Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 71
Filter
Add more filters

Publication year range
1.
Cell ; 167(2): 457-470.e13, 2016 Oct 06.
Article in English | MEDLINE | ID: mdl-27667687

ABSTRACT

Activated macrophages undergo metabolic reprogramming, which drives their pro-inflammatory phenotype, but the mechanistic basis for this remains obscure. Here, we demonstrate that upon lipopolysaccharide (LPS) stimulation, macrophages shift from producing ATP by oxidative phosphorylation to glycolysis while also increasing succinate levels. We show that increased mitochondrial oxidation of succinate via succinate dehydrogenase (SDH) and an elevation of mitochondrial membrane potential combine to drive mitochondrial reactive oxygen species (ROS) production. RNA sequencing reveals that this combination induces a pro-inflammatory gene expression profile, while an inhibitor of succinate oxidation, dimethyl malonate (DMM), promotes an anti-inflammatory outcome. Blocking ROS production with rotenone by uncoupling mitochondria or by expressing the alternative oxidase (AOX) inhibits this inflammatory phenotype, with AOX protecting mice from LPS lethality. The metabolic alterations that occur upon activation of macrophages therefore repurpose mitochondria from ATP synthesis to ROS production in order to promote a pro-inflammatory state.


Subject(s)
Inflammation/immunology , Macrophage Activation , Macrophages/immunology , Mitochondria/enzymology , Succinate Dehydrogenase/metabolism , Succinic Acid/metabolism , Adenosine Triphosphate/metabolism , Animals , Carbonyl Cyanide m-Chlorophenyl Hydrazone/pharmacology , Citric Acid Cycle , Glycolysis , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Inflammation/genetics , Interleukin-10/metabolism , Lipopolysaccharides/immunology , Macrophages/metabolism , Malonates/pharmacology , Membrane Potential, Mitochondrial , Mice , Mice, Inbred C57BL , Mitochondria/drug effects , Mitochondrial Proteins/metabolism , Oxidation-Reduction/drug effects , Oxidative Phosphorylation/drug effects , Oxidoreductases/metabolism , Plant Proteins/metabolism , Reactive Oxygen Species/metabolism , Sequence Analysis, RNA , Succinate Dehydrogenase/genetics , Transcriptome
2.
J Physiol ; 602(6): 1211-1225, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38381050

ABSTRACT

Gestational hypoxia adversely affects uterine artery function, increasing complications. However, an effective therapy remains unidentified. Here, we show in rodent uterine arteries that hypoxic pregnancy promotes hypertrophic remodelling, increases constrictor reactivity via protein kinase C signalling, and triggers compensatory dilatation via nitric oxide-dependent mechanisms and stimulation of large conductance Ca2+ -activated K+ -channels. Maternal in vivo oral treatment with the mitochondria-targeted antioxidant MitoQ in hypoxic pregnancy normalises uterine artery reactivity and prevents vascular remodelling. From days 6-20 of gestation (term ∼22 days), female Wistar rats were randomly assigned to normoxic or hypoxic (13-14% O2 ) pregnancy ± daily maternal MitoQ treatment (500 µm in drinking water). At 20 days of gestation, maternal, placental and fetal tissue was frozen to determine MitoQ uptake. The uterine arteries were harvested and, in one segment, constrictor and dilator reactivity was determined by wire myography. Another segment was fixed for unbiased stereological analysis of vessel morphology. Maternal administration of MitoQ in both normoxic and hypoxic pregnancy crossed the placenta and was present in all tissues analysed. Hypoxia increased uterine artery constrictor responses to norepinephrine, angiotensin II and the protein kinase C activator, phorbol 12,13-dibutyrate. Hypoxia enhanced dilator reactivity to sodium nitroprusside, the large conductance Ca2+ -activated K+ -channel activator NS1619 and ACh via increased nitric oxide-dependent mechanisms. Uterine arteries from hypoxic pregnancy showed increased wall thickness and MitoQ treatment in hypoxic pregnancy prevented all effects on uterine artery reactivity and remodelling. The data support mitochondria-targeted therapy against adverse changes in uterine artery structure and function in high-risk pregnancy. KEY POINTS: Dysfunction and remodelling of the uterine artery are strongly implicated in many pregnancy complications, including advanced maternal age, maternal hypertension of pregnancy, maternal obesity, gestational diabetes and pregnancy at high altitude. Such complications not only have immediate adverse effects on the growth of the fetus, but also they can also increase the risk of cardiovascular disease in the mother and offspring. Despite this, there is a significant unmet clinical need for therapeutics that treat uterine artery vascular dysfunction in adverse pregnancy. Here, we show in a rodent model of gestational hypoxia that in vivo oral treatment of the mitochondria-targeted antioxidant MitoQ protects against uterine artery vascular dysfunction and remodelling, supporting the use of mitochondria-targeted therapy against adverse changes in uterine artery structure and function in high-risk pregnancy.


