Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 260
Filter
Add more filters

Publication year range
1.
Cell ; 186(23): 5028-5040.e14, 2023 11 09.
Article in English | MEDLINE | ID: mdl-37852257

ABSTRACT

Wnt proteins are enzymatically lipidated by Porcupine (PORCN) in the ER and bind to Wntless (WLS) for intracellular transport and secretion. Mechanisms governing the transfer of these low-solubility Wnts from the ER to the extracellular space remain unclear. Through structural and functional analyses of Wnt7a, a crucial Wnt involved in central nervous system angiogenesis and blood-brain barrier maintenance, we have elucidated the principles of Wnt biogenesis and Wnt7-specific signaling. The Wnt7a-WLS complex binds to calreticulin (CALR), revealing that CALR functions as a chaperone to facilitate Wnt transfer from PORCN to WLS during Wnt biogenesis. Our structures, functional analyses, and molecular dynamics simulations demonstrate that a phospholipid in the core of Wnt-bound WLS regulates the association and dissociation between Wnt and WLS, suggesting a lipid-mediated Wnt secretion mechanism. Finally, the structure of Wnt7a bound to RECK, a cell-surface Wnt7 co-receptor, reveals how RECKCC4 engages the N-terminal domain of Wnt7a to activate Wnt7-specific signaling.


Subject(s)
Receptors, G-Protein-Coupled , Wnt Proteins , Wnt Signaling Pathway , Blood-Brain Barrier/metabolism , Protein Binding , Receptors, G-Protein-Coupled/metabolism , Humans , Wnt Proteins/chemistry , Wnt Proteins/metabolism
2.
Nature ; 607(7920): 816-822, 2022 07.
Article in English | MEDLINE | ID: mdl-35831507

ABSTRACT

Wnt signalling is essential for regulation of embryonic development and adult tissue homeostasis1-3, and aberrant Wnt signalling is frequently associated with cancers4. Wnt signalling requires palmitoleoylation on a hairpin 2 motif by the endoplasmic reticulum-resident membrane-bound O-acyltransferase Porcupine5-7 (PORCN). This modification is indispensable for Wnt binding to its receptor Frizzled, which triggers signalling8,9. Here we report four cryo-electron microscopy structures of human PORCN: the complex with the palmitoleoyl-coenzyme A (palmitoleoyl-CoA) substrate; the complex with the PORCN inhibitor LGK974, an anti-cancer drug currently in clinical trials10; the complex with LGK974 and WNT3A hairpin 2 (WNT3Ap); and the complex with a synthetic palmitoleoylated WNT3Ap analogue. The structures reveal that hairpin 2 of WNT3A, which is well conserved in all Wnt ligands, inserts into PORCN from the lumenal side, and the palmitoleoyl-CoA accesses the enzyme from the cytosolic side. The catalytic histidine triggers the transfer of the unsaturated palmitoleoyl group to the target serine on the Wnt hairpin 2, facilitated by the proximity of the two substrates. The inhibitor-bound structure shows that LGK974 occupies the palmitoleoyl-CoA binding site to prevent the reaction. Thus, this work provides a mechanism for Wnt acylation and advances the development of PORCN inhibitors for cancer treatment.


Subject(s)
Acyltransferases , Membrane Proteins , Wnt Signaling Pathway , Acylation/drug effects , Acyltransferases/antagonists & inhibitors , Acyltransferases/metabolism , Antineoplastic Agents , Binding Sites , Coenzyme A/metabolism , Cryoelectron Microscopy , Histidine , Humans , Membrane Proteins/antagonists & inhibitors , Membrane Proteins/metabolism , Neoplasms/drug therapy , Neoplasms/metabolism , Palmitoyl Coenzyme A , Pyrazines/pharmacology , Pyridines/pharmacology , Serine , Substrate Specificity , Wnt Signaling Pathway/drug effects , Wnt3A Protein
3.
Plant Cell ; 36(5): 1963-1984, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38271284

