by 5'-nucleotidase (CD73) and ectonucleoside triphosphate diphosphohydrolase-1 (CD39). We found that THP-1 cells conditioned with both types of HASC-EVs failed to activate the NLRP3/caspase-1/inflammasome platform in response to LPS and ATP treatment by a mechanism involving A2a adenosine receptor activation. These results support a role for HASC-EVs as independent metabolic units capable of modifying the cellular functions, leading to anti-inflammatory effects in monocytic cells.


Subject(s)
Amniotic Fluid/cytology , Anti-Inflammatory Agents/pharmacology , Extracellular Vesicles/metabolism , Inflammasomes/antagonists & inhibitors , Inflammation/prevention & control , Monocytes/cytology , Stem Cells/cytology , Adenosine/metabolism , Amniotic Fluid/metabolism , Humans , Inflammation/genetics , Inflammation/metabolism , Inflammation/pathology , Monocytes/metabolism , Purinergic P1 Receptor Antagonists/pharmacology , Receptors, Purinergic P1/chemistry , Receptors, Purinergic P1/metabolism , Stem Cells/metabolism , THP-1 Cells
4.
Br J Cancer ; 126(3): 492-501, 2022 02.
Article in English | MEDLINE | ID: mdl-34811506

ABSTRACT

BACKGROUND: Active surveillance is an alternative to radical treatment for patients with low-risk prostate cancer, which could also benefit some patients with intermediate risk. We have investigated the use of miRNA in urinary extracellular vesicles to stratify these patients. METHODS: NGS was performed to profile the miRNAs from small urinary extracellular vesicles in a cohort of 70 patients with prostate cancer ISUP Grade 1, 2 or 3. The most promising candidates were then analysed by RT-qPCR in a new cohort of 60 patients. RESULTS: NGS analysis identified nine miRNAs differentially expressed in at least one of the comparisons. The largest differences were found with miR-1290 (Grade 3 vs. 1), miR-320a-3p (Grade 3 vs. 2) and miR-155-5p (Grade 2 vs. 1). Combinations of 2-3 miRNAs were able to differentiate between two ISUP grades with an AUC 0.79-0.88. RT-qPCR analysis showed a similar trend for miR-186-5p and miR-30e-5p to separate Grade 3 from 2, and miR-320a-3p to separate Grade 2 from 1. CONCLUSIONS: Using NGS, we have identified several miRNAs that discriminate between prostate cancer patients with ISUP Grades 1, 2 and 3. Moreover, miR-186-5p, miR-320a-3p and miR-30e-5p showed a similar behaviour in an independent cohort using an alternative analytical method. Our results show that miRNAs from urinary vesicles can be potentially useful as liquid biopsies for active surveillance.


Subject(s)
Biomarkers, Tumor/genetics , Extracellular Vesicles/genetics , Gene Expression Regulation, Neoplastic , MicroRNAs/urine , Prostatectomy/methods , Prostatic Neoplasms/pathology , Watchful Waiting/methods , Biomarkers, Tumor/urine , Extracellular Vesicles/pathology , Humans , Male , MicroRNAs/genetics , Neoplasm Grading , Prostatic Neoplasms/genetics , Prostatic Neoplasms/surgery , Prostatic Neoplasms/urine , ROC Curve
5.
Br J Cancer ; 126(3): 331-350, 2022 02.
Article in English | MEDLINE | ID: mdl-34811504

ABSTRACT

Prostate cancer is a global cancer burden and considerable effort has been made through the years to identify biomarkers for the disease. Approximately a decade ago, the potential of analysing extracellular vesicles in liquid biopsies started to be envisaged. This was the beginning of a new exciting area of research investigating the rich molecular treasure found in extracellular vesicles to identify biomarkers for a variety of diseases. Vesicles released from prostate cancer cells and cells of the tumour microenvironment carry molecular information about the disease that can be analysed in several biological fluids. Numerous studies document the interest of researchers in this field of research. However, methodological issues such as the isolation of vesicles have been challenging. Remarkably, novel technologies, including those based on nanotechnology, show promise for the further development and clinical use of extracellular vesicles as liquid biomarkers. Development of biomarkers is a long and complicated process, and there are still not many biomarkers based on extracellular vesicles in clinical use. However, the knowledge acquired during the last decade constitutes a solid basis for the future development of liquid biopsy tests for prostate cancer. These are urgently needed to bring prostate cancer treatment to the next level in precision medicine.