Subject(s)
Placenta , Uterine Artery , Humans , Rats , Animals , Pregnancy , Female , Placenta/metabolism , Uterine Artery/physiology , Antioxidants/pharmacology , Antioxidants/metabolism , Rodentia , Nitric Oxide/metabolism , Rats, Wistar , Hypoxia , Protein Kinase C/metabolism , Mitochondria/metabolism
3.
BMC Health Serv Res ; 24(1): 1006, 2024 Aug 30.
Article in English | MEDLINE | ID: mdl-39215352

ABSTRACT

BACKGROUND: Stroke is a leading cause of mortality and disability. In higher-income countries, mortality and disability have been reduced with advances in stroke care and early access to rehabilitation services. However, access to such services and the subsequent impact on stroke outcomes in the Philippines, which is a lower- and middle-income countries (LMIC), is unclear. Understanding gaps in service delivery and underpinning research from acute to chronic stages post-stroke will allow future targeting of resources. AIMS: This scoping review aimed to map available literature on stroke services in the Philippines, based on Arksey and O'Malley's five-stage-process. A targeted strategy was used to search relevant databases (Focused: MEDLINE (ovid), EMBASE (ovid), Cumulative Index to Nursing and Allied Health Literature (CINAHL), PsycINFO (ebsco); broad-based: Scopus; review-based: Cochrane Library, International Prospective Register of Systematic Reviews (PROSPERO), JBI (formerly Joanna Briggs Institute) as well as grey literature (Open Grey, Google scholar). The searches were conducted between 12/2022-01/2023 and repeated 12/2023. Literature describing adults with stroke in the Philippines and stroke services that aimed to maximize well-being, participation and function were searched. Studies were selected if they included one or more of: (a) patient numbers and stroke characteristics (b) staff numbers, qualifications and role (c) service resources (e.g., access to a rehabilitation unit) (d) cost of services and methods of payment) (e) content of stroke care (f) duration of stroke care/rehabilitation and interventions undertaken (g) outcome measures used in clinical practice. A total of 70 papers were included. Articles were assessed, data extracted and classified according to structure, process, or outcome related information. Advances in stroke services, including stroke ready hospitals providing early access to acute care such as thrombectomy and thrombolysis and early referral to rehabilitation coupled with rehabilitation guidelines have been developed. Gaps exist in stroke services structure (e.g., low number of neurologists and neuroimaging, lack of stroke protocols and pathways, inequity of stroke care across urban and rural locations), processes (e.g., delayed arrival to hospital, lack of stroke training among health workers, low awareness of stroke among public and non-stroke care workers, inequitable access to rehabilitation both hospital and community) and outcomes (e.g., low government insurance coverage resulting in high out-of-pocket expenses, limited data on caregiver burden, absence of unified national stroke registry to determine prevalence, incidence and burden of stroke). Potential solutions such as increasing stroke knowledge and awareness, use of mobile stroke units, TeleMedicine, TeleRehab, improving access to rehabilitation, upgrading PhilHealth and a unified national long-term stroke registry representing the real situation across urban and rural were identified. CONCLUSION: This scoping review describes the existing evidence-base relating to structure, processes and outcomes of stroke services for adults within the Philippines. Developments in stroke services have been identified however, a wide gap exists between the availability of stroke services and the high burden of stroke in the Philippines. Strategies are critical to address the identified gaps as a precursor to improving stroke outcomes and reducing burden. Potential solutions identified within the review will require healthcare government and policymakers to focus on stroke awareness programs, primary and secondary stroke prevention, establishing and monitoring of stroke protocols and pathways, sustainable national stroke registry, and improve access to and availability of rehabilitation both hospital and community. WHAT IS ALREADY KNOWN?: Stroke services in the Philippines are inequitable, for example, urban versus rural due to the geography of the Philippines, location of acute stroke ready hospitals and stroke rehabilitation units, limited transport options, and low government healthcare insurance coverage resulting in high out-of-pocket costs for stroke survivors and their families. WHAT ARE THE NEW FINDINGS?: The Philippines have a higher incidence of stroke in younger adults than other LMICs, which impacts the available workforce and the country's economy. There is a lack of data on community stroke rehabilitation provision, the content and intensity of stroke rehabilitation being delivered and the role and knowledge/skills of those delivering stroke rehabilitation, unmet needs of stroke survivors and caregiver burden and strain, WHAT DO THE NEW FINDINGS IMPLY?: A wide gap exists between the availability of stroke services and the high burden of stroke. The impact of this is unclear due to the lack of a compulsory national stroke registry as well as published data on community or home-based stroke services that are not captured/published. WHAT DOES THIS REVIEW OFFER?: This review provides a broad overview of existing evidence-base of stroke services in the Philippines. It provides a catalyst for a) healthcare government to address stroke inequities and burden; b) development of future evidence-based interventions such as community-based rehabilitation; c) task-shifting e.g., training non-neurologists, barangay workers and caregivers; d) use of digital technologies and innovations e.g., stroke TeleRehab, TeleMedicine, mobile stroke units.


Subject(s)
Stroke Rehabilitation , Stroke , Humans , Health Services Accessibility/statistics & numerical data , Philippines/epidemiology , Stroke/therapy , Stroke Rehabilitation/statistics & numerical data , Stroke Rehabilitation/methods
4.
FASEB J ; 35(5): e21446, 2021 05.
Article in English | MEDLINE | ID: mdl-33788974

ABSTRACT

Mitochondria-derived oxidative stress during fetal development increases cardiovascular risk in adult offspring of pregnancies complicated by chronic fetal hypoxia. We investigated the efficacy of the mitochondria-targeted antioxidant MitoQ in preventing cardiovascular dysfunction in adult rat offspring exposed to gestational hypoxia, integrating functional experiments in vivo, with those at the isolated organ and molecular levels. Rats were randomized to normoxic or hypoxic (13%-14% O2 ) pregnancy ± MitoQ (500 µM day-1 ) in the maternal drinking water. At 4 months of age, one cohort of male offspring was chronically instrumented with vascular catheters and flow probes to test in vivo cardiovascular function. In a second cohort, the heart was isolated and mounted onto a Langendorff preparation. To establish mechanisms linking gestational hypoxia with cardiovascular dysfunction and protection by MitoQ, we quantified the expression of antioxidant system, ß-adrenergic signaling, and calcium handling genes in the fetus and adult, in frozen tissues from a third cohort. Maternal MitoQ in hypoxic pregnancy protected offspring against increased α1 -adrenergic reactivity of the cardiovascular system, enhanced reactive hyperemia in peripheral vascular beds, and sympathetic dominance, hypercontractility and diastolic dysfunction in the heart. Inhibition of Nfe2l2-mediated oxidative stress in the fetal heart and preservation of calcium regulatory responses in the hearts of fetal and adult offspring link molecular mechanisms to the protective actions of MitoQ treatment of hypoxic pregnancy. Therefore, these data show the efficacy of MitoQ in buffering mitochondrial stress through NADPH-induced oxidative damage and the prevention of programmed cardiovascular disease in adult offspring of hypoxic pregnancy.


Subject(s)
Antioxidants/pharmacology , Cardiovascular Diseases/prevention & control , Fetal Hypoxia/complications , Mitochondria/metabolism , Oxidative Stress , Prenatal Exposure Delayed Effects/prevention & control , Animals , Animals, Newborn , Calcium/metabolism , Cardiovascular Diseases/etiology , Cardiovascular Diseases/pathology , Female , Male , Pregnancy , Prenatal Exposure Delayed Effects/etiology , Prenatal Exposure Delayed Effects/pathology , Rats , Rats, Wistar
5.
Cardiovasc Drugs Ther ; 36(1): 1-13, 2022 02.
Article in English | MEDLINE | ID: mdl-32648168

ABSTRACT

PURPOSE: Mitochondrial reactive oxygen species (ROS) production upon reperfusion of ischemic tissue initiates the ischemia/reperfusion (I/R) injury associated with heart attack. During ischemia, succinate accumulates and its oxidation upon reperfusion by succinate dehydrogenase (SDH) drives ROS production. Inhibition of succinate accumulation and/or oxidation by dimethyl malonate (DMM), a cell permeable prodrug of the SDH inhibitor malonate, can decrease I/R injury. However, DMM is hydrolysed slowly, requiring administration to the heart prior to ischemia, precluding its administration to patients at the point of reperfusion, for example at the same time as unblocking a coronary artery following a heart attack. To accelerate malonate delivery, here we developed more rapidly hydrolysable malonate esters. METHODS: We synthesised a series of malonate esters and assessed their uptake and hydrolysis by isolated mitochondria, C2C12 cells and in mice in vivo. In addition, we assessed protection against cardiac I/R injury by the esters using an in vivo mouse model of acute myocardial infarction. RESULTS: We found that the diacetoxymethyl malonate diester (MAM) most rapidly delivered large amounts of malonate to cells in vivo. Furthermore, MAM could inhibit mitochondrial ROS production from succinate oxidation and was protective against I/R injury in vivo when added at reperfusion. CONCLUSIONS: The rapidly hydrolysed malonate prodrug MAM can protect against cardiac I/R injury in a clinically relevant mouse model.


Subject(s)
Cardiotonic Agents/pharmacology , Malonates/pharmacology , Myocardial Infarction/prevention & control , Myocardial Reperfusion Injury/drug therapy , Animals , Cardiotonic Agents/chemical synthesis , Cardiotonic Agents/chemistry , Cell Line , Disease Models, Animal , Esters/chemistry , Female , Humans , Male , Malonates/chemical synthesis , Malonates/chemistry , Mice , Mice, Inbred C57BL , Mitochondria/drug effects , Mitochondria/metabolism , Myocardial Reperfusion Injury/physiopathology , Prodrugs , Rats , Rats, Wistar , Reactive Oxygen Species/metabolism , Succinic Acid/metabolism
6.
Nature ; 535(7613): 561-5, 2016 07 28.
Article in English | MEDLINE | ID: mdl-27383793

ABSTRACT

Human mitochondrial DNA (mtDNA) shows extensive within population sequence variability. Many studies suggest that mtDNA variants may be associated with ageing or diseases, although mechanistic evidence at the molecular level is lacking. Mitochondrial replacement has the potential to prevent transmission of disease-causing oocyte mtDNA. However, extension of this technology requires a comprehensive understanding of the physiological relevance of mtDNA sequence variability and its match with the nuclear-encoded mitochondrial genes. Studies in conplastic animals allow comparison of individuals with the same nuclear genome but different mtDNA variants, and have provided both supporting and refuting evidence that mtDNA variation influences organismal physiology. However, most of these studies did not confirm the conplastic status, focused on younger animals, and did not investigate the full range of physiological and phenotypic variability likely to be influenced by mitochondria. Here we systematically characterized conplastic mice throughout their lifespan using transcriptomic, proteomic,metabolomic, biochemical, physiological and phenotyping studies. We show that mtDNA haplotype profoundly influences mitochondrial proteostasis and reactive oxygen species generation,insulin signalling, obesity, and ageing parameters including telomere shortening and mitochondrial dysfunction, resulting in profound differences in health longevity between conplastic strains.


Subject(s)
Aging/genetics , Cell Nucleus/genetics , DNA, Mitochondrial/genetics , Genetic Variation/genetics , Metabolism/genetics , Mitochondria/genetics , Mitochondria/metabolism , Aging/physiology , Animals , Female , Genome, Mitochondrial/genetics , Haplotypes , Insulin/metabolism , Longevity/genetics , Male , Metabolism/physiology , Metabolomics , Mice , Mice, Congenic , Mitochondria/pathology , Mitochondrial Proteins/genetics , Mitochondrial Proteins/metabolism , Obesity/genetics , Obesity/metabolism , Phenotype , Proteomics , Reactive Oxygen Species/metabolism , Telomere Shortening , Transcriptome , Unfolded Protein Response
7.
FASEB J ; 34(7): 9664-9677, 2020 07.
Article in English | MEDLINE | ID: mdl-32502311

ABSTRACT

Antenatal glucocorticoid therapy reduces mortality in the preterm infant, but evidence suggests off-target adverse effects on the developing cardiovascular system. Whether deleterious effects are direct on the offspring or secondary to alterations in uteroplacental physiology is unclear. Here, we isolated direct effects of glucocorticoids using the chicken embryo, a model system in which the effects on the developing heart and circulation of therapy can be investigated, independent of effects on the mother and/or the placenta. Fertilized chicken eggs were incubated and divided randomly into control (C) or dexamethasone (Dex) treatment at day 14 out of the 21-day incubation period. Combining functional experiments at the isolated organ, cellular and molecular levels, embryos were then studied close to term. Chicken embryos exposed to dexamethasone were growth restricted and showed systolic and diastolic dysfunction, with an increase in cardiomyocyte volume but decreased cardiomyocyte nuclear density in the left ventricle. Underlying mechanisms included a premature switch from tissue accretion to differentiation, increased oxidative stress, and activated signaling of cellular senescence. These findings, therefore, demonstrate that dexamethasone treatment can have direct detrimental off-target effects on the cardiovascular system in the developing embryo, which are independent of effects on the mother and/or placenta.


Subject(s)
Cellular Senescence , Dexamethasone/toxicity , Fibrosis/pathology , Glucocorticoids/toxicity , Myocytes, Cardiac/pathology , Oxidative Stress/drug effects , Animals , Chick Embryo , Chickens , Fibrosis/chemically induced , Myocytes, Cardiac/drug effects
8.
Clin Transplant ; 35(8): e14386, 2021 08.
Article in English | MEDLINE | ID: mdl-34132438

ABSTRACT

The use of allografts from hepatitis C virus (HCV) Nucleic Acid Testing (NAT)+ donors into HCV NAT- recipients has been reported to be efficacious in a handful of studies. However, these studies have not reflected real-world practice where the initiation of direct-acting antivirals (DAA) is dependent on insurance coverage. A single-center, retrospective chart review of HCV NAT- recipients who underwent solid organ transplantation (SOT) from a HCV NAT+ donor between April 1, 2019 and May 27, 2020 was conducted. Sixty-one HCV NAT- patients underwent SOT with a HCV NAT+ organ, with 59 transplant recipients included for evaluation: 22 kidney (KT), 18 liver (LiT), 10 heart (HT), nine lung (LuT). HCV transmission occurred in 100% of recipients. Average time to DAA initiation was POD 46.3 ± 25 days. SVR12 was achieved in 98% (56/57; two patients ineligible for analysis). Treatment failure occurred in one LuT on glecaprevir/pibrentasvir with P32del and Q80K mutations. No patients developed fibrosing cholestatic hepatitis. Two patients died, secondary to anastomotic complication (LuT) and pulmonary embolism (HT). Clinically significant rejection was diagnosed and treated in two HT (one patient with ACR2 and one with ACR2/pAMR2) and one LiT (RAI 5/9). Six patients (10.2%) had documented adverse effects attributed to DAA therapy, primarily gastrointestinal.


Subject(s)
Hepatitis C, Chronic , Hepatitis C , Nucleic Acids , Antiviral Agents/therapeutic use , Hepacivirus/genetics , Hepatitis C/diagnosis , Hepatitis C/drug therapy , Hepatitis C, Chronic/drug therapy , Humans , Nucleic Acids/therapeutic use , Retrospective Studies
9.
Cardiovasc Drugs Ther ; 34(6): 823-834, 2020 12.
Article in English | MEDLINE | ID: mdl-32979176

ABSTRACT

PURPOSE: HFpEF (heart failure with preserved ejection fraction) is a major consequence of diabetic cardiomyopathy with no effective treatments. Here, we have characterized Akita mice as a preclinical model of HFpEF and used it to confirm the therapeutic efficacy of the mitochondria-targeted dicarbonyl scavenger, MitoGamide. METHODS AND RESULTS: A longitudinal echocardiographic analysis confirmed that Akita mice develop diastolic dysfunction with reduced E peak velocity, E/A ratio and extended isovolumetric relaxation time (IVRT), while the systolic function remains comparable with wild-type mice. The myocardium of Akita mice had a decreased ATP/ADP ratio, elevated mitochondrial oxidative stress and increased organelle density, compared with that of wild-type mice. MitoGamide, a mitochondria-targeted 1,2-dicarbonyl scavenger, exhibited good stability in vivo, uptake into cells and mitochondria and reactivity with dicarbonyls. Treatment of Akita mice with MitoGamide for 12 weeks significantly improved the E/A ratio compared with the vehicle-treated group. CONCLUSION: Our work confirms that the Akita mouse model of diabetes replicates key clinical features of diabetic HFpEF, including cardiac and mitochondrial dysfunction. Furthermore, in this independent study, MitoGamide treatment improved diastolic function in Akita mice.


Subject(s)
Benzamides/pharmacology , Cardiovascular Agents/pharmacology , Diabetic Cardiomyopathies/prevention & control , Heart Failure/prevention & control , Stroke Volume/drug effects , Ventricular Dysfunction, Left/prevention & control , Ventricular Function, Left/drug effects , Animals , Diabetic Cardiomyopathies/metabolism , Diabetic Cardiomyopathies/physiopathology , Disease Models, Animal , Glycation End Products, Advanced/metabolism , Heart Failure/metabolism , Heart Failure/physiopathology , Male , Mice, Inbred C57BL , Mice, Mutant Strains , Mitochondria, Heart/drug effects , Mitochondria, Heart/metabolism , Ventricular Dysfunction, Left/metabolism , Ventricular Dysfunction, Left/physiopathology
10.
Nature ; 515(7527): 431-435, 2014 Nov 20.
Article in English | MEDLINE | ID: mdl-25383517

ABSTRACT

Ischaemia-reperfusion injury occurs when the blood supply to an organ is disrupted and then restored, and underlies many disorders, notably heart attack and stroke. While reperfusion of ischaemic tissue is essential for survival, it also initiates oxidative damage, cell death and aberrant immune responses through the generation of mitochondrial reactive oxygen species (ROS). Although mitochondrial ROS production in ischaemia reperfusion is established, it has generally been considered a nonspecific response to reperfusion. Here we develop a comparative in vivo metabolomic analysis, and unexpectedly identify widely conserved metabolic pathways responsible for mitochondrial ROS production during ischaemia reperfusion. We show that selective accumulation of the citric acid cycle intermediate succinate is a universal metabolic signature of ischaemia in a range of tissues and is responsible for mitochondrial ROS production during reperfusion. Ischaemic succinate accumulation arises from reversal of succinate dehydrogenase, which in turn is driven by fumarate overflow from purine nucleotide breakdown and partial reversal of the malate/aspartate shuttle. After reperfusion, the accumulated succinate is rapidly re-oxidized by succinate dehydrogenase, driving extensive ROS generation by reverse electron transport at mitochondrial complex I. Decreasing ischaemic succinate accumulation by pharmacological inhibition is sufficient to ameliorate in vivo ischaemia-reperfusion injury in murine models of heart attack and stroke. Thus, we have identified a conserved metabolic response of tissues to ischaemia and reperfusion that unifies many hitherto unconnected aspects of ischaemia-reperfusion injury. Furthermore, these findings reveal a new pathway for metabolic control of ROS production in vivo, while demonstrating that inhibition of ischaemic succinate accumulation and its oxidation after subsequent reperfusion is a potential therapeutic target to decrease ischaemia-reperfusion injury in a range of pathologies.


Subject(s)
Ischemia/metabolism , Mitochondria/metabolism , Reactive Oxygen Species/metabolism , Reperfusion Injury/metabolism , Succinic Acid/metabolism , Adenosine Monophosphate/metabolism , Animals , Aspartic Acid/metabolism , Citric Acid Cycle , Disease Models, Animal , Electron Transport , Electron Transport Complex I/metabolism , Fumarates/metabolism , Ischemia/enzymology , Malates/metabolism , Male , Metabolomics , Mice , Mitochondria/enzymology , Myocardial Infarction/enzymology , Myocardial Infarction/metabolism , Myocardium/cytology , Myocardium/enzymology , Myocardium/metabolism , Myocytes, Cardiac/enzymology , Myocytes, Cardiac/metabolism , NAD/metabolism , Reperfusion Injury/enzymology , Stroke/enzymology , Stroke/metabolism , Succinate Dehydrogenase/metabolism
11.
Am J Pathol ; 188(12): 2704-2716, 2018 12.
Article in English | MEDLINE | ID: mdl-30248337

ABSTRACT

The placenta responds to adverse environmental conditions by adapting its capacity for substrate transfer to maintain fetal growth and development. Early-onset hypoxia effects on placental morphology and activation of the unfolded protein response (UPR) were determined using an established rat model in which fetal growth restriction is minimized. We further established whether maternal treatment with a mitochondria-targeted antioxidant (MitoQ) confers protection during hypoxic pregnancy. Wistar dams were exposed to normoxia (21% O2) or hypoxia (13% to 14% O2) from days 6 to 20 of pregnancy with and without MitoQ treatment (500 µmol/L in drinking water). On day 20, animals were euthanized and weighed, and the placentas from male fetuses were processed for stereology to assess morphology. UPR activation in additional cohorts of frozen placentas was determined with Western blot analysis. Neither hypoxic pregnancy nor MitoQ treatment affected fetal growth. Hypoxia increased placental volume and the fetal capillary surface area and induced mitochondrial stress as well as the UPR, as evidenced by glucose-regulated protein 78 and activating transcription factor (ATF) 4 protein up-regulation. MitoQ treatment in hypoxic pregnancy increased placental maternal blood space surface area and volume and prevented the activation of mitochondrial stress and the ATF4 pathway. The data suggest that mitochondria-targeted antioxidants may be beneficial in complicated pregnancy via mechanisms protecting against placental stress and enhancing placental perfusion.


Subject(s)
Adaptation, Physiological , Antioxidants/pharmacology , Fetal Growth Retardation/drug therapy , Hypoxia/physiopathology , Mitochondria/drug effects , Placenta/physiology , Animals , Female , Fetal Growth Retardation/metabolism , Male , Mitochondria/metabolism , Mitochondria/pathology , Placenta/drug effects , Pregnancy , Rats , Rats, Wistar , Unfolded Protein Response
12.
Proc Natl Acad Sci U S A ; 113(46): 13063-13068, 2016 11 15.
Article in English | MEDLINE | ID: mdl-27799543

ABSTRACT

Neurons depend on oxidative phosphorylation for energy generation, whereas astrocytes do not, a distinctive feature that is essential for neurotransmission and neuronal survival. However, any link between these metabolic differences and the structural organization of the mitochondrial respiratory chain is unknown. Here, we investigated this issue and found that, in neurons, mitochondrial complex I is predominantly assembled into supercomplexes, whereas in astrocytes the abundance of free complex I is higher. The presence of free complex I in astrocytes correlates with the severalfold higher reactive oxygen species (ROS) production by astrocytes compared with neurons. Using a complexomics approach, we found that the complex I subunit NDUFS1 was more abundant in neurons than in astrocytes. Interestingly, NDUFS1 knockdown in neurons decreased the association of complex I into supercomplexes, leading to impaired oxygen consumption and increased mitochondrial ROS. Conversely, overexpression of NDUFS1 in astrocytes promoted complex I incorporation into supercomplexes, decreasing ROS. Thus, complex I assembly into supercomplexes regulates ROS production and may contribute to the bioenergetic differences between neurons and astrocytes.


Subject(s)
Astrocytes/metabolism , Electron Transport Complex I/metabolism , Mitochondria/metabolism , Neurons/metabolism , Reactive Oxygen Species/metabolism , Animals , Cells, Cultured , Energy Metabolism , Mice, Inbred C57BL , Rats, Wistar
13.
J Mol Cell Cardiol ; 123: 88-91, 2018 10.
Article in English | MEDLINE | ID: mdl-30118790

ABSTRACT

Ischemia-reperfusion (IR) injury occurs when blood supply to an organ is disrupted and then restored, and underlies many disorders, notably myocardial infarction and stroke. While reperfusion of ischemic tissue is essential for survival, it also initiates cell death through generation of mitochondrial reactive oxygen species (ROS). Recent work has revealed a novel pathway underlying ROS production at reperfusion in vivo in which the accumulation of succinate during ischemia and its subsequent rapid oxidation at reperfusion drives ROS production at complex I by reverse electron transport (RET). Pharmacologically inhibiting ischemic succinate accumulation, or slowing succinate metabolism at reperfusion, have been shown to be cardioprotective against IR injury. Here, we determined whether ischemic preconditioning (IPC) contributes to cardioprotection by altering kinetics of succinate accumulation and oxidation during IR. Mice were subjected to a 30-minute occlusion of the left anterior descending coronary artery followed by reperfusion, with or without a protective IPC protocol prior to sustained ischemia. We found that IPC had no effect on ischemic succinate accumulation with both control and IPC mice having profound increases in succinate compared to normoxia. Furthermore, after only 1-minute reperfusion succinate was rapidly metabolised returning to near pre-ischemic levels in both groups. We conclude that IPC does not affect ischemic succinate accumulation, or its oxidation at reperfusion.


Subject(s)
Ischemic Preconditioning, Myocardial , Myocardial Reperfusion Injury/metabolism , Oxidation-Reduction , Succinic Acid/metabolism , Analysis of Variance , Animals , Disease Models, Animal , Energy Metabolism , Male , Metabolome , Metabolomics/methods , Mice , Mitochondria/metabolism , Myocardial Reperfusion Injury/etiology , Myocardial Reperfusion Injury/pathology , Myocardial Reperfusion Injury/prevention & control , Myocardium/metabolism , Myocardium/pathology , Reactive Oxygen Species/metabolism
14.
J Biol Chem ; 292(19): 7761-7773, 2017 05 12.
Article in English | MEDLINE | ID: mdl-28320864

ABSTRACT

Hydrogen sulfide (H2S) is produced endogenously in vivo and has multiple effects on signaling pathways and cell function. Mitochondria can be both an H2S source and sink, and many of the biological effects of H2S relate to its interactions with mitochondria. However, the significance of mitochondrial H2S is uncertain, in part due to the difficulty of assessing changes in its concentration in vivo Although a number of fluorescent H2S probes have been developed these are best suited to cells in culture and cannot be used in vivo To address this unmet need we have developed a mitochondria-targeted H2S probe, MitoA, which can be used to assess relative changes in mitochondrial H2S levels in vivo MitoA comprises a lipophilic triphenylphosphonium (TPP) cation coupled to an aryl azide. The TPP cation leads to the accumulation of MitoA inside mitochondria within tissues in vivo There, the aryl azido group reacts with H2S to form an aryl amine (MitoN). The extent of conversion of MitoA to MitoN thus gives an indication of the levels of mitochondrial H2S in vivo Both compounds can be detected sensitively by liquid chromatography tandem mass spectrometry (LC-MS/MS) analysis of the tissues, and quantified relative to deuterated internal standards. Here we describe the synthesis and characterization of MitoA and show that it can be used to assess changes in mitochondrial H2S levels in vivo As a proof of principle we used MitoA to show that H2S levels increase in vivo during myocardial ischemia.


Subject(s)
Hydrogen Sulfide/chemistry , Mass Spectrometry/methods , Mitochondria/metabolism , Animals , Cations , Cell Line , Chromatography, High Pressure Liquid , Chromatography, Liquid , Female , HCT116 Cells , Heterocyclic Compounds/chemistry , Humans , Hypoxia , Liver/metabolism , Male , Mice , Mice, Inbred C57BL , Myocardial Ischemia/metabolism , Organophosphorus Compounds/chemistry , Rats, Wistar , Tandem Mass Spectrometry , Temperature , Ultraviolet Rays
15.
Circulation ; 136(24): 2337-2355, 2017 Dec 12.
Article in English | MEDLINE | ID: mdl-29051185

ABSTRACT

BACKGROUND: The nitric oxide-sensitive guanylyl cyclase/cGMP-dependent protein kinase type I signaling pathway can afford protection against the ischemia/reperfusion injury that occurs during myocardial infarction. Reportedly, voltage and Ca2+-activated K+ channels of the BK type are stimulated by cGMP/cGMP-dependent protein kinase type I, and recent ex vivo studies implicated that increased BK activity favors the survival of the myocardium at ischemia/reperfusion. It remains unclear, however, whether the molecular events downstream of cGMP involve BK channels present in cardiomyocytes or in other cardiac cell types. METHODS: Gene-targeted mice with a cardiomyocyte- or smooth muscle cell-specific deletion of the BK (CMBK or SMBK knockouts) were subjected to the open-chest model of myocardial infarction. Infarct sizes of the conditional mutants were compared with litter-matched controls, global BK knockout, and wild-type mice. Cardiac damage was assessed after mechanical conditioning or pharmacological stimulation of the cGMP pathway and by using direct modulators of BK. Long-term outcome was studied with respect to heart functions and cardiac fibrosis in a chronic myocardial infarction model. RESULTS: Global BK knockouts and CMBK knockouts, in contrast with SMBK knockouts, exhibited significantly larger infarct sizes compared with their respective controls. Ablation of CMBK resulted in higher serum levels of cardiac troponin I and elevated amounts of reactive oxygen species, lower phosphorylated extracellular receptor kinase and phosphorylated AKT levels and an increase in myocardial apoptosis. Moreover, CMBK was required to allow beneficial effects of both nitric oxide-sensitive guanylyl cyclase activation and inhibition of the cGMP-degrading phosphodiesterase-5, ischemic preconditioning, and postconditioning regimens. To this end, after 4 weeks of reperfusion, fibrotic tissue increased and myocardial strain echocardiography was significantly compromised in CMBK-deficient mice. CONCLUSIONS: Lack of CMBK channels renders the heart more susceptible to ischemia/reperfusion injury, whereas the pathological events elicited by ischemia/reperfusion do not involve BK in vascular smooth muscle cells. BK seems to permit the protective effects triggered by cinaciguat, riociguat, and different phosphodiesterase-5 inhibitors and beneficial actions of ischemic preconditioning and ischemic postconditioning by a mechanism stemming primarily from cardiomyocytes. This study establishes mitochondrial CMBK channels as a promising target for limiting acute cardiac damage and adverse long-term events that occur after myocardial infarction.


Subject(s)
Large-Conductance Calcium-Activated Potassium Channels/metabolism , Myocardial Infarction/drug therapy , Myocardium/pathology , Myocytes, Cardiac/physiology , Reperfusion Injury/drug therapy , Animals , Benzoates/therapeutic use , Cardiotonic Agents/therapeutic use , Cyclic AMP-Dependent Protein Kinase Type I/metabolism , Disease Models, Animal , Humans , Ischemic Preconditioning , Large-Conductance Calcium-Activated Potassium Channels/genetics , Mice , Mice, 129 Strain , Mice, Inbred C57BL , Mice, Knockout , Myocardial Infarction/physiopathology , Nitric Oxide/metabolism , Pyrazoles/therapeutic use , Pyrimidines/therapeutic use , Reperfusion Injury/physiopathology
16.
Eur Respir J ; 2018 Feb 01.
Article in English | MEDLINE | ID: mdl-29419444

ABSTRACT

Increased mitochondrial reactive oxygen species (ROS), particularly superoxide have been suggested to mediate hypoxic pulmonary vasoconstriction (HPV), chronic hypoxia-induced pulmonary hypertension (PH) and right ventricular (RV) remodelling.We determined ROS in acute, chronic hypoxia and investigated the effect of the mitochondria-targeted antioxidant MitoQ under these conditions.The effect of MitoQ or its inactive carrier substance, decyltriphenylphosphonium (TPP+), on acute HPV (1% O2 for 10 minutes) was investigated in isolated blood-free perfused mouse lungs. Mice exposed for 4 weeks to chronic hypoxia (10% O2) or after banding of the main pulmonary artery (PAB) were treated with MitoQ or TPP+ (50 mg/kg/day).Total cellular superoxide and mitochondrial ROS levels were increased in pulmonary artery smooth muscle cells (PASMC), but decreased in pulmonary fibroblasts in acute hypoxia. MitoQ significantly inhibited HPV and acute hypoxia-induced rise in superoxide concentration. ROS was decreased in PASMC, while it increased in the RV after chronic hypoxia. Correspondingly, MitoQ did not affect the development of chronic hypoxia-induced PH, but attenuated RV remodelling after chronic hypoxia as well as after PAB.Increased mitochondrial ROS of PASMC mediate acute HPV, but not chronic hypoxia-induced PH. MitoQ may be beneficial under conditions of exaggerated acute HPV.

17.
Arterioscler Thromb Vasc Biol ; 37(12): 2322-2332, 2017 12.
Article in English | MEDLINE | ID: mdl-28970293

ABSTRACT

OBJECTIVE: Mitochondrial DNA (mtDNA) damage is present in murine and human atherosclerotic plaques. However, whether endogenous levels of mtDNA damage are sufficient to cause mitochondrial dysfunction and whether decreasing mtDNA damage and improving mitochondrial respiration affects plaque burden or composition are unclear. We examined mitochondrial respiration in human atherosclerotic plaques and whether augmenting mitochondrial respiration affects atherogenesis. APPROACH AND RESULTS: Human atherosclerotic plaques showed marked mitochondrial dysfunction, manifested as reduced mtDNA copy number and oxygen consumption rate in fibrous cap and core regions. Vascular smooth muscle cells derived from plaques showed impaired mitochondrial respiration, reduced complex I expression, and increased mitophagy, which was induced by oxidized low-density lipoprotein. Apolipoprotein E-deficient (ApoE-/-) mice showed decreased mtDNA integrity and mitochondrial respiration, associated with increased mitochondrial reactive oxygen species. To determine whether alleviating mtDNA damage and increasing mitochondrial respiration affects atherogenesis, we studied ApoE-/- mice overexpressing the mitochondrial helicase Twinkle (Tw+/ApoE-/-). Tw+/ApoE-/- mice showed increased mtDNA integrity, copy number, respiratory complex abundance, and respiration. Tw+/ApoE-/- mice had decreased necrotic core and increased fibrous cap areas, and Tw+/ApoE-/- bone marrow transplantation also reduced core areas. Twinkle increased vascular smooth muscle cell mtDNA integrity and respiration. Twinkle also promoted vascular smooth muscle cell proliferation and protected both vascular smooth muscle cells and macrophages from oxidative stress-induced apoptosis. CONCLUSIONS: Endogenous mtDNA damage in mouse and human atherosclerosis is associated with significantly reduced mitochondrial respiration. Reducing mtDNA damage and increasing mitochondrial respiration decrease necrotic core and increase fibrous cap areas independently of changes in reactive oxygen species and may be a promising therapeutic strategy in atherosclerosis.


Subject(s)
Atherosclerosis/metabolism , DNA Damage , DNA, Mitochondrial/metabolism , Mitochondria, Muscle/metabolism , Muscle, Smooth, Vascular/metabolism , Plaque, Atherosclerotic , Animals , Atherosclerosis/genetics , Atherosclerosis/pathology , Bone Marrow Transplantation , Cell Respiration , DNA Helicases/genetics , DNA Helicases/metabolism , DNA, Mitochondrial/genetics , Disease Models, Animal , Female , Fibrosis , Genetic Predisposition to Disease , Humans , Macrophages/metabolism , Macrophages/pathology , Male , Mice, Inbred C57BL , Mice, Knockout, ApoE , Mitochondria, Muscle/pathology , Mitochondrial Proteins/genetics , Mitochondrial Proteins/metabolism , Mitophagy , Muscle, Smooth, Vascular/pathology , Necrosis , Oxygen Consumption , Phenotype , Reactive Oxygen Species/metabolism , Time Factors
19.
Biochim Biophys Acta ; 1840(2): 923-30, 2014 Feb.
Article in English | MEDLINE | ID: mdl-23726990

ABSTRACT

BACKGROUND: The ability to measure the concentrations of small damaging and signalling molecules such as reactive oxygen species (ROS) in vivo is essential to understanding their biological roles. While a range of methods can be applied to in vitro systems, measuring the levels and relative changes in reactive species in vivo is challenging. SCOPE OF REVIEW: One approach towards achieving this goal is the use of exomarkers. In this, exogenous probe compounds are administered to the intact organism and are then transformed by the reactive molecules in vivo to produce a diagnostic exomarker. The exomarker and the precursor probe can be analysed ex vivo to infer the identity and amounts of the reactive species present in vivo. This is akin to the measurement of biomarkers produced by the interaction of reactive species with endogenous biomolecules. MAJOR CONCLUSIONS AND GENERAL SIGNIFICANCE: Our laboratories have developed mitochondria-targeted probes that generate exomarkers that can be analysed ex vivo by mass spectrometry to assess levels of reactive species within mitochondria in vivo. We have used one of these compounds, MitoB, to infer the levels of mitochondrial hydrogen peroxide within flies and mice. Here we describe the development of MitoB and expand on this example to discuss how better probes and exomarkers can be developed. This article is part of a Special Issue entitled Current methods to study reactive oxygen species - pros and cons and biophysics of membrane proteins. Guest Editor: Christine Winterbourn.


Subject(s)
Biomarkers/analysis , Mitochondria/metabolism , Models, Biological , Molecular Probes , Reactive Oxygen Species/analysis , Animals , Mice , Oxidative Stress
20.
Tetrahedron ; 71(44): 8444-8453, 2015 Nov 04.
Article in English | MEDLINE | ID: mdl-26549895

ABSTRACT

A series of mitochondria-targeted antioxidants comprising a lipophilic triphenylphosphonium cation attached to the antioxidant chroman moiety of vitamin E by an alkyl linker have been prepared. The synthesis of a series of mitochondria-targeted vitamin E derivatives with a range of alkyl linkers gave compounds of different hydrophobicities. This work will enable the dependence of antioxidant defence on hydrophobicity to be determined in vivo.

SELECTION OF CITATIONS
SEARCH DETAIL