ABSTRACT

Photoperiod is a crucial environmental cue for phenological responses, including growth cessation and winter dormancy in perennial woody plants. Two regulatory modules within the photoperiod pathway explain bud dormancy induction in poplar (Populus spp.): the circadian oscillator LATE ELONGATED HYPOCOTYL 2 (LHY2) and GIGANTEA-like genes (GIs) both regulate the key target for winter dormancy induction FLOWERING LOCUS T2 (FT2). However, modification of LHY2 and GIs cannot completely prevent growth cessation and bud set under short-day (SD) conditions, indicating that additional regulatory modules are likely involved. We identified PtoHY5a, an orthologs of the photomorphogenesis regulatory factor ELONGATED HYPOCOTYL 5 (HY5) in poplar (Populus tomentosa), that directly activates PtoFT2 expression and represses the circadian oscillation of LHY2, indirectly activating PtoFT2 expression. Thus, PtoHY5a suppresses SD-induced growth cessation and bud set. Accordingly, PtoHY5a knockout facilitates dormancy induction. PtoHY5a also inhibits bud-break in poplar by controlling gibberellic acid (GA) levels in apical buds. Additionally, PtoHY5a regulates the photoperiodic control of seasonal growth downstream of phytochrome PHYB2. Thus, PtoHY5a modulates seasonal growth in poplar by regulating the PtoPHYB2-PtoHY5a-PtoFT2 module to determine the onset of winter dormancy, and by fine-tuning GA levels to control bud-break.


Subject(s)
Gene Expression Regulation, Plant , Gibberellins , Photoperiod , Plant Dormancy , Plant Proteins , Populus , Populus/genetics , Populus/growth & development , Populus/metabolism , Populus/physiology , Gibberellins/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Plant Dormancy/genetics , Flowers/genetics , Flowers/physiology , Flowers/growth & development
4.
Nature ; 581(7808): 339-343, 2020 05.
Article in English | MEDLINE | ID: mdl-32433613

ABSTRACT

Cholesterol is an essential component of mammalian cell membranes, constituting up to 50% of plasma membrane lipids. By contrast, it accounts for only 5% of lipids in the endoplasmic reticulum (ER)1. The ER enzyme sterol O-acyltransferase 1 (also named acyl-coenzyme A:cholesterol acyltransferase, ACAT1) transfers a long-chain fatty acid to cholesterol to form cholesteryl esters that coalesce into cytosolic lipid droplets. Under conditions of cholesterol overload, ACAT1 maintains the low cholesterol concentration of the ER and thereby has an essential role in cholesterol homeostasis2,3. ACAT1 has also been implicated in Alzheimer's disease4, atherosclerosis5 and cancers6. Here we report a cryo-electron microscopy structure of human ACAT1 in complex with nevanimibe7, an inhibitor that is in clinical trials for the treatment of congenital adrenal hyperplasia. The ACAT1 holoenzyme is a tetramer that consists of two homodimers. Each monomer contains nine transmembrane helices (TMs), six of which (TM4-TM9) form a cavity that accommodates nevanimibe and an endogenous acyl-coenzyme A. This cavity also contains a histidine that has previously been identified as essential for catalytic activity8. Our structural data and biochemical analyses provide a physical model to explain the process of cholesterol esterification, as well as details of the interaction between nevanimibe and ACAT1, which may help to accelerate the development of ACAT1 inhibitors to treat related diseases.


Subject(s)
Cryoelectron Microscopy , Sterol O-Acyltransferase/chemistry , Sterol O-Acyltransferase/ultrastructure , Urea/analogs & derivatives , Cholesterol/chemistry , Cholesterol/metabolism , Histidine/chemistry , Histidine/metabolism , Holoenzymes/chemistry , Holoenzymes/ultrastructure , Humans , Ligands , Models, Molecular , Protein Multimerization , Static Electricity , Urea/chemistry
5.
Nature ; 566(7743): E6, 2019 02.
Article in English | MEDLINE | ID: mdl-30670873

ABSTRACT

In this Article, the top label in Fig. 5d should read 'DISH 3/16' instead of 'DISH 3/17'. This error has been corrected online.

6.
Nucleic Acids Res ; 51(9): 4178-4190, 2023 05 22.
Article in English | MEDLINE | ID: mdl-37070603

ABSTRACT

The human gut microbiome has been linked to health and disease. Investigation of the human microbiome has largely employed 16S amplicon sequencing, with limited ability to distinguish microbes at the species level. Herein, we describe the development of Reference-based Exact Mapping (RExMap) of microbial amplicon variants that enables mapping of microbial species from standard 16S sequencing data. RExMap analysis of 16S data captures ∼75% of microbial species identified by whole-genome shotgun sequencing, despite hundreds-fold less sequencing depth. RExMap re-analysis of existing 16S data from 29,349 individuals across 16 regions from around the world reveals a detailed landscape of gut microbial species across populations and geography. Moreover, RExMap identifies a core set of fifteen gut microbes shared by humans. Core microbes are established soon after birth and closely associate with BMI across multiple independent studies. RExMap and the human microbiome dataset are presented as resources with which to explore the role of the human microbiome.


Subject(s)
Gastrointestinal Microbiome , Microbiota , Humans , Bacteria/classification , Gastrointestinal Microbiome/genetics , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA
7.
Mol Cell Biochem ; 479(4): 929-940, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37256445

ABSTRACT

Previous reports have confirmed that miR-206 participates in inflammatory cardiomyopathy, but its definite mechanism remains elusive. This study aims to elucidate the potential mechanism of miR-206 in septic cardiomyopathy (SCM). The primary mouse cardiomyocytes were isolated and exposed to lipopolysaccharides (LPS) to construct a septic injury model in vitro. Then, the gene transcripts and protein levels were detected by RT-qPCR and/or Western blot assay. Cell proliferation, apoptosis, and inflammatory responses were evaluated by CCK-8/EdU, flow cytometry, and ELISA assays, respectively. Dual luciferase assay, Co-IP, and ubiquitination experiments were carried out to validate the molecular interactions among miR-206, USP33, and JAK2/STAT3 signaling. miR-206 was significantly downregulated, but USP33 was upregulated in LPS-induced cardiomyocytes. Gain-of-function of miR-206 elevated the proliferation but suppressed the inflammatory responses and apoptosis in LPS-induced cardiomyocytes. USP33, as a member of the USP protein family, was confirmed to be a direct target of miR-206 and could catalyze deubiquitination of JAK2 to activate JAK2/STAT3 signaling. Rescue experiments presented that neither upregulation of USP33 nor JAK2/STAT3 signaling activation considerably reversed the protective effects of miR-206 upregulation in LPS-induced cardiomyocytes. The above data showed that miR-206 protected cardiomyocytes from LPS-induced inflammatory injuries by targeting the USP33/JAK2/STAT3 signaling pathway, which might be a novel target for SCM treatment.


Subject(s)
Cardiomyopathies , MicroRNAs , Animals , Mice , Apoptosis/physiology , Janus Kinase 2/metabolism , Lipopolysaccharides , MicroRNAs/metabolism , Myocytes, Cardiac/metabolism , Signal Transduction , STAT3 Transcription Factor/genetics , STAT3 Transcription Factor/metabolism
8.
Nature ; 563(7733): 639-645, 2018 11.
Article in English | MEDLINE | ID: mdl-30464338

ABSTRACT

The diversity and complexity of the human brain are widely assumed to be encoded within a constant genome. Somatic gene recombination, which changes germline DNA sequences to increase molecular diversity, could theoretically alter this code but has not been documented in the brain, to our knowledge. Here we describe recombination of the Alzheimer's disease-related gene APP, which encodes amyloid precursor protein, in human neurons, occurring mosaically as thousands of variant 'genomic cDNAs' (gencDNAs). gencDNAs lacked introns and ranged from full-length cDNA copies of expressed, brain-specific RNA splice variants to myriad smaller forms that contained intra-exonic junctions, insertions, deletions, and/or single nucleotide variations. DNA in situ hybridization identified gencDNAs within single neurons that were distinct from wild-type loci and absent from non-neuronal cells. Mechanistic studies supported neuronal 'retro-insertion' of RNA to produce gencDNAs; this process involved transcription, DNA breaks, reverse transcriptase activity, and age. Neurons from individuals with sporadic Alzheimer's disease showed increased gencDNA diversity, including eleven mutations known to be associated with familial Alzheimer's disease that were absent from healthy neurons. Neuronal gene recombination may allow 'recording' of neural activity for selective 'playback' of preferred gene variants whose expression bypasses splicing; this has implications for cellular diversity, learning and memory, plasticity, and diseases of the human brain.


