Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Circulation ; 149(3): 227-250, 2024 01 16.
Article in English | MEDLINE | ID: mdl-37961903

ABSTRACT

BACKGROUND: Cardiac metabolic dysfunction is a hallmark of heart failure (HF). Estrogen-related receptors ERRα and ERRγ are essential regulators of cardiac metabolism. Therefore, activation of ERR could be a potential therapeutic intervention for HF. However, in vivo studies demonstrating the potential usefulness of ERR agonist for HF treatment are lacking, because compounds with pharmacokinetics appropriate for in vivo use have not been available. METHODS: Using a structure-based design approach, we designed and synthesized 2 structurally distinct pan-ERR agonists, SLU-PP-332 and SLU-PP-915. We investigated the effect of ERR agonist on cardiac function in a pressure overload-induced HF model in vivo. We conducted comprehensive functional, multi-omics (RNA sequencing and metabolomics studies), and genetic dependency studies both in vivo and in vitro to dissect the molecular mechanism, ERR isoform dependency, and target specificity. RESULTS: Both SLU-PP-332 and SLU-PP-915 significantly improved ejection fraction, ameliorated fibrosis, and increased survival associated with pressure overload-induced HF without affecting cardiac hypertrophy. A broad spectrum of metabolic genes was transcriptionally activated by ERR agonists, particularly genes involved in fatty acid metabolism and mitochondrial function. Metabolomics analysis showed substantial normalization of metabolic profiles in fatty acid/lipid and tricarboxylic acid/oxidative phosphorylation metabolites in the mouse heart with 6-week pressure overload. ERR agonists increase mitochondria oxidative capacity and fatty acid use in vitro and in vivo. Using both in vitro and in vivo genetic dependency experiments, we show that ERRγ is the main mediator of ERR agonism-induced transcriptional regulation and cardioprotection and definitively demonstrated target specificity. ERR agonism also led to downregulation of cell cycle and development pathways, which was partially mediated by E2F1 in cardiomyocytes. CONCLUSIONS: ERR agonists maintain oxidative metabolism, which confers cardiac protection against pressure overload-induced HF in vivo. Our results provide direct pharmacologic evidence supporting the further development of ERR agonists as novel HF therapeutics.


Subject(s)
Heart Failure , Mice , Animals , Cardiomegaly/metabolism , Mitochondria/metabolism , Myocytes, Cardiac/metabolism , Receptors, Estrogen/genetics , Receptors, Estrogen/metabolism , Fatty Acids/metabolism
2.
Mol Pharmacol ; 106(4): 164-172, 2024 Sep 17.
Article in English | MEDLINE | ID: mdl-39168657

ABSTRACT

Autophagy is an essential self-degradative and recycling mechanism that maintains cellular homeostasis. Estrogen receptor-related orphan receptors (ERRs) are fundamental in regulating cardiac metabolism and function. Previously, we showed that ERR agonists improve cardiac function in models of heart failure and induce autophagy. Here, we characterized a mechanism by which ERRs induce the autophagy pathway in cardiomyocytes. Transcription factor EB (TFEB) is a master regulator of the autophagy-lysosome pathway and has been shown to be crucial regulator of genes that control autophagy. We discovered that TFEB is a direct ERR target gene whose expression is induced by ERR agonists. Activation of ERR results in increased TFEB expression in both neonatal rat ventricular myocytes and C2C12 myoblasts. An ERR-dependent increase in TFEB expression results in increased expression of an array of TFEB target genes, which are critical for the stimulation of autophagy. Pharmacologically targeting ERR is a promising potential method for the treatment of many diseases where stimulation of autophagy may be therapeutic, including heart failure. SIGNIFICANCE STATEMENT: Estrogen receptor-related receptor agonists function as exercise mimetics and also display efficacy in animal models of metabolic disease, obesity, and heart failure.


Subject(s)
Autophagy , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors , Myocytes, Cardiac , Receptors, Estrogen , Animals , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/metabolism , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/genetics , Autophagy/physiology , Receptors, Estrogen/metabolism , Rats , Mice , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/drug effects , Humans , Cell Line , ERRalpha Estrogen-Related Receptor , Rats, Sprague-Dawley
3.
Metabolites ; 12(3)2022 Mar 11.
Article in English | MEDLINE | ID: mdl-35323681

ABSTRACT

Non-alcoholic fatty liver (NAFLD) over the past years has become a metabolic pandemic linked to a collection of metabolic diseases. The nuclear receptors ERRs, REV-ERBs, RORs, FXR, PPARs, and LXR are master regulators of metabolism and liver physiology. The characterization of these nuclear receptors and their biology has promoted the development of synthetic ligands. The possibility of targeting these receptors to treat NAFLD is promising, as several compounds including Cilofexor, thiazolidinediones, and Saroglitazar are currently undergoing clinical trials. This review focuses on the latest development of the pharmacology of these metabolic nuclear receptors and how they may be utilized to treat NAFLD and subsequent comorbidities.

SELECTION OF CITATIONS
SEARCH DETAIL