Subject(s)
Biomarkers, Tumor/analysis , Cell-Free Nucleic Acids/analysis , Early Detection of Cancer/methods , Extracellular Vesicles/metabolism , Liquid Biopsy/methods , Neoplastic Cells, Circulating/pathology , Prostatic Neoplasms/diagnosis , Animals , Cell-Free Nucleic Acids/genetics , Cell-Free Nucleic Acids/metabolism , Extracellular Vesicles/genetics , Humans , Male , Precision Medicine , Prostatic Neoplasms/genetics , Prostatic Neoplasms/metabolism
6.
Int J Mol Sci ; 22(8)2021 Apr 09.
Article in English | MEDLINE | ID: mdl-33918699

ABSTRACT

Renal fibrosis is a complex disorder characterized by the destruction of kidney parenchyma. There is currently no cure for this devastating condition. Extracellular vesicles (EVs) are membranous vesicles released from cells in both physiological and diseased states. Given their fundamental role in transferring biomolecules to recipient cells and their ability to cross biological barriers, EVs have been widely investigated as potential cell-free therapeutic agents. In this review, we provide an overview of EVs, focusing on their functional role in renal fibrosis and signaling messengers responsible for EV-mediated crosstalk between various renal compartments. We explore recent findings regarding the renoprotective effect of EVs and their use as therapeutic agents in renal fibrosis. We also highlight advantages and future perspectives of the therapeutic applications of EVs in renal diseases.


Subject(s)
Extracellular Vesicles/metabolism , Kidney Diseases/metabolism , Kidney Diseases/pathology , Animals , Cell-Derived Microparticles/metabolism , Disease Management , Disease Susceptibility , Exosomes/metabolism , Fetal Blood/cytology , Fibroblasts/metabolism , Fibrosis , Humans , Kidney Diseases/etiology , Mesenchymal Stem Cells/metabolism
7.
Expert Rev Proteomics ; 17(4): 257-273, 2020 04.
Article in English | MEDLINE | ID: mdl-32427033

ABSTRACT

INTRODUCTION: The importance of biomarkers for pharmaceutical drug development and clinical diagnostics is more significant than ever in the current shift toward personalized medicine. Biomarkers have taken a central position either as companion markers to support drug development and patient selection, or as indicators aiming to detect the earliest perturbations indicative of disease, minimizing therapeutic intervention or even enabling disease reversal. Protein biomarkers are of particular interest given their central role in biochemical pathways. Hence, capabilities to analyze multiple protein biomarkers in one assay are highly interesting for biomedical research. AREAS COVERED: We here review multiple methods that are suitable for robust, high throughput, standardized, and affordable analysis of protein biomarkers in a multiplex format. We describe innovative developments in immunoassays, the vanguard of methods in clinical laboratories, and mass spectrometry, increasingly implemented for protein biomarker analysis. Moreover, emerging techniques are discussed with potentially improved protein capture, separation, and detection that will further boost multiplex analyses. EXPERT COMMENTARY: The development of clinically applied multiplex protein biomarker assays is essential as multi-protein signatures provide more comprehensive information about biological systems than single biomarkers, leading to improved insights in mechanisms of disease, diagnostics, and the effect of personalized medicine.


Subject(s)
Biomarkers/chemistry , Proteomics/methods , Animals , Biomarkers/analysis , Humans , Immunoassay/methods , Mass Spectrometry/methods
8.
J Pathol ; 249(1): 6-18, 2019 09.
Article in English | MEDLINE | ID: mdl-31095738

ABSTRACT

Bone metastasis is present in a high percentage of breast cancer (BCa) patients with distant disease, especially in those with the estrogen receptor-positive (ER+ ) subtype. Most cells that escape primary tumors are unable to establish metastatic lesions, which suggests that target organ microenvironments are hostile for tumor cells. This implies that BCa cells must achieve a process of speciation to adapt to the new conditions imposed in the new organ. Bone has unique characteristics that can be exploited by cancer cells: it undergoes constant remodeling and comprises diverse environments (including osteogenic, perivascular, and hematopoietic stem cell niches). This allows colonizing cells to take advantage of numerous adhesion molecules, matrix proteins, and soluble factors that facilitate homing, survival, and, eventually, metastatic outgrowth. However, in most cases, metastatic lesions enter into a latency state that can last months, years, or even decades, before forming a clinically detectable macrometastasis. This dormant state challenges the effectiveness of adjuvant chemotherapy. Detecting which tumors are more prone to metastasize to bone and developing new specific therapies that target bone metastasis represent urgent clinical needs. Here, we review the biological mechanisms of BCa bone metastasis and provide the latest options of treatments and predictive markers that are currently in clinical use or are being tested in clinical assays. © 2019 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.