Subject(s)
Alzheimer Disease/genetics , Alzheimer Disease/pathology , Amyloid beta-Protein Precursor/genetics , Genetic Variation/genetics , Neurons/cytology , Neurons/pathology , Recombination, Genetic , Alternative Splicing/genetics , Animals , DNA, Complementary/analysis , DNA, Complementary/genetics , DNA-Directed DNA Polymerase/metabolism , Exons/genetics , Female , Humans , Introns/genetics , Male , Mice , Mice, Transgenic , Neurons/metabolism , Organ Specificity , Point Mutation/genetics , RNA, Messenger/analysis , RNA, Messenger/genetics , Sequence Analysis, DNA , Sequence Deletion/genetics
9.
Proc Natl Acad Sci U S A ; 118(34)2021 08 24.
Article in English | MEDLINE | ID: mdl-34404721

ABSTRACT

The ABCG1 homodimer (G1) and ABCG5-ABCG8 heterodimer (G5G8), two members of the adenosine triphosphate (ATP)-binding cassette (ABC) transporter G family, are required for maintenance of cellular cholesterol levels. G5G8 mediates secretion of neutral sterols into bile and the gut lumen, whereas G1 transports cholesterol from macrophages to high-density lipoproteins (HDLs). The mechanisms used by G5G8 and G1 to recognize and export sterols remain unclear. Here, we report cryoelectron microscopy (cryo-EM) structures of human G5G8 in sterol-bound and human G1 in cholesterol- and ATP-bound states. Both transporters have a sterol-binding site that is accessible from the cytosolic leaflet. A second site is present midway through the transmembrane domains of G5G8. The Walker A motif of G8 adopts a unique conformation that accounts for the marked asymmetry in ATPase activities between the two nucleotide-binding sites of G5G8. These structures, along with functional validation studies, provide a mechanistic framework for understanding cholesterol efflux via ABC transporters.


Subject(s)
ATP Binding Cassette Transporter, Subfamily G, Member 1/metabolism , ATP Binding Cassette Transporter, Subfamily G, Member 8/metabolism , Adenosine Triphosphate/metabolism , Cholesterol/metabolism , ATP Binding Cassette Transporter, Subfamily G, Member 1/chemistry , ATP Binding Cassette Transporter, Subfamily G, Member 1/genetics , ATP Binding Cassette Transporter, Subfamily G, Member 8/chemistry , ATP Binding Cassette Transporter, Subfamily G, Member 8/genetics , Binding Sites , Biological Transport , Cryoelectron Microscopy , Humans , Protein Conformation
10.
Sensors (Basel) ; 24(5)2024 Feb 21.
Article in English | MEDLINE | ID: mdl-38474924

ABSTRACT

In this study, a controllable equal-gap large-area silicon drift detector (L-SDD) is designed. The surface leakage current is reduced by reducing the SiO2-Si interface through the new controllable equal-gap design. The design of the equal gap also solves the problem whereby the gap widens due to the larger detector size in the previous SDD design, which leads to a large invalid area of the detector. In this paper, a spiral hexagonal equal-gap L-SDD of 1 cm radius is selected for design calculation, and we implement 3D modeling and simulation of the device. The simulation results show that the internal potential gradient distribution of the L-SDD is uniform and forms a drift electric field, with the direction of electron drift pointing towards the collecting anode. The L-SDD has an excellent electron drift channel inside, and this article also analyzes the electrical performance of the drift channel to verify the correctness of the design method of the L-SDD.

11.
Small ; 19(26): e2207716, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36938701

ABSTRACT

Metal selenides are considered as one of the most promising anode materials for Na-ion batteries owing to high specific capacity and relatively higher electronic conductivity compared with metal sulfides or oxides. However, such anodes still suffer from huge volume change upon repeated Na+ insertion/extraction processes and simultaneously undergo severe shuttle effect of polyselenides, thus leading to poor electrochemical performance. Herein, a facile chemical-blowing and selenization strategy to fabricate 3D interconnected hybrids built from metal selenides (MSe, M = Mn, Co, Cr, Fe, In, Ni, Zn) nanoparticles encapsulated in in situ formed N-doped carbon foams (NCFs) is reported. Such hybrids not only provide ultrasmall active nanobuilding blocks (≈15 nm), but also efficiently anchor them inside the conductive NCFs, thus enabling both high-efficiency utilization of active components and high structural stability. On the other hand, Cu-driven replacement reaction is utilized for efficiently inhibiting the shuttle effect of polyselenides in ether-based electrolyte. Benefiting from the combined merits of the unique MSe@NCFs and the utilization of the conversion of metal selenides to copper selenides, the as-obtained hybrids (MnSe as an example) exhibit superior rate capability (386.6 mAh g-1 up to 8 A g-1 ) and excellent cycling stability (347.7 mAh g-1 at 4.0 A g-1 after 1200 cycles).

