Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
1.
Chemistry ; 27(30): 8048-8055, 2021 May 26.
Article in English | MEDLINE | ID: mdl-33811414

ABSTRACT

Covalent organic frameworks (COFs) RIO-13, RIO-12, RIO-11, and RIO-11m were investigated towards their CO2 capture properties by thermogravimetric analysis at 1 atm and 40 °C. These microporous COFs bear in common the azine backbone composed of hydroxy-benzene moieties but differ in the relative number of hydroxyl groups present in each material. Thus, their sorption capacities were studied as a function of their textural and chemical properties. Their maximum CO2 uptake values showed a strong correlation with an increasing specific surface area, but that property alone could not fully explain the CO2 uptake data. Hence, the specific CO2 uptake, combined with DFT calculations, indicated that the relative number of hydroxyl groups in the COF backbone acts as an adsorption threshold, as the hydroxyl groups were indeed identified as relevant adsorption sites in all the studied COFs. Additionally, the best performing COF was thoroughly investigated, experimentally and theoretically, for its CO2 capture properties in a variety of CO2 concentrations and temperatures, and showed excellent isothermal recyclability up to 3 cycles.

2.
Chem Soc Rev ; 49(23): 8584-8686, 2020 Dec 07.
Article in English | MEDLINE | ID: mdl-33073812

ABSTRACT

Dramatically increased CO2 concentration from several point sources is perceived to cause severe greenhouse effect towards the serious ongoing global warming with associated climate destabilization, inducing undesirable natural calamities, melting of glaciers, and extreme weather patterns. CO2 capture and utilization (CCU) has received tremendous attention due to its significant role in intensifying global warming. Considering the lack of a timely review on the state-of-the-art progress of promising CCU techniques, developing an appropriate and prompt summary of such advanced techniques with a comprehensive understanding is necessary. Thus, it is imperative to provide a timely review, given the fast growth of sophisticated CO2 capture and utilization materials and their implementation. In this work, we critically summarized and comprehensively reviewed the characteristics and performance of both liquid and solid CO2 adsorbents with possible schemes for the improvement of their CO2 capture ability and advances in CO2 utilization. Their industrial applications in pre- and post-combustion CO2 capture as well as utilization were systematically discussed and compared. With our great effort, this review would be of significant importance for academic researchers for obtaining an overall understanding of the current developments and future trends of CCU. This work is bound to benefit researchers in fields relating to CCU and facilitate the progress of significant breakthroughs in both fundamental research and commercial applications to deliver perspective views for future scientific and industrial advances in CCU.

3.
Chemistry ; 26(9): 2051-2059, 2020 Feb 11.
Article in English | MEDLINE | ID: mdl-31743497

ABSTRACT

A series of nickel-decorated covalent organic frameworks, NiCl@RIO-12, were prepared using the post-synthetic modification strategy, that is, by reacting NiCl2 with pristine RIO-12 under alkaline conditions. Interestingly, they retained their crystallinity and the amount of nickel incorporated could be tuned from 3.6 to 25 wt % according to the reaction conditions. The incorporation of a higher amount of nickel in NiCl@RIO-12 consistently led to a lower Brunauer-Emmett-Teller surface area. Additionally, no agglomeration of nickel particles was found and a relatively homogeneous dispersion of nickel could be ascertained by SEM and TEM-EDS. The paramagnetic material exhibited promising catalytic activity in Suzuki-Miyaura cross-coupling under microwave heating. Thus, NiCl@RIO-12 notably demonstrated good thermal stability and its recyclability showed no substantial loss of activity after 3 cycles.

4.
Chemphyschem ; 20(21): 2874-2880, 2019 11 05.
Article in English | MEDLINE | ID: mdl-31502391

ABSTRACT

The understanding of major zeolite applications is partially based on diffusion of molecules inside or outside microporous networks. However, it is still a challenge to measure such phenomena. The diffusion ordered nuclear magnetic resonance spectroscopy (DOSY) technique has been reported to measure a probe molecule's diffusion inside porous solids. Pulsed-field gradient (PFG)-NMR has been used herein to measure the self-diffusivity of different probe molecules, such as neopentane, benzene, toluene and 1-dodecene with increasing dynamic diameter, respectively, on a series of H-ZSM-5 zeolites. The latter materials exhibit different crystal sizes, Si/Al ratios and the presence (or absence) of crystalline defects. In addition, shaped zeolite bodies representing industrial catalysts were compared with the afore-mentioned samples.

5.
Inorg Chem ; 56(14): 7821-7834, 2017 Jul 17.
Article in English | MEDLINE | ID: mdl-28665120

ABSTRACT

A series of lithium silicates with improved CO2 sorption capacity were successfully synthesized using SBA-15 as the silicon precursor. The influence of Li/Si ratio, calcination temperature, and calcination duration on the chemical composition and CO2 capture capacity of obtained lithium silicates was systematically investigated. The correlation between CO2 sorption performance and crystalline phase abundance was determined using X-ray diffraction and a normalized reference intensity ratio method. Under the optimized condition, Li-SBA15-4 prepared using Li/Si = 4 that contains mainly Li4SiO4 achieved an extremely high CO2 capture capacity of 36.3 wt % (corresponding to 99% of the theoretical value of 36.7 wt % for Li4SiO4), which is much higher than the Li4SiO4 synthesized from conventional SiO2 sources. It also showed very high cycling stability with only 1.0 wt % capacity loss after 15 cycles. Li-SBA15-10 (Li/Si = 10) that mainly contains Li8SiO6 displayed an extremely high CO2 uptake of 62.0 wt %, but its regeneration capacity was poor, with only 10.5 wt % of reversible CO2 capture capacity. The influence of CO2 concentration on the CO2 capture performance of Li-SBA15-4 and Li-SBA15-10 samples was also studied. With the decrease in CO2 concentration, relatively lower temperatures are needed for its maximum CO2 capture capacity. The CO2 sorption kinetics and mechanism for Li-SBA15-4 and Li-SBA15-10 samples were explored. Overall, we have shown that the lithium silicates synthesized from SBA-15 possessed much improved CO2 sorption performance than that attained from conventional SiO2.

6.
Chemistry ; 20(14): 3903-7, 2014 Apr 01.
Article in English | MEDLINE | ID: mdl-24573654

ABSTRACT

Gold(I)-polyoxometalate hybrid complexes 1-4 ([PPh3AuMeCN]xH4-x SiW12O40, x=1-4) were synthesized and characterized. The structure of the primary gold(I)-polyoxometalate 1 (x=1) was fully ascertained by XRD, FTIR, (31)P and (29)Si magic-angle spinning (MAS) NMR, mass spectroscopy, and SEM-energy dispersive X-ray spectroscopy (EDX) techniques. Moreover, this complex exhibited better catalytic activity and selectivity compared with standard, homogeneous, gold catalysts in the new rearrangement of propargylic gem-diesters.

7.
Nanomaterials (Basel) ; 14(2)2024 Jan 18.
Article in English | MEDLINE | ID: mdl-38251176

ABSTRACT

Adsorption isotherms of pure vapors and vapor mixtures of water, methanol, and cyclohexane were studied using a synthesized 13X zeolite (FAU topology), by means of a DVS gravimetric vapor analyzer. These results were validated by GCMC calculations. The surface chemistry of the adsorbent was characterized by the thermodesorption of ammonia, and its textural properties were studied using nitrogen physisorption. The 13X zeolite was found to be strongly acidic (BrØnsted acid sites, Si/Al = 1.3) and its specific surface area around 1100 m2·g-1. Water was found to be able to diffuse within both the supercages and the sodalite cavities of the FAU structure, whereas methanol and cyclohexane were confined in the supercages only. The water/methanol sorption selectivity of the 13X zeolite was demonstrated by co-adsorption measurements. The composition of the water/methanol adsorbed phase could be calculated by assuming IAST hypotheses. This model failed in the case of the water/cyclohexane co-adsorption system, which is in line with the non-miscibility of the components in the adsorbed state. The sorption isotherms could be successfully simulated, confirming the robustness of the forcefields used. The 13X zeolite confirmed its a priori expected hydrophilic nature, which is useful for the selective adsorption of water in a methanol-water vapor mixture.

8.
Chemistry ; 18(16): 4894-901, 2012 Apr 16.
Article in English | MEDLINE | ID: mdl-22415799

ABSTRACT

This study demonstrates the first zeolite-catalyzed synthesis of piperidine derivatives, including peptidomimetics and indoloquinolizidine alkaloids. The approach developed utilizes a highly effective one-pot reaction cascade, through imine formation and imino-Diels-Alder reactions, promoted by scandium-loaded zeolites as a heterogeneous catalyst. The methodology described benefits from very low catalyst loadings (≤5 mol % of Sc(III) ), commercially and readily available starting materials, and mild reaction conditions. Furthermore, the Sc(III) -zeolite catalyst can be readily reused more than 10 times without any loss in efficiency.


Subject(s)
Imines/chemistry , Piperidines/chemistry , Piperidines/chemical synthesis , Scandium/chemistry , Zeolites/chemistry , Catalysis , Molecular Structure , Stereoisomerism
9.
Dalton Trans ; 50(12): 4145-4151, 2021 Mar 28.
Article in English | MEDLINE | ID: mdl-33666622

ABSTRACT

The fate of HKUST-1 (Cu3(BTC)2, BTC = 1,3,5-benzenetricarboxylate) in the green Deep Eutectic Solvent (DES) reline (choline chloride/urea 1 : 2) was investigated, highlighting that not only reline can be used to make this MOF but also to transform it into another crystalline material. The synthesis of HKUST-1(reline) showing good textural properties and a particular rose morphology was indeed successfully achieved in this solvent. However, upon optimizing the reaction conditions such as concentration and metal/ligand ratio, it was found that another structure Cu2(BTC)Cl also forms. It was unequivocally demonstrated that, upon heating in reline, HKUST-1 converts to the non-porous chloride-incorporating material. Hence, a novel feature of DES in MOF synthesis is uncovered: its role as a structure-directing agent, triggering the transformation between two different MOF structures.

10.
Front Chem ; 9: 683125, 2021.
Article in English | MEDLINE | ID: mdl-34222196

ABSTRACT

Stable HBEA zeolite with high surface area and strong acid sites was synthesized from coal fly ash-based silica extract via indirect hydrothermal synthesis. The rapid HBEA hydrothermal crystallization times of 8, 10, and 12 h were achieved through a reduced molar water fraction in the synthesis composition. The HBEA zeolites prepared from fly ash silica extract exhibited well-defined spheroidal-shaped crystal morphology with uniform particle sizes of 192, 190, or 239 nm obtained after 8, 10, or 12 h of synthesis time, respectively. The high surface area and the microporous area of 702 and 722 m2/g were achieved as a function of shorter hydrothermal synthesis durations (10 and 24 h, respectively) compared to 48 or 72 h, which resulted in HBEA zeolites with lower surface areas of 538 and 670 m2/g. Likewise, temperature-programmed desorption measurements of fly ash-based HBEA zeolites revealed the presence of weak and strong acid sites in the zeolite. The submicron crystal sizes with a well-defined porosity of HBEA zeolites enhanced the diffusion of anisole and benzoyl chloride molecules toward the active acid sites and hence showed better conversion and selectivity in acylation products. High conversion of benzoyl chloride with anisole was achieved, reaching up to 83% with a 93-96% selectivity toward 4-methoxyacetophenone.

11.
Chemistry ; 16(2): 573-6, 2010 Jan 11.
Article in English | MEDLINE | ID: mdl-19918812

ABSTRACT

The heterogeneous acid-catalyzed activation step of alkanes leading to the reaction intermediates (carbocationic or alkoxy species) was up to now the matter of a longstanding controversy. Gas chromatography and online mass spectroscopy measurements show that H(2) and methane are formed over H-zeolites, whereas HD and CH(3)D are formed over D-zeolites as the primary products in the reaction with isobutane. These results indicate that sigma-bond protolysis by strong acid sites is the first step for hydrocarbon activation on these catalysts at mild temperatures (473 K), in analogy to the activation path occurring in liquid superacid media.

12.
J Nanosci Nanotechnol ; 9(6): 3611-6, 2009 Jun.
Article in English | MEDLINE | ID: mdl-19504890

ABSTRACT

The present study reports the synthesis of supported zeolite with nanoscopic size on the SiC-based composite combining nanoscopic properties, i.e., SiC nanofibers, and macroscopic shaping, i.e., SiC foam with centimeters size. The SiC nanofibers have been obtained by the transformation of the carbon nanofibers by carburization in the presence of SiO vapour and then the zeolite was deposited on the SiC foam support. The different nature of the support results in different morphologies on zeolite crystal.

13.
Front Chem ; 7: 551, 2019.
Article in English | MEDLINE | ID: mdl-31448261

ABSTRACT

The development of technologies that allow us to reduce CO2 emissions is mandatory in today's society. In this regard, we present herein a comparative study of CO2 adsorption over three types of materials: zeolites, layered double hydroxides (LDH), and zeolites coated LDH composites. The influence of the zeolite Si/Al ratio on zeolites sorption capacity along with the presence of mesopores was investigated. By comparing these results with the well-known performance of LDHs, we aim to provide insights on the factors that may influence the CO2 capture capacity over zeolites, thus providing useful tools for tuning their properties upon post-treatments.

14.
Front Chem ; 7: 505, 2019.
Article in English | MEDLINE | ID: mdl-31380349

ABSTRACT

In this research, we investigated the hydrophobicity and dynamic adsorption-desorption behaviors of volatile organic compounds (VOCs) by applying different optimized coating dosage (25, 50, and 75%) on designed novel ZSM-5/MCM-41 and ZSM-5/Silicalite-1 hierarchical composites. The relatively large specific surface area and pore volume of adsorbents ZSM-5/MCM-41 and ZSM-5/Silicalite-1 composites with excellent stability were affirmed by ex-situ XRD, FTIR, BET, SEM, and water contact angle analyses. Regarding, toluene adsorption-desorption investigation, ZSM-5/MCM-41 composite lead a longer stable toluene breakthrough time no matter under dry or 50% humid conditions. However, under different loading dosage condition, the breakthrough time of 75% coating ratio was the longest, which was 1.6 times as long as that of pure ZSM-5 under wet adsorption. Meanwhile, the complete elimination of toluene for ZSM-5/MCM-41-75% was done by largest desorption peak area and the lowest desorption temperature of 101.9°C, while, the largest contact angle of ZSM-5/MCM-41-75% was 17.0° higher than pure ZSM-5 zeolite. Therefore, we believe that the present hydrophobic sorbent will provide new insight with great research potential for removing low concentration of VOCs at industrial scale.

15.
ACS Appl Mater Interfaces ; 10(41): 34834-34839, 2018 Oct 17.
Article in English | MEDLINE | ID: mdl-30277743

ABSTRACT

Zeolites have been recognized as one type of the most promising adsorbents for capturing volatile organic compounds (VOCs, e.g., toluene), but their performance suffers severely from water vapor under wet conditions. In this contribution, we demonstrated that the hydrophobicity of microporous zeolites can be significantly improved by coating vertically aligned LDH nanoplatelets when the contact angle is increased from 16.5-20.1° to 44.4-64.2°. The toluene adsorption capacity of such synthesized zeolite@LDH core@shell composites in wet conditions can thus be largely enhanced when the breakthrough time is increased from 6.4-10.8 to 20.1-27.5 min.

16.
Chem Sci ; 9(31): 6532-6539, 2018 Aug 21.
Article in English | MEDLINE | ID: mdl-30310584

ABSTRACT

A family of Al-rich ZSM-5 zeolites with Si/Al = 8 ± 0.5 was prepared according to a biomass-mediated supramolecular approach. A combination of advanced characterisation techniques and periodic density functional theory (DFT) calculations unraveled the purity and stability of un-expected Al-enriched ZSM-5 structures, hence allowing to cross the frontier of Si/Al lower limit. In addition, these Al-rich ZSM-5 zeolites demonstrated high catalytic activity in n-hexane cracking and methanol conversion into hydrocarbons, being in line with the presence of numerous Brønsted acid sites.

17.
J Phys Chem B ; 110(33): 16793-800, 2006 Aug 24.
Article in English | MEDLINE | ID: mdl-16913820

ABSTRACT

The reaction mechanism for hydroxylation of benzene by N(2)O has been studied on chemically modified ZSM-5 catalysts. A maximum in catalytic activity and selectivity was reached for steamed samples under mild conditions (about 30% conversion with 94% selectivity). Chemical modifications, through ion exchange (H(+) versus Na(+)), have demonstrated the importance of the presence of Brönsted acid sites. The results obtained suggest a Langmuir-Hinshelwood mechanism between benzene and N(2)O adsorbed on two distinct active sites. A density functional theory study considering the possible reaction intermediates also confirmed the possible formation of protonated nitrous oxide, leading to a Wheland-type intermediate, thus supporting an electrophilic aromatic substitution assisted by the confined environment provided by the active zeolite framework.

18.
J Phys Chem B ; 110(21): 10390-5, 2006 Jun 01.
Article in English | MEDLINE | ID: mdl-16722744

ABSTRACT

On the basis of our previous H/D exchange studies devoted to the quantification of the number of Brönsted acid sites in solid acids, we report here an innovative approach to determine both the amount and the localization of Mo atoms inside the Mo/ZSM-5 catalyst, commonly used for the methane dehydroaromatization reaction. The influence of Mo introduction in the MFI framework was studied by means of BET, X-ray diffraction, 27Al magic angle spinning NMR, NH3 temperature-programmed desorption, and H/D isotopic exchange techniques. A dependence was found between the decrease of acidic OH groups and the Mo content. Depending on the Si/Al ratio of the zeolite, i.e., the proximity of two Brönsted acid sites, the Mo atoms substitute a different number of OH groups. Consequently, a chemical structure was proposed to describe the geometry of the Mo complex in the channels of the ZSM-5 zeolite.

19.
Front Chem ; 8: 118, 2020.
Article in English | MEDLINE | ID: mdl-32211373
20.
Dalton Trans ; 43(9): 3722-9, 2014 Mar 07.
Article in English | MEDLINE | ID: mdl-24434813

ABSTRACT

The one-step synthesis of a mesoporous silica of SBA type, functionalized with a 1-(2,6-diisopropylphenyl)-3-propyl-imidazolium (iPr2Ar-NHC-propyl) cation located in the pore channels, is described. This material was obtained by the direct hydrolysis and co-condensation of tetraethylorthosilicate (TEOS) and 1-(2,6-diisopropylphenyl)-3-[3-(triethoxysilyl)propyl]-imidazolium iodide in the presence of Pluronic P123 as a non-ionic structure-directing agent and aqueous HCl (37%) as an acid catalyst. Small-angle X-ray diffraction measurements, scanning and transmission electron microscopies, as well as dinitrogen sorption analyses revealed that the synthesized material is highly mesoporous with a 2D hexagonal arrangement of the porous network. (13)C and (29)Si CP-MAS NMR spectroscopy confirmed that the material contains intact iPr2Ar-NHC-propyl cations, which are covalently anchored via silicon atoms fused into the silica matrix. Moreover, comparison of the latter data with those of an analogous post-synthetic grafted SBA-NHC material allowed us to establish that, as expected, (i) it is most probably more homogeneous and (ii) it shows a more robust anchoring of the organic units. Finally, elemental mapping by energy dispersive X-ray spectroscopy in the scanning electron microscope demonstrated a very homogeneous distribution of the imidazolium units within the one-pot material, moreover with a high content. This study thus demonstrates that a relatively bulky and hydrophilic imidazolium unit can be directly co-condensed with TEOS in the presence of a structure-directing agent to provide in a single step a highly ordered and homogeneous mesoporous hybrid SBA-NHC material, possessing a significant number of cationic NHC sites.

SELECTION OF CITATIONS
SEARCH DETAIL