Subject(s)
Bone Neoplasms/secondary , Breast Neoplasms/pathology , Neoplastic Cells, Circulating/pathology , Tumor Microenvironment , Animals , Bone Neoplasms/metabolism , Bone Neoplasms/prevention & control , Bone Neoplasms/therapy , Breast Neoplasms/metabolism , Breast Neoplasms/therapy , Cell Proliferation , Cell Survival , Disease Progression , Female , Humans , Neoplasm Micrometastasis , Neoplastic Cells, Circulating/metabolism , Prognosis , Time Factors
9.
J Lipid Res ; 60(1): 9-18, 2019 01.
Article in English | MEDLINE | ID: mdl-30076207

ABSTRACT

Exosomes are a type of extracellular vesicle released from cells after fusion of multivesicular bodies with the plasma membrane. These vesicles are often enriched in cholesterol, SM, glycosphingolipids, and phosphatidylserine. Lipids not only have a structural role in exosomal membranes but also are essential players in exosome formation and release to the extracellular environment. Our knowledge about the importance of lipids in exosome biology is increasing due to recent technological developments in lipidomics and a stronger focus on the biological functions of these molecules. Here, we review the available information about the lipid composition of exosomes. Special attention is given to ether lipids, a relatively unexplored type of lipids involved in membrane trafficking and abundant in some exosomes. Moreover, we discuss how the lipid composition of exosome preparations may provide useful information about their purity. Finally, we discuss the role of phosphoinositides, membrane phospholipids that help to regulate membrane dynamics, in exosome release and how this process may be linked to secretory autophagy. Knowledge about exosome lipid composition is important to understand the biology of these vesicles and to investigate possible medical applications.


Subject(s)
Ether/chemistry , Exosomes/metabolism , Phosphatidylinositols/chemistry , Phosphatidylinositols/metabolism , Animals , Humans
10.
Cell Mol Life Sci ; 75(2): 193-208, 2018 01.
Article in English | MEDLINE | ID: mdl-28733901

ABSTRACT

Exosomes are nanosized membrane vesicles released by fusion of an organelle of the endocytic pathway, the multivesicular body, with the plasma membrane. This process was discovered more than 30 years ago, and during these years, exosomes have gone from being considered as cellular waste disposal to mediate a novel mechanism of cell-to-cell communication. The exponential interest in exosomes experienced during recent years is due to their important roles in health and disease and to their potential clinical application in therapy and diagnosis. However, important aspects of the biology of exosomes remain unknown. To explore the use of exosomes in the clinic, it is essential that the basic molecular mechanisms behind the transport and function of these vesicles are better understood. We have here summarized what is presently known about how exosomes are formed and released by cells. Moreover, other cellular processes related to exosome biogenesis and release, such as autophagy and lysosomal exocytosis are presented. Finally, methodological aspects related to exosome release studies are discussed.


Subject(s)
Cell Membrane/metabolism , Exosomes/metabolism , Membrane Fusion , Multivesicular Bodies/metabolism , Animals , Autophagy , Biological Transport , Exocytosis , Humans , Lysosomes/metabolism
11.
Biochem Biophys Res Commun ; 495(2): 1930-1935, 2018 01 08.
Article in English | MEDLINE | ID: mdl-29248729

ABSTRACT

Cancer-derived extracellular vesicles (EVs) have emerged as important mediators of tumour-host interactions, and they have been shown to exert various functional effects in immune cells. In most of the studies on human immune cells, EVs have been isolated from cancer cell culture medium or patients' body fluids and added to the immune cell cultures. In such a setting, the physiological relevance of the chosen EV concentration is unknown and the EV isolation method and the timing of EV administration may bias the results. In the current study we aimed to develop an experimental cell culture model to study EV-mediated effects in human T and B cells at conditions mimicking the tumour microenvironment. We constructed a human prostate cancer cell line PC3 producing GFP-tagged EVs (PC3-CD63-GFP cells) and developed a 3D heterotypic spheroid model composed of PC3-CD63-GFP cells and human peripheral blood mononuclear cells (PBMCs). The transfer of GFP-tagged EVs from PC3-CD63-GFP cells to the lymphocytes was analysed by flow cytometry and fluorescence imaging. The endocytic pathway was investigated using three endocytosis inhibitors. Our results showed that GFP-tagged EVs interacted with a large fraction of B cells, however, the majority of EVs were not internalised by B cells but rather remained bound at the cell surface. T cell subsets differed in their ability to interact with the EVs - 15.7-24.1% of the total CD3+ T cell population interacted with GFP-tagged EVs, while only 0.3-5.8% of CD8+ T were GFP positive. Furthermore, a fraction of EVs were internalised in CD3+ T cells via macropinocytosis. Taken together, the heterotypic PC3-CD63-GFP and PBMC spheroid model provides the opportunity to study the interactions and functional effects of cancer-derived EVs in human immune cells at conditions mimicking the tumour microenvironment.


Subject(s)
Cell Communication/immunology , Coculture Techniques/methods , Extracellular Vesicles/immunology , Extracellular Vesicles/pathology , Leukocytes, Mononuclear/immunology , Neoplasms, Experimental/immunology , Spheroids, Cellular/immunology , Cell Line, Tumor , Humans , Leukocytes, Mononuclear/pathology , Neoplasms, Experimental/pathology , Spheroids, Cellular/pathology
12.
Cell Commun Signal ; 16(1): 17, 2018 04 24.
Article in English | MEDLINE | ID: mdl-29690889

ABSTRACT

BACKGROUND: Macrophages are one of the most important players in the tumor microenvironment. The polarization status of tumor associated macrophages into a pro-inflammatory type M1 or anti-inflammatory type M2 may influence cancer progression and patient survival. Extracellular vesicles (EVs) are membrane-bound vesicles containing different biomolecules that are involved in cell to cell signal transfer. Accumulating evidence suggests that cancer-derived EVs are taken up by macrophages and modulate their phenotype and cytokine profile. However, the interactions of cancer-derived EVs with monocytes and macrophages at various differentiation and polarization states are poorly understood. In the current study, we have analyzed the uptake and functional effects of primary (SW480) and metastatic (SW620) isogenic colorectal cancer (CRC) cell line-derived EVs on monocytes (M), inactive macrophages (M0) and M1 and M2 polarized macrophages. METHODS: THP-1 monocytes were differentiated into M0 macrophages by addition of phorbol-12-myristate-13-acetate. Then M0 macrophages were further polarized into M1 and M2 macrophages in the presence of LPS, IFN- γ, IL-4, and IL-13 respectively. Internalization of SW480 and SW620-derived EVs was analyzed by flow cytometry and fluorescence microscopy. Changes in monocyte and macrophage immunophenotype and secretory profile upon EV exposure were analyzed by flow cytometry, quantitative PCR and Luminex assays. RESULTS: THP-1 monocytes and M0 macrophages efficiently take up SW480 and SW620-derived EVs, and our results indicate that dynamin-dependent endocytic pathways may be implicated. Interestingly, SW480 and SW620-derived EVs increased CD14 expression in M0 macrophages whereas SW480-derived EVs decreased HLA-DR expression in M1 and M2 polarized macrophages. Moreover, SW480-derived EVs significantly increased CXCL10 expression in monocytes and M0 macrophages. In contrast, SW620-derived EVs induced secretion of IL-6, CXCL10, IL-23 and IL-10 in M0 macrophages. However, addition of CRC cell line-derived EVs together with LPS, IFN- γ (M1) and IL-4, IL-13 (M2) stimuli during macrophage polarization had no additional effect on cytokine expression in M1 and M2 macrophages. CONCLUSION: Our results suggest that CRC cell line-derived EVs are internalized and reprogram the immunophenotype and secretory profile in monocytes and inactive macrophages inducing mixed M1 and M2 cytokine response. Although CRC EVs decreased HLA-DR expression in M1, M2 polarized macrophages, their effect on the secretory profile of M1 and M2 polarized macrophages was negligible.


Subject(s)
Cytokines/metabolism , Extracellular Vesicles/metabolism , Cell Differentiation/drug effects , Cell Line, Tumor , Cell Survival , Chemokines/genetics , Chemokines/metabolism , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/pathology , Cytokines/genetics , Dynamins/metabolism , Endocytosis , Extracellular Vesicles/chemistry , HLA-DR Antigens/genetics , HLA-DR Antigens/metabolism , Humans , Immunophenotyping , Interferon-gamma/pharmacology , Lectins, C-Type/metabolism , Lipopolysaccharide Receptors/metabolism , Lipopolysaccharides/pharmacology , Macrophages/cytology , Macrophages/metabolism , Mannose Receptor , Mannose-Binding Lectins/metabolism , Monocytes/cytology , Monocytes/metabolism , Receptors, Cell Surface/metabolism , Tetradecanoylphorbol Acetate/pharmacology
14.
Biochim Biophys Acta ; 1858(2): 281-8, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26654782

ABSTRACT

It has been a long-standing question how the two leaflets in a lipid bilayer modulate each others' physical properties. In this paper, we discuss how this interaction may take place through interdigitation. We use atomistic molecular dynamics simulations to consider asymmetric lipid membrane models whose compositions are based on the lipidomics data determined for exosomes released by PC-3 prostate cancer cells. The simulations show interdigitation to be exceptionally strong for long-chain sphingomyelin (SM) molecules. In asymmetric membranes the amide-linked chain of SM is observed to extend deep into the opposing membrane leaflet. Interestingly, we find that the conformational order of the amide-linked SM chain increases the deeper it penetrates to the opposing leaflet. Analysis of this finding reveals that the amide-linked SM chain interacts favorably with the lipid chains in the opposite leaflet, and that cholesterol modulates the effect of SM interdigitation by influencing the conformational order of lipid hydrocarbon chains in the opposing (cytosolic) leaflet.


Subject(s)
Cell Membrane/metabolism , Cholesterol/metabolism , Models, Biological , Prostatic Neoplasms/metabolism , Sphingomyelins/metabolism , Cell Line, Tumor , Humans , Male
15.
Mol Cancer ; 16(1): 156, 2017 10 05.
Article in English | MEDLINE | ID: mdl-28982366

ABSTRACT

The aim of this study was to identify microRNAs in urinary exosomes that are differently expressed in prostate cancer patients and healthy donors. For this purpose, RNA was extracted from urinary exosomes from 20 prostate cancer patients and 9 healthy males and the microRNAs were analyzed by next generation sequencing. Interestingly, 5 microRNAs - miR-196a-5p, miR-34a-5p, miR-143-3p, miR-501-3p and miR-92a-1-5p - were significantly downregulated in exosomes from prostate cancer patients. Furthermore, RT-qPCR analysis of an independent cohort of 28 prostate cancer patients and 19 healthy males confirmed that miR-196a-5p and miR-501-3p were downregulated in prostate cancer samples. These results suggest that specific microRNAs in urinary exosomes might serve as non-invasive biomarkers for prostate cancer. In particular, miR-196a-5p and miR-501-3p are promising biomarkers that need to be further studied in large patient cohorts.


Subject(s)
Exosomes/genetics , MicroRNAs/genetics , Prostatic Neoplasms/genetics , Prostatic Neoplasms/urine , Adult , Aged , Biomarkers , Case-Control Studies , High-Throughput Nucleotide Sequencing , Humans , Male , MicroRNAs/isolation & purification , MicroRNAs/urine , Middle Aged , Neoplasm Grading , Neoplasm Staging , Prostatic Neoplasms/diagnosis , ROC Curve , Reproducibility of Results
16.
BMC Cancer ; 17(1): 730, 2017 Nov 09.
Article in English | MEDLINE | ID: mdl-29121858

ABSTRACT

BACKGROUND: Circulating cell-free miRNAs have emerged as promising minimally-invasive biomarkers for early detection, prognosis and monitoring of cancer. They can exist in the bloodstream incorporated into extracellular vesicles (EVs) and ribonucleoprotein complexes. However, it is still debated if EVs contain biologically meaningful amounts of miRNAs and may provide a better source of miRNA biomarkers than whole plasma. The aim of this study was to systematically compare the diagnostic potential of prostate cancer-associated miRNAs in whole plasma and in plasma EVs. METHODS: RNA was isolated from whole plasma and plasma EV samples from a well characterised cohort of 50 patient with prostate cancer (PC) and 22 patients with benign prostatic hyperplasia (BPH). Nine miRNAs known to have a diagnostic potential for PC in cell-free blood were quantified by RT-qPCR and the relative quantities were compared between patients with PC and BPH and between PC patients with Gleason score ≥ 8 and ≤6. RESULTS: Only a small fraction of the total cell-free miRNA was recovered from the plasma EVs, however the EV-incorporated and whole plasma cell-free miRNA profiles were clearly different. Four of the miRNAs analysed showed a diagnostic potential in our patient cohort. MiR-375 could differentiate between PC and BPH patients when analysed in the whole plasma, while miR-200c-3p and miR-21-5p performed better when analysed in plasma EVs. EV-incorporated but not whole plasma Let-7a-5p level could distinguish PC patients with Gleason score ≥ 8 vs ≤6. CONCLUSIONS: This study demonstrates that for some miRNA biomarkers EVs provide a more consistent source of RNA than whole plasma, while other miRNAs show better diagnostic performance when tested in the whole plasma.


Subject(s)
Biomarkers, Tumor/blood , Circulating MicroRNA/blood , Extracellular Vesicles/metabolism , Prostatic Neoplasms/blood , Adult , Aged , Aged, 80 and over , Cohort Studies , Humans , Male , MicroRNAs/blood , Middle Aged , Prostatic Neoplasms/diagnosis
17.
Cell Mol Life Sci ; 73(24): 4717-4737, 2016 12.
Article in English | MEDLINE | ID: mdl-27438886

ABSTRACT

Exosomes are vesicles released from cells by fusion of multivesicular bodies (MVBs) with the plasma membrane. This study aimed to investigate whether the phosphoinositide kinase PIKfyve affects this process. Our results show that in PC-3 cells inhibition of PIKfyve by apilimod or depletion by siRNA increased the secretion of the exosomal fraction. Moreover, quantitative electron microscopy analysis showed that cells treated with apilimod contained more MVBs per cell and more intraluminal vesicles per MVB. Interestingly, mass spectrometry analysis revealed a considerable enrichment of autophagy-related proteins (NBR1, p62, LC3, WIPI2) in exosomal fractions released by apilimod-treated cells, a result that was confirmed by immunoblotting. When the exosome preparations were investigated by electron microscopy a small population of p62-labelled electron dense structures was observed together with CD63-containing exosomes. The p62-positive structures were found in less dense fractions than exosomes in density gradients. Inside the cells, p62 and CD63 were found in the same MVB-like organelles. Finally, both the degradation of EGF and long-lived proteins were shown to be reduced by apilimod. In conclusion, inhibition of PIKfyve increases secretion of exosomes and induces secretory autophagy, showing that these pathways are closely linked. We suggest this is due to impaired fusion of lysosomes with both MVBs and autophagosomes, and possibly increased fusion of MVBs with autophagosomes, and that the cells respond by secreting the content of these organelles to maintain cellular homeostasis.


Subject(s)
Autophagy , Exosomes/metabolism , Phosphoinositide-3 Kinase Inhibitors , Secretory Pathway , Autophagosomes/drug effects , Autophagosomes/metabolism , Autophagy/drug effects , Autophagy-Related Proteins/metabolism , Cell Line, Tumor , Epidermal Growth Factor/metabolism , Exosomes/drug effects , Exosomes/ultrastructure , Gene Knockdown Techniques , Humans , Hydrazones , Lysosomes/drug effects , Lysosomes/metabolism , Morpholines/pharmacology , Multivesicular Bodies/drug effects , Multivesicular Bodies/metabolism , Multivesicular Bodies/ultrastructure , Phosphatidylinositol 3-Kinases/metabolism , Proteolysis/drug effects , Proteomics , Pyrimidines , RNA-Binding Proteins/metabolism , Secretory Pathway/drug effects , Tetraspanin 30/metabolism , Triazines/pharmacology , Ubiquitin/metabolism , Ubiquitination/drug effects , Up-Regulation/drug effects
18.
J Biol Chem ; 290(7): 4225-37, 2015 Feb 13.
Article in English | MEDLINE | ID: mdl-25519911

ABSTRACT

Exosomes are vesicles released by cells after fusion of multivesicular bodies with the plasma membrane. In this study, we have investigated whether ether lipids affect the release of exosomes in PC-3 cells. To increase the cellular levels of ether lipids, the ether lipid precursor hexadecylglycerol was added to cells. Lipidomic analysis showed that this compound was in fact able to double the cellular levels of ether lipids in these cells. Furthermore, increased levels of ether lipids were also found in exosomes released by cells containing high levels of these lipids. Interestingly, as measured by nanoparticle tracking analysis, cells containing high levels of ether lipids released more exosomes than control cells, and these exosomes were similar in size to control exosomes. Moreover, silver staining and Western blot analyses showed that the protein composition of exosomes released in the presence of hexadecylglycerol was changed; the levels of some proteins were increased, and the levels of others were reduced. In conclusion, this study clearly shows that an increase in cellular ether lipids is associated with changes in the release and composition of exosomes.


Subject(s)
Exosomes/chemistry , Exosomes/metabolism , Glyceryl Ethers/pharmacology , Lipids/analysis , Multivesicular Bodies/metabolism , Prostatic Neoplasms/metabolism , Humans , Male , Prostatic Neoplasms/pathology , Tumor Cells, Cultured
19.
Mol Cancer ; 15(1): 41, 2016 05 18.
Article in English | MEDLINE | ID: mdl-27189160

ABSTRACT

Prostate cancer, the second most frequently diagnosed cancer in males worldwide, is estimated to be diagnosed in 1.1 million men per year. Introduction of PSA testing substantially improved early detection of prostate cancer, however it also led to overdiagnosis and subsequent overtreatment of patients with an indolent disease. Treatment outcome and management of prostate cancer could be improved by the development of non-invasive biomarker assays that aid in increasing the sensitivity and specificity of prostate cancer screening, help to distinguish aggressive from indolent disease and guide therapeutic decisions. Prostate cancer cells release miRNAs into the bloodstream, where they exist incorporated into ribonucleoprotein complexes or extracellular vesicles. Later, cell-free miRNAs have been found in various other biofluids. The initial RNA sequencing studies suggested that most of the circulating cell-free miRNAs in healthy individuals are derived from blood cells, while specific disease-associated miRNA signatures may appear in the circulation of patients affected with various diseases, including cancer. This raised a hope that cell-free miRNAs may serve as non-invasive biomarkers for prostate cancer. Indeed, a number of cell-free miRNAs that potentially may serve as diagnostic, prognostic or predictive biomarkers have been discovered in blood or other biofluids of prostate cancer patients and need to be validated in appropriately designed longitudinal studies and clinical trials. In this review, we systematically summarise studies investigating cell-free miRNAs in biofluids of prostate cancer patients and discuss the utility of the identified biomarkers in various clinical scenarios. Furthermore, we discuss the possible mechanisms of miRNA release into biofluids and outline the biological questions and technical challenges that have arisen from these studies.


Subject(s)
MicroRNAs/genetics , Prostatic Neoplasms/diagnosis , Prostatic Neoplasms/genetics , Biological Transport , Biomarkers, Tumor , Body Fluids/metabolism , Disease Management , Extracellular Vesicles/metabolism , Gene Expression Profiling , Genetic Testing/methods , Genetic Testing/standards , Humans , Male , MicroRNAs/metabolism , Predictive Value of Tests , Prognosis , Prostatic Neoplasms/metabolism , Prostatic Neoplasms/mortality , Transcriptome
20.
PLoS Biol ; 10(12): e1001450, 2012.
Article in English | MEDLINE | ID: mdl-23271954

ABSTRACT

Extracellular vesicles (EVs) are membraneous vesicles released by a variety of cells into their microenvironment. Recent studies have elucidated the role of EVs in intercellular communication, pathogenesis, drug, vaccine and gene-vector delivery, and as possible reservoirs of biomarkers. These findings have generated immense interest, along with an exponential increase in molecular data pertaining to EVs. Here, we describe Vesiclepedia, a manually curated compendium of molecular data (lipid, RNA, and protein) identified in different classes of EVs from more than 300 independent studies published over the past several years. Even though databases are indispensable resources for the scientific community, recent studies have shown that more than 50% of the databases are not regularly updated. In addition, more than 20% of the database links are inactive. To prevent such database and link decay, we have initiated a continuous community annotation project with the active involvement of EV researchers. The EV research community can set a gold standard in data sharing with Vesiclepedia, which could evolve as a primary resource for the field.


Subject(s)
Databases as Topic , Exosomes/metabolism , Extracellular Space/metabolism , Research , Apoptosis
SELECTION OF CITATIONS
SEARCH DETAIL