12.
Mol Cell Biochem ; 2023 Jun 22.
Article in English | MEDLINE | ID: mdl-37347361

ABSTRACT

Septic cardiomyopathy (SCM) is one of the most serious complications of sepsis. The present study investigated the role and mechanism of upstream stimulatory factor 2 (USF2) in SCM. Serum samples were extracted from SCM patients and healthy individuals. A murine model of sepsis was induced by caecal ligation and puncture (CLP) surgery. Myocardial injury was examined by echocardiography and HE staining. ELISA assay evaluated myocardial markers (CK-MB, cTnI) and inflammatory cytokines (TNF-α, IL-1ß, IL-18). Primary mouse cardiomyocytes were treated with lipopolysaccharide (LPS) to simulate sepsis in vitro. RT-qPCR and Western blot were used for analyzing gene and protein levels. CCK-8 assay assessed cell viability. NLRP3 was detected by immunofluorescence. ChIP, RIP and dual luciferase reporter assays were conducted to validate the molecular associations. USF2 was increased in serum from SCM patients, septic mice and primary cardiomyocytes. USF2 silencing improved the survival of septic mice and attenuated sepsis-induced myocardial pyroptosis and inflammation in vitro and in vivo. Mechanistically, USF2 could directly bind to the promoter of miR-206 to transcriptionally inhibit its expression. Moreover, RhoB was confirmed as a target of miR-206 and could promote ROCK activation and NLRP3 inflammasome formation. Moreover, overexpression of RhoB remarkably reversed the protection against LPS-induced inflammation and pyroptosis mediated by USF2 deletion or miR-206 overexpression in cardiomyocytes. The above findings elucidated that USF2 knockdown exerted a cardioprotective effect on sepsis by decreasing pyroptosis and inflammation via miR-206/RhoB/ROCK pathway, suggesting that USF2 may be a novel drug target in SCM.

13.
Environ Sci Technol ; 57(50): 21212-21223, 2023 Dec 19.
Article in English | MEDLINE | ID: mdl-38064381

ABSTRACT

Natural attenuation is widely adopted as a remediation strategy, and the attenuation potential is crucial to evaluate whether remediation goals can be achieved within the specified time. In this work, long-term monitoring of indigenous microbial communities as well as benzene, toluene, ethylbenzene, and xylene (BTEX) and chlorinated aliphatic hydrocarbons (CAHs) in groundwater was conducted at a historic pesticide manufacturing site. A machine learning approach for natural attenuation prediction was developed with random forest classification (RFC) followed by either random forest regression (RFR) or artificial neural networks (ANNs), utilizing microbiological information and contaminant attenuation rates for model training and cross-validation. Results showed that the RFC could accurately predict the feasibility of natural attenuation for both BTEX and CAHs, and it could successfully identify the key genera. The RFR model was sufficient for the BTEX natural attenuation rate prediction but unreliable for CAHs. The ANN model showed better performance in the prediction of the attenuation rates for both BTEX and CAHs. Based on the assessments, a composite modeling method of RFC and ANN was proposed, which could reduce the mean absolute percentage errors. This study reveals that the combined machine learning approach under the synergistic use of field microbial data has promising potential for predicting natural attenuation.


Subject(s)
Groundwater , Hydrocarbons, Chlorinated , Water Pollutants, Chemical , Biodegradation, Environmental , Benzene Derivatives , Benzene , Toluene , Xylenes , Water Pollutants, Chemical/analysis
14.
BMC Cardiovasc Disord ; 23(1): 227, 2023 05 01.
Article in English | MEDLINE | ID: mdl-37127585

ABSTRACT

BACKGROUND: Familial hypercholesterolemia (FH) leads to high plasma low-density lipoprotein cholesterol (LDL-C) levels and early cardiovascular morbidity and mortality. We treated a pair of siblings with FH. The cardiovascular manifestations in the proband were more severe than those in his elder sister, although they had almost similar LDL-C levels, ages, and lifestyles. Herein, we report the cases of this family to explore the possible causes of clinical phenotypic differences within the same genetic background. CASE PRESENTATION: We treated a 27-year-old male patient and his 30-year-old sister, both with FH. The coronary angiogram in the male patient revealed 80, 70, and 100% stenosis of the initial, distal right coronary artery branch, and left anterior descending branch, respectively, whereas his sister had almost no coronary stenosis. We treated them accordingly and performed family screening. We found that the LDL-C/particle discordance of the proband is much greater than that of his elder sister. In addition, the average size of LDL-C particle in the proband was smaller than that in his sister. CONCLUSIONS: Patients with FH have a much higher risk of premature atherosclerotic cardiovascular disease, but the clinical manifestations are heterogeneous. The smaller LDL particle size may be the underlying cause for different clinical outcomes in this pair of FH cases and be a potential novel indicator for predicting the prognosis of FH.


Subject(s)
Hyperlipoproteinemia Type II , Siblings , Male , Humans , Cholesterol, LDL , Constriction, Pathologic , Phenotype
15.
Nutr Neurosci ; 26(1): 11-24, 2023 Jan.
Article in English | MEDLINE | ID: mdl-34927571

ABSTRACT

OBJECTIVES: Parkinson's disease (PD) is the second most common neurodegenerative disease. Chlorogenic acid (CGA) is a polyphenolic substance derived from various medicinal plants. Although CGA is reported to have potential anti-PD effect, the beneficial effect and the underlying mechanism remain unclear. In this study, we aimed to further investigate the protective effect and clarify the mechanism of action of CGA in Caenorhabditis elegans (C. elegans) models of PD. METHODS: Measurements of a-synuclein aggregation, movement disorders, and lipid, ROS and malondialdehyde (MDA) contents were observed in NL5901 nematodes. Determinations of dopamine (DA) neuron degeneration, food perception, and ROS content were performed in 6-OHDA-exposed BZ555 nematodes. The autophagy activation of CGA was monitored using DA2123 and BC12921 nematodes. Meanwhile, RNAi technology was employed to knockdown the autophagy-related genes and investigate whether the anti-PD effect of CGA was associated with autophagy induction in C. elegans. RESULTS: CGA significantly reduced α-synuclein aggregation, improved motor disorders, restored lipid content, and decreased ROS and MDA contents in NL5901 nematodes. Meanwhile, CGA inhibited DA neuron-degeneration and improved food-sensing behavior in 6-OHDA-exposed BZ555 nematodes. In addition, CGA increased the number of GFP::LGG-1 foci in DA2123 nematodes and degraded p62 protein in BC12921 nematodes. Meanwhile, CGA up-regulated the expression of autophagy-related genes in NL5901 nematodes. Moreover, the anti-PD effect of CGA was closely related to autophagy induction via increasing the expression of autophagy-related genes, including unc-51, bec-1, vps-34, and lgg-1. CONCLUSIONS: The present study indicates that CGA exerts neuroprotective effect in C. elegans via autophagy induction.


Subject(s)
Neurodegenerative Diseases , Parkinson Disease , Animals , Parkinson Disease/metabolism , Caenorhabditis elegans , Chlorogenic Acid/pharmacology , Chlorogenic Acid/metabolism , Animals, Genetically Modified , Neurodegenerative Diseases/metabolism , Reactive Oxygen Species/metabolism , Oxidopamine , Nerve Degeneration , Autophagy , Lipids , Dopaminergic Neurons , Disease Models, Animal
16.
Phytother Res ; 37(10): 4639-4654, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37394882

ABSTRACT

BACKGROUND: Alzheimer's disease (AD) is a prevalent neurodegenerative disorder without an effective cure. Natural products, while showing promise as potential therapeutics for AD, remain underexplored. AIMS: This study was conducted with the goal of identifying potential anti-AD candidates from natural sources using Caenorhabditis elegans (C. elegans) AD-like models and exploring their mechanisms of action. MATERIALS & METHODS: Our laboratory's in-house herbal extract library was utilized to screen for potential anti-AD candidates using the C. elegans AD-like model CL4176. The neuroprotective effects of the candidates were evaluated in multiple C. elegans AD-like models, specifically targeting Aß- and Tau-induced pathology. In vitro validation was conducted using PC-12 cells. To investigate the role of autophagy in mediating the anti-AD effects of the candidates, RNAi bacteria and autophagy inhibitors were employed. RESULTS: The ethanol extract of air-dried fruits of Luffa cylindrica (LCE), a medicine-food homology species, was found to inhibit Aß- and Tau-induced pathology (paralysis, ROS production, neurotoxicity, and Aß and pTau deposition) in C. elegans AD-like models. LCE was non-toxic and enhanced C. elegans' health. It was shown that LCE activates autophagy and its anti-AD efficacy is weakened with the RNAi knockdown of autophagy-related genes. Additionally, LCE induced mTOR-mediated autophagy, reduced the expression of AD-associated proteins, and decreased cell death in PC-12 cells, which was reversed by autophagy inhibitors (bafilomycin A1 and 3-methyladenine). DISCUSSION: LCE, identified from our natural product library, emerged as a valuable autophagy enhancer that effectively protects against neurodegeneration in multiple AD-like models. RNAi knockdown of autophagy-related genes and cotreatment with autophagy inhibitors weakened its anti-AD efficacy, implying a critical role of autophagy in mediating the neuroprotective effects of LCE. CONCLUSION: Our findings highlight the potential of LCE as a functional food or drug for targeting AD pathology and promoting human health.


Subject(s)
Alzheimer Disease , Caenorhabditis elegans Proteins , Luffa , Neuroprotective Agents , Animals , Humans , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Caenorhabditis elegans/genetics , Caenorhabditis elegans/metabolism , Luffa/metabolism , Amyloid beta-Peptides/metabolism , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Fruit/metabolism , Autophagy , Disease Models, Animal , Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans Proteins/metabolism , Caenorhabditis elegans Proteins/pharmacology
17.
Mikrochim Acta ; 190(11): 459, 2023 11 03.
Article in English | MEDLINE | ID: mdl-37921998

ABSTRACT

N-doped carbon Co/CoOx with laccase-like activity was directionally designed by pyrolyzing Co-coordination polymer and applied to detect epinephrine, which revealed a new preparation strategy for laccase mimics. The formation mechanism of the N-doped carbon Co/CoOx nanozyme was reconnoitered by a thermogravimetric-mass spectrometry system (TG-MS). N-doped carbon Co/CoOx exhibited outstanding laccase-like activity, and the Michaelis-Menten constant and maximum initial velocity were calculated to be 0.087 mM and 0.0089 µM s-1, respectively. Based on this principle, a simple colorimetric sensing platform was developed for the quantitative detection of epinephrine, which can be used to diagnose pheochromocytoma. In addition, the visual platform for detecting epinephrine exhibited a linear range of 3 to 20 µg mL-1 and a calculated detection limit of 0.42 µg mL-1. Therefore, the proposed colorimetric sensing platform is a promising candidate to be applied in precise early pheochromocytoma diagnosis.


Subject(s)
Adrenal Gland Neoplasms , Pheochromocytoma , Humans , Laccase , Carbon , Epinephrine
18.
J Environ Manage ; 336: 117633, 2023 Jun 15.
Article in English | MEDLINE | ID: mdl-36898240

ABSTRACT

With the development of the economy and the adjustment of urban planning and layout, abandoned pesticide sites are widely distributed in major and medium cities in China. Groundwater pollution of a large number of abandoned pesticide-contaminated sites has caused great potential risks to human health. Up to now, few relevant studies concerned the spatiotemporal variation of risks exposure to multi-pollutants in groundwater using probabilistic methods. In our study, the spatiotemporal characteristics of organics contamination and corresponding health risks in the groundwater of a closed pesticide site were systematically assessed. A total of 152 pollutants were targeted for monitoring over a time span up to five years (i.e., June 2016-June 2020). BTEX, phenols, chlorinated aliphatic hydrocarbons, and chlorinated aromatic hydrocarbons were the main contaminants. The metadata was subjected to health risk assessments using the deterministic and probabilistic methods for four age groups, and the results showed that the risks were highly unacceptable. Both methods showed that children (0-5 years old) and adults (19-70 years old) were the age groups with the highest carcinogenic and non-carcinogenic risks, respectively. Compared with inhalation and dermal contact, oral ingestion was the predominant exposure pathway that contributed 98.41%-99.69% of overall health risks. Spatiotemporal analysis further revealed that the overall risks first increased then decreased within five years. The risk contributions of different pollutants were also found to vary substantially with time, indicating that dynamic risk assessment is necessary. Compared with the probabilistic method, the deterministic approach relatively overestimated the true risks of OPs. The results provide a scientific basis and practical experience for scientific management and governance of abandoned pesticide sites.


Subject(s)
Environmental Pollutants , Groundwater , Hydrocarbons, Chlorinated , Pesticides , Water Pollutants, Chemical , Child , Adult , Humans , Infant, Newborn , Infant , Child, Preschool , Young Adult , Middle Aged , Aged , Pesticides/analysis , Solvents , Water Pollutants, Chemical/analysis , Hydrocarbons, Chlorinated/analysis , Risk Assessment , China , Environmental Monitoring
19.
Angew Chem Int Ed Engl ; 62(29): e202305480, 2023 Jul 17.
Article in English | MEDLINE | ID: mdl-37194697

ABSTRACT

Sulfondiimines are diaza-analogues of sulfones with a chiral sulfur center. Compared to sulfones and sulfoximines, their synthesis and transformations have so far been studied to a lesser extent. Here, we report the enantioselective synthesis of 1,2-benzothiazine 1-imines, i.e., cyclic sulfondiimine derivatives from sulfondiimines and sulfoxonium ylides via C-H alkylation/cyclization reactions. The combination of [Ru(p-cymene)Cl2 ]2 and a newly developed chiral spiro carboxylic acid is key to achieving high enantioselectivity.

20.
Nat Chem Biol ; 16(12): 1368-1375, 2020 12.
Article in English | MEDLINE | ID: mdl-32929279

ABSTRACT

Smoothened (SMO), a class Frizzled G protein-coupled receptor (class F GPCR), transduces the Hedgehog signal across the cell membrane. Sterols can bind to its extracellular cysteine-rich domain (CRD) and to several sites in the seven transmembrane helices (7-TMs) of SMO. However, the mechanism by which sterols regulate SMO via multiple sites is unknown. Here we determined the structures of SMO-Gi complexes bound to the synthetic SMO agonist (SAG) and to 24(S),25-epoxycholesterol (24(S),25-EC). A novel sterol-binding site in the extracellular extension of TM6 was revealed to connect other sites in 7-TMs and CRD, forming an intramolecular sterol channel from the middle side of 7-TMs to CRD. Additional structures of two gain-of-function variants, SMOD384R and SMOG111C/I496C, showed that blocking the channel at its midpoints allows sterols to occupy the binding sites in 7-TMs, thereby activating SMO. These data indicate that sterol transport through the core of SMO is a major regulator of SMO-mediated signaling.


Subject(s)
Cholesterol/analogs & derivatives , GTP-Binding Protein alpha Subunits/metabolism , GTP-Binding Protein beta Subunits/metabolism , GTP-Binding Protein gamma Subunits/metabolism , Signal Transduction , Smoothened Receptor/metabolism , Amino Acid Sequence , Amino Acid Substitution , Binding Sites , Cholesterol/chemistry , Cholesterol/metabolism , Cyclohexylamines/chemistry , Cyclohexylamines/pharmacology , GTP-Binding Protein alpha Subunits/chemistry , GTP-Binding Protein alpha Subunits/genetics , GTP-Binding Protein beta Subunits/chemistry , GTP-Binding Protein beta Subunits/genetics , GTP-Binding Protein gamma Subunits/chemistry , GTP-Binding Protein gamma Subunits/genetics , Gene Expression Regulation , HEK293 Cells , Humans , Molecular Docking Simulation , Protein Binding , Protein Conformation, alpha-Helical , Protein Conformation, beta-Strand , Protein Interaction Domains and Motifs , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Sequence Alignment , Sequence Homology, Amino Acid , Single-Chain Antibodies , Smoothened Receptor/agonists , Smoothened Receptor/chemistry , Smoothened Receptor/genetics , Thiophenes/chemistry , Thiophenes/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL