ABSTRACT
In this Letter, we report a bridge-connected three-electrode germanium-on-silicon (Ge-on-Si) avalanche photodiode (APD) array compatible with the complementary metal-oxide semiconductor (CMOS) process. In addition to the two electrodes on the Si substrate, a third electrode is designed for Ge. A single three-electrode APD was tested and analyzed. By applying a positive voltage on the Ge electrode, the dark current of the device can be reduced, and yet the response of the device can be increased. Under a dark current of 100â nA, as the voltage on Ge increases from 0â V to 15â V, the light responsivity is increased from 0.6 A/W to 1.17 A/W. We report, for the first time to the best of our knowledge, the near-infrared imaging properties of an array of three-electrode Ge-on-Si APDs. Experiments show that the device can be used for LiDAR imaging and low-light detection.
ABSTRACT
The angular displacement sensor is a digital angular displacement measurement device that integrates optics, mechanics, and electronics. It has important applications in communication, servo control, aerospace, and other fields. Although conventional angular displacement sensors can achieve extremely high measurement accuracy and resolution, they cannot be integrated because complex signal processing circuitry is required at the photoelectric receiver, which limits their suitability for robotics and automotive applications. The design of a fully integrated line array angular displacement-sensing chip is presented for the first time using a combination of pseudo-random and incremental code channel designs. Based on the charge redistribution principle, a fully differential 12-bit, 1 MSPS sampling rate successive approximation analog-to-digital converter (SAR ADC) is designed for quantization and subdivision of the incremental code channel output signal. The design is verified with a 0.35 µm CMOS process and the area of the overall system is 3.5 × 1.8 mm2. The fully integrated design of the detector array and readout circuit is realized for the angular displacement sensing.
ABSTRACT
We demonstrate power-efficient, thermo-optic, silicon nitride waveguide phase shifters for blue, green, and yellow wavelengths. The phase shifters operated with low power consumption due to a suspended structure and multi-pass waveguide design. The devices were fabricated on 200-mm silicon wafers using deep ultraviolet lithography as part of an active visible-light integrated photonics platform. The measured power consumption to achieve a π phase shift (averaged over multiple devices) was 0.78, 0.93, 1.09, and 1.20 mW at wavelengths of 445, 488, 532, and 561 nm, respectively. The phase shifters were integrated into Mach-Zehnder interferometer switches, and 10 - 90% rise(fall) times of about 570(590) µs were measured.
ABSTRACT
Silicon based optoelectronic integrated optical phased array is attractive owing to large-dense integration, large scanning range and CMOS compatibility. In this paper, we design and fabricate a SiN-on-SOI two-dimensional optical phased array chip. We demonstrate a two-dimensional scanning range of 96°×14.4° and 690 mW peak power of the main lobe. Additionally, we set up the time of flight (ToF) and frequency-modulated continuous-wave (FMCW) ranging systems by using this optical phased array chip, and achieve the objects detection at the range of 20 m in the ToF system and 109 m in the FMCW system, respectively.
ABSTRACT
Two novel waveguide gratings for optical phased array transmitters are investigated. By offsetting the grating structures along the waveguide on the upper and lower surfaces of the silicon nitride (Si3N4) waveguide, the dual-level chain and dual-level fishbone structures can achieve 95% of unidirectional radiation with a single Si3N4 layer by design. With apodized perturbation along the gratings, both structures can achieve uniform radiation without compromising the unidirectional radiation performance. In experiment, both demonstrate â¼ 80-90% unidirectionality. With further analysis, it is found that the dual-level fishbone structure is more feasible and robust to process variations in uniform radiation.
ABSTRACT
To address the problem of traditional surface illuminated detectors being of low responsivity, this work proposes a large-size interdigitated "finger-type" germanium-on-silicon (Ge-on-Si) photodetector (PD) based on the surface illumination approach. For 1550â nm light with a surface incident power of -20 dBm at room temperature, the best responsivity of the PD achieved is â¼0.64 A/W at 0.5â V. At the same time, the optimal bandwidth reaches 1.537â MHz with 3.5â V applied voltage. In order to suppress the dark current induced noise, a Ge-on-Si avalanche photodiode (APD) with the interdigitated structure is designed. The avalanche voltage is designed â¼13.3â V at room temperature, and the dark current density in linear region is at mA/cm2 order. We believe this type of device can be applied in weak light detection condition.
ABSTRACT
The optical power handling of an OPA scanning beam determines its targeted detection distance. So far, a limited number of investigations have been conducted on the restriction of the beam power. To the best of our knowledge, we for the first time in this paper explore the ability of the silicon photonics based OPA circuit for the high power application. A 64-channel SiN-Si based one-dimensional (1D) OPA chip has been designed to handle high beam power to achieve large scanning range. The chip was fabricated on the standard silicon photonics platform. The main lobe power of our chip can reach 720 mW and its peak side-lobe level (PSLL) is -10.33 dB. We obtain a wide scanning range of 110° in the horizontal direction at 1550 nm wavelength, with a compressed longitudinal divergence angle of each scanning beam of 0.02°.
ABSTRACT
We present an experimental and theoretical physical random bit (PRB) generator using the mesoscopic chaos from a photonic-crystal optomechanical microcavity with a size of â¼10µm and very low operating intracavity energy of â¼60 Femto-Joule that was fabricated with CMOS compatible processes. Moreover, two kinds of PRB generation were proposed with rates over gigabits per second (Gbps). The randomness of the large PRB strings was further veriï¬ed using the NIST Special Publication 800-22. In addition, the Diehard statistical test was also used to confirm the quality of the obtained PRBs. The results of this study can offer a new generation of dedicated PRB solutions that can be integrated on Si substrates, which can speed up systems and eliminate reliance on external mechanisms for randomness collection.
ABSTRACT
We report on the design, fabrication and testing of three types of coupling structures for hybrid chalcogenide glass Ge23Sb7S70-Silicon (GeSbS-Si) photonic integrated circuit platforms. The first type is a fully etched GeSbS grating coupler defined directly in the GeSbS film. Coupling losses of 5.3 dB and waveguide-to-waveguide back-reflections of 3.4% were measured at a wavelength of 1553 nm. Hybrid GeSbS-to-Si butt couplers and adiabatic couplers transmitting light between GeSbS and Si single-mode waveguides were further developed. The hybrid butt couplers (HBCs) feature coupling losses of 2.7 dB and 9.2% back-reflection. The hybrid adiabatic couplers (HACs) exhibit coupling losses of 0.7 dB and negligible back-reflection. Both HBCs and HACs have passbands exceeding the 100 nm measurement range of the test setup. GeSbS grating couplers and GeSbS-to-Si waveguide couplers can be co-fabricated in the same process flow, providing, for example, a means to first couple high optical power levels required for nonlinear signal processing directly into GeSbS waveguides and to later transition into Si waveguides after attenuation of the pump. Moreover, GeSbS waveguides and HBC transitions have been fabricated on post-processed silicon photonics chips obtained from a commercially available foundry service, with a previously deposited 2 µm thick top waveguide cladding. This fabrication protocol demonstrates the compatibility of the developed integration scheme with standard silicon photonics technology with a complete back-end-of-line process.
ABSTRACT
Aluminum nitride on insulator (AlNOI) photonics platform has great potential for mid-infrared applications thanks to the large transparency window, piezoelectric property, and second-order nonlinearity of AlN. However, the deployment of AlNOI platform might be hindered by the high propagation loss. We perform thermal annealing study and demonstrate significant loss improvement in the mid-infrared AlNOI photonics platform. After thermal annealing at 400°C for 2 hours in ambient gas environment, the propagation loss is reduced by half. Bend loss and taper coupling loss are also investigated. The performance of multimode interferometer, directional coupler, and add/drop filter are improved in terms of insertion loss, quality factor, and extinction ratio. Fourier-transform infrared spectroscopy, Raman spectroscopy, and X-ray diffraction spectroscopy suggest the loss improvement is mainly attributed to the reduction of extinction coefficient in the silicon dioxide cladding. Apart from loss improvement, appropriate thermal annealing also helps in reducing thin film stress.
ABSTRACT
We report an aluminum nitride on insulator platform for mid-infrared (MIR) photonics applications beyond 3 µm. Propagation loss and bending loss are studied, while functional devices such as directional couplers, multimode interferometers, and add/drop filters are demonstrated with high performance. The complementary metal-oxide-semiconductor-compatible aluminum nitride offers advantages ranging from a large transparency window, high thermal and chemical resistance, to piezoelectric tunability and three-dimensional integration capability. This platform can have synergy with other photonics platforms to enable novel applications for sensing and thermal imaging in MIR.
ABSTRACT
A grating coupler is an essential building block for compact and flexible photonics integration. In order to meet the increasing demand of mid-infrared (MIR) integrated photonics for sensitive chemical/gas sensing, we report a silicon-on-insulator (SOI) based MIR subwavelength grating coupler (SWGC) operating in the 3.7 µm wavelength range. We provide the design guidelines of a uniform and apodized SWGC, followed by numerical simulations for design verification. We experimentally demonstrate both types of SWGC. The apodized SWGC enables high coupling efficiency of -6.477 dB/facet with 3 dB bandwidth of 199 nm, whereas the uniform SWGC shows larger 3dB bandwidth of 263.5 nm but slightly lower coupling efficiency of -7.371 dB/facet.
ABSTRACT
We experimentally realize a compact wideband polarization splitter and rotator (PSR) with CMOS compatibility. The fabricated PSR is then tested by utilizing a fabrication-tolerant TE-pass on-chip polarizer we propose to practically solve the issue of accurately aligning the polarizations in fiber and modes on chip. Both of these polarization handling devices take the advantage of bend structure that confines TE mode better than TM mode. The fabricated PSR has a high TM-TE and TE-TE mode conversion efficiency of -0.4 dB and -0.2 dB at 1310 nm, while the extinction ratio is better than 18 dB and the broad bandwidth exceeds 100 nm.
ABSTRACT
An AlN electro-optic phase shifter with a parallel plate capacitor structure is fabricated on Si using the back-end complementary metal-oxide-semiconductor technology, which is feasible for multilayer photonics integration. The modulation efficiency (Vπâ Lπ product) measured from the fabricated waveguide-ring resonators and Mach-Zehnder Interferometer (MZI) modulators near the 1550-nm wavelength is â¼240 Vâ cm for the transverse electric (TE) mode and â¼320 Vâ cm for the transverse magnetic (TM) mode, from which the Pockels coefficient of the deposited AlN is deduced to be â¼1.0 pm/V for both TE and TM modes. The methods for further modulation efficiency improvement are addressed.
ABSTRACT
We propose a compact highly-efficient CMOS-compatible polarization splitter and rotator (PSR) with a wide bandwidth covering the whole O-band. It benefits from the different confinement capability of TE and TM modes in bend structure. This bend structure helps shorten the PSR and maintain high efficiency, achieving the bending, polarization splitting, rotating of light beam at the same time. Numerical simulations utilizing Lumerical 3-D FDTD solutions demonstrate that the present PSR has a high TM-TE conversion efficiency of -0.11 dB and high TE-TE conversion efficiency of -0.09 dB at 1310 nm, while the extinction ratio is 27.36 dB and 30.61 dB respectively.
ABSTRACT
An ultra-simple polarization rotator is demonstrated on SOI platform with self-aligned process to enhance performance repeatability and manufactural yield. The polarization rotation is essentially achieved by the symmetry breaking of a channel waveguide with a single-sided slab. The two-step lithography enabling this structure is fully compatible with the mainstream process flow of Si photonic integration. A polarization conversion efficiency of 93% is obtained at 1560nm in less than 10µm light propagation length. The merit of flat-band operation (> 100nm) by using asymmetric waveguide for polarization rotation is inherited.
ABSTRACT
Inversely tapered spot size converter (SSC) is widely used to connect silicon waveguide with fiber in silicon photonics. However, the tapered structure may cause polarization rotation and further generate interference fluctuation in the transmission spectrum even of a straight waveguide. We analyzed the light propagation in a straight waveguide with SSC at the both ends with coupling matrix and transmission matrix methods. The analysis results matched with the phenomena we observed in the transmission spectrum. Combining the analysis with the measurement results, we calculated the polarization rotation efficiency of the SSC in different samples and analyzed the origin of the polarization rotation effect. Finally, we discussed the influence of the effect to the DP-QPSK signal and proposed several methods to release the impact.
ABSTRACT
We demonstrate electrically pumped two-section mode locked quantum well lasers emitting at the L-band of telecommunication wavelength on silicon utilizing die to wafer bonding techniques. The mode locked lasers generate pulses at a repetition frequency of 30 GHz with signal to noise ratio above 30 dB and 1 mW average output power per facet. Optical injection-locking scheme was used to improve the noise properties of the pulse trains of passively mode-locked laser. The phases of the mode-locked frequency comb are shown to be coherent with that of the master continuous-wave (CW) laser. The radio-frequency (RF)-line-width is reduced from 7.6 MHz to 150 kHz under CW optical injection. The corresponding pulse-to-pulse jitter and integrated RMS jitter are 29.7 fs/cycle and 1.0 ps, respectively. The experimental results demonstrate that optical injection can reduce the noise properties of the passively mode locked III-V/Si laser in terms of frequency linewidth and timing jitter, which makes the devices attractive for photonic analog-to-digital converters and clock generation and recovery.
ABSTRACT
In this paper, we demonstrate a compact electrically pumped distributed-feedback hybrid III-V/silicon laser with laterally coupled Bragg grating for the first time to the best of our knowledge. The hybrid laser structure consists of AlGaInAs/InP multi-quantum-well gain layers on top of a laterally corrugated silicon waveguide patterned on a silicon on insulator (SOI) substrate. A pair of surface couplers is integrated at the two ends of the silicon waveguide for the optical coupling and characterization of the ouput light. Single wavelength emission of ~1.55µm with a side-mode-suppression- ratio larger than 20dB and low threshold current density of 1.54kA/cm(2) were achieved for the device under pulsed operation at 20 °C.
ABSTRACT
We present a low-loss and small-footprint polarization rotator based on mode evolution. The polarization rotator is composed of an asymmetric-rib waveguide and a tapered waveguide, both of which consist only of a silicon core and a silica cladding. The rotator is fabricated under the same design rules as other device blocks, such as rib-waveguide phase shifters for photonic integration. The polarization rotator is fabricated using CMOS-based processes and provides polarization rotations with an on-chip insertion loss lower than 0.5 dB from transverse-electric (TE) to transverse-magnetic (TM) polarization and a loss lower than 1.0 dB from the TM to TE polarization in a 200 nm wavelength range extending over C and L bands.