Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 58
Filter
1.
Cell ; 186(2): 287-304.e26, 2023 01 19.
Article in English | MEDLINE | ID: mdl-36610399

ABSTRACT

Whether and how certain transposable elements with viral origins, such as endogenous retroviruses (ERVs) dormant in our genomes, can become awakened and contribute to the aging process is largely unknown. In human senescent cells, we found that HERVK (HML-2), the most recently integrated human ERVs, are unlocked to transcribe viral genes and produce retrovirus-like particles (RVLPs). These HERVK RVLPs constitute a transmissible message to elicit senescence phenotypes in young cells, which can be blocked by neutralizing antibodies. The activation of ERVs was also observed in organs of aged primates and mice as well as in human tissues and serum from the elderly. Their repression alleviates cellular senescence and tissue degeneration and, to some extent, organismal aging. These findings indicate that the resurrection of ERVs is a hallmark and driving force of cellular senescence and tissue aging.


Subject(s)
Aging , Endogenous Retroviruses , Aged , Animals , Humans , Mice , Aging/genetics , Aging/pathology , Cellular Senescence , Endogenous Retroviruses/genetics , Primates
2.
Cell ; 165(6): 1375-1388, 2016 Jun 02.
Article in English | MEDLINE | ID: mdl-27259149

ABSTRACT

How the chromatin regulatory landscape in the inner cell mass cells is established from differentially packaged sperm and egg genomes during preimplantation development is unknown. Here, we develop a low-input DNase I sequencing (liDNase-seq) method that allows us to generate maps of DNase I-hypersensitive site (DHS) of mouse preimplantation embryos from 1-cell to morula stage. The DHS landscape is progressively established with a drastic increase at the 8-cell stage. Paternal chromatin accessibility is quickly reprogrammed after fertilization to the level similar to maternal chromatin, while imprinted genes exhibit allelic accessibility bias. We demonstrate that transcription factor Nfya contributes to zygotic genome activation and DHS formation at the 2-cell stage and that Oct4 contributes to the DHSs gained at the 8-cell stage. Our study reveals the dynamic chromatin regulatory landscape during early development and identifies key transcription factors important for DHS establishment in mammalian embryos.


Subject(s)
Blastocyst , Chromatin/metabolism , Animals , Binding Sites , Blastocyst/cytology , Blastocyst Inner Cell Mass/metabolism , CCAAT-Binding Factor/metabolism , Chromosome Mapping , DNA/metabolism , Deoxyribonuclease I/metabolism , Embryonic Development , Female , Gene Expression Regulation, Developmental , Male , Mice , Octamer Transcription Factor-3/metabolism , Promoter Regions, Genetic
3.
Cell ; 159(4): 884-95, 2014 Nov 06.
Article in English | MEDLINE | ID: mdl-25417163

ABSTRACT

Mammalian oocytes can reprogram somatic cells into a totipotent state enabling animal cloning through somatic cell nuclear transfer (SCNT). However, the majority of SCNT embryos fail to develop to term due to undefined reprogramming defects. Here, we identify histone H3 lysine 9 trimethylation (H3K9me3) of donor cell genome as a major barrier for efficient reprogramming by SCNT. Comparative transcriptome analysis identified reprogramming resistant regions (RRRs) that are expressed normally at 2-cell mouse embryos generated by in vitro fertilization (IVF) but not SCNT. RRRs are enriched for H3K9me3 in donor somatic cells and its removal by ectopically expressed H3K9me3 demethylase Kdm4d not only reactivates the majority of RRRs, but also greatly improves SCNT efficiency. Furthermore, use of donor somatic nuclei depleted of H3K9 methyltransferases markedly improves SCNT efficiency. Our study thus identifies H3K9me3 as a critical epigenetic barrier in SCNT-mediated reprogramming and provides a promising approach for improving mammalian cloning efficiency.


Subject(s)
Embryonic Development , Histone Code , Histones/metabolism , Nuclear Transfer Techniques , Animals , Cloning, Organism/methods , Embryo, Mammalian/metabolism , Female , Jumonji Domain-Containing Histone Demethylases/metabolism , Male , Methylation , Methyltransferases/metabolism , Mice, Inbred C57BL , Mice, Inbred DBA , Repressor Proteins/metabolism , Zygote
4.
Brief Bioinform ; 24(1)2023 01 19.
Article in English | MEDLINE | ID: mdl-36464486

ABSTRACT

Many enhancers exist as clusters in the genome and control cell identity and disease genes; however, the underlying mechanism remains largely unknown. Here, we introduce an algorithm, eNet, to build enhancer networks by integrating single-cell chromatin accessibility and gene expression profiles. The complexity of enhancer networks is assessed by two metrics: the number of enhancers and the frequency of predicted enhancer interactions (PEIs) based on chromatin co-accessibility. We apply eNet algorithm to a human blood dataset and find cell identity and disease genes tend to be regulated by complex enhancer networks. The network hub enhancers (enhancers with frequent PEIs) are the most functionally important. Compared with super-enhancers, enhancer networks show better performance in predicting cell identity and disease genes. eNet is robust and widely applicable in various human or mouse tissues datasets. Thus, we propose a model of enhancer networks containing three modes: Simple, Multiple and Complex, which are distinguished by their complexity in regulating gene expression. Taken together, our work provides an unsupervised approach to simultaneously identify key cell identity and disease genes and explore the underlying regulatory relationships among enhancers in single cells.


Subject(s)
Enhancer Elements, Genetic , Multiomics , Humans , Animals , Mice , Chromatin/genetics
5.
Proc Natl Acad Sci U S A ; 119(32): e2119850119, 2022 08 09.
Article in English | MEDLINE | ID: mdl-35925886

ABSTRACT

Cochlear hair cells (HCs) in the inner ear are responsible for sound detection. For HC fate specification, the master transