Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters

Database
Language
Journal subject
Affiliation country
Publication year range
1.
Nanotechnology ; 31(42): 425604, 2020 Jun 08.
Article in English | MEDLINE | ID: mdl-32512542

ABSTRACT

The synthesis of boron nitride nanodisks (BNNDs) with reducing the size and having fewer disk layers, and low optical band gap (E g) is essential for practical applications in electronics and optoelectronic devices. So far, the large-scale preparation of hydroxyl (-OH) and hydroperoxyl (-OOH) functionalized boron nitride nanosheets and BNNDs with reduced E g is still a challenge. This research demonstrates the scalable and solution process synthesis of hydroxyl (-OH) and hydroperoxyl (-OOH) functionalization of BNNDs at the edges and basal planes from pristine hexagonal boron nitride (h-BN) by the combination of modified Hummer's method and Fenton's chemistry. Modified Hummer's method induces exfoliation and cutting of the h-BN into BNNDs with a low percentage of -OH functionalization (6.90%), which is further exfoliated and cut by Fenton's reagent with improved -OH and -OOH functionalization (ca. 17.25%). The combination of these two methods allows us to reduce the size of the OH/OOH-BNNDs to ca. 200 nm with the number of disk layers in the range from ca. 6-11. Concurrently, the E g of h-BN was decreased from ca. 5.10 to ca. 3.58 eV for OH/OOH-BNNDs, which enables the possible application of OH/OOH-BNNDs in semiconductor electronics. The high percentage of -OH and -OOH functionalizations in the OH/OOH-BNNDs enablesg them to disperse in various solvents with high long-term stability.

2.
Sensors (Basel) ; 20(3)2020 Jan 22.
Article in English | MEDLINE | ID: mdl-31979160

ABSTRACT

This research demonstrated the development of a simple, cost-effective, and label-free immunosensor for the detection of α-synuclein (α-Syn) based on a cystamine (CYS) self-assembled monolayer (SAM) decorated fluorine-doped tin oxide (FTO) electrode. CYS-SAM was formed onto the FTO electrode by the adsorption of CYS molecules through the head sulfur groups. The free amine (-NH2) groups at the tail of the CYS-SAM enabled the immobilization of anti-α-Syn-antibody, which concurrently allowed the formation of immunocomplex by covalent bonding with α-Syn-antigen. The variation of the concentrations of the attached α-Syn at the immunosensor probe induced the alternation of the current and the charge transfer resistance (Rct) for the redox response of [Fe(CN)6]3-/4-, which displayed a linear dynamic range from 10 to 1000 ng/mL with a low detection limit (S/N = 3) of ca. 3.62 and 1.13 ng/mL in differential pulse voltammetry (DPV) and electrochemical impedance spectra (EIS) measurements, respectively. The immunosensor displayed good reproducibility, anti-interference ability, and good recoveries of α-Syn detection in diluted human serum samples. The proposed immunosensor is a promising platform to detect α-Syn for the early diagnose of Parkinson's disease, which can be extended for the determination of other biologically important biomarkers.


Subject(s)
Biosensing Techniques/methods , Electrochemical Techniques/methods , Electrodes , Cystamine/chemistry , alpha-Synuclein/analysis
3.
Mikrochim Acta ; 185(1): 23, 2017 12 06.
Article in English | MEDLINE | ID: mdl-29594658

ABSTRACT

2,4-Dinitrophenylhydrazine (DNPH) was electropolymerized on the surface of an anodized glassy carbon electrode by cyclic voltammetry. The anodized electrode has a highly electroactive surface due to the creation of chemically functionalized graphitic nanoparticles, and this facilitates the formation of poly-DNPH via radical polymerization. Poly-DNPH displays excellent redox activity due to the presence of nitro groups on its backbone. These catalyze the electro-oxidation of hydroquinone (HQ) and catechol (CT). The peak-to-peak separation is around 109 mV, while a bare GCE cannot resolve the peaks (located at 165 and 274 mV vs. Ag/AgCl). Sensitivity is also enhanced to ∼1.20 and 1.19 µA·cm-2·µM-1, respectively. The sensor has a linear response that covers the 20-250 µM concentration range for both HQ and CT, with 0.75 and 0.76 µM detection limits, respectively, at simultaneous detection. Commonly present species do not interfere. Graphical abstract A novel conducting poly(2,4-dinitrophenylhydrazine)-modified anodized glassy carbon electrode (pDNPH/AGCE) was developed by electrochemical method. The electro-catalytic activity of pDNPH/AGCE sensor was investigated for the selective and simultaneous electrochemical detection of hydroquinone (HQ) and catechol (CT), which revealed high sensitivities and low detection limits with excellent stability.

4.
Sensors (Basel) ; 15(2): 3801-29, 2015 Feb 05.
Article in English | MEDLINE | ID: mdl-25664436

ABSTRACT

Conducting polymers (CPs) are a group of polymeric materials that have attracted considerable attention because of their unique electronic, chemical, and biochemical properties. This is reflected in their use in a wide range of potential applications, including light-emitting diodes, anti-static coating, electrochromic materials, solar cells, chemical sensors, biosensors, and drug-release systems. Electrochemical DNA sensors based on CPs can be used in numerous areas related to human health. This review summarizes the recent progress made in the development and use of CP-based electrochemical DNA hybridization sensors. We discuss the distinct properties of CPs with respect to their use in the immobilization of probe DNA on electrode surfaces, and we describe the immobilization techniques used for developing DNA hybridization sensors together with the various transduction methods employed. In the concluding part of this review, we present some of the challenges faced in the use of CP-based DNA hybridization sensors, as well as a future perspective.


Subject(s)
Biosensing Techniques/instrumentation , DNA/chemistry , Nucleic Acid Hybridization , Polymers/chemistry , Electrochemistry , Humans
5.
Anal Methods ; 12(46): 5562-5571, 2020 12 14.
Article in English | MEDLINE | ID: mdl-33226391

ABSTRACT

This work demonstrated the development of conducting poly(chrysoidine G) (PCG)-gold nanoparticle (AuNP)-modified fluorine-doped tin oxide (F : SnO2, FTO) film-coated glass electrodes for the sensitive electrochemical detection of nitrite (NO2-). The homogeneously distributed PCG nanoparticle layer was deposited onto the FTO electrode by cyclic voltammetry sweeping. AuNPs were then anchored onto the PCG/FTO electrode by the chemical reduction of pre-adsorbed Au3+ ions. The as-prepared AuNP/PCG/FTO electrode exhibited excellent electrocatalytic activity for the oxidation of NO2- with high sensitivity (approximately 0.63 µA cm-2µM-1) and a low limit of detection (0.095 µM), which is relevant within the normal concentration range of NO2- in human bodily fluids. The AuNP/PCG/FTO sensor showed sufficient reproducibility, repeatability, low interference, and strong recovery for NO2- detection in food samples. These results indicate that the AuNP/PCG nanocomposites have immense potential for the electrochemical detection of other biologically important compounds.


Subject(s)
Gold , Metal Nanoparticles , Electrochemical Techniques , Food Safety , Humans , Nitrites/analysis , Reproducibility of Results , p-Aminoazobenzene/analogs & derivatives
6.
ACS Omega ; 5(35): 22356-22366, 2020 Sep 08.
Article in English | MEDLINE | ID: mdl-32923793

ABSTRACT

Cu-doped Mn3O4 and Mn-doped CuO (CMO@MCO) mixed oxides with isolated phases together with pristine Mn3O4 (MO) and CuO (CO) have been synthesized by a simple solution process for applications in electrochemical supercapacitors. The crystallographic, spectroscopic, and morphological analyses revealed the formation of all of the materials with good crystallinity and purity with the creation of rhombohedral-shaped MO and CMO and a mixture of spherical and rod-shaped CO and MCO nanostructures. The ratio of CMO and MCO in the optimized CMO@MCO was 2:1 with the Cu and Mn dopants percentages of 12 and 15%, respectively. The MO-, CO-, and CMO@MCO-modified carbon cloth (CC) electrodes delivered the specific capacitance (C s) values of 541.1, 706.7, and 997.2 F/g at 5 mV/s and 413.4, 480.5, and 561.1 F/g at 1.3 A/g, respectively. This enhanced C s value of CMO@MCO with an energy density and a power density of 78.0 Wh/kg and 650.0 W/kg, respectively, could be attributed to the improvement of electrical conductivity induced by the dopants and the high percentage of oxygen vacancies. This corroborated to a decrease in the optical band gap and charge-transfer resistance (R ct) of CMO@MCO at the electrode/electrolyte interface compared to those of MO and CO. The net enhancement of the Faradaic contribution induced by the redox reaction of the dopant and improved surface area was also responsible for the better electrochemical performance of CMO@MCO. The CMO@MCO/CC electrode showed high electrochemical stability with a C s loss of only ca. 4.7%. This research could open up new possibilities for the development of doped mixed oxides for high-performance supercapacitors.

7.
Biosens Bioelectron ; 126: 381-388, 2019 Feb 01.
Article in English | MEDLINE | ID: mdl-30469076

ABSTRACT

This research demonstrated the electrochemical modification of low-cost titanium (Ti) metal substrate with gold nanoparticles (AuNPs) for the aptamer-based detection of cardiac troponin I (cTnI). AuNPs were deposited onto Ti sheets by the potential-step deposition method with high density and homogeneity as well as good crystallinity. It was then applied as a transducer to immobilize a thiol-functionalized DNA aptamer via the self-assembled monolayer mechanism for the specific binding of cTnI. This was verified through electrochemical and morphological analyses. The aptasensor could detect cTnI in a linear range of 1-1100 pM with a detection limit of ca. 0.18 pM. The aptasensor showed high sensitivity and specificity to cTnI over other interfering compounds with good recoveries in the diluted human serum samples.


Subject(s)
Biosensing Techniques , Electrochemical Techniques , Troponin I/isolation & purification , Aptamers, Nucleotide/chemistry , Gold/chemistry , Graphite/chemistry , Humans , Limit of Detection , Metal Nanoparticles/chemistry , Troponin I/blood , Troponin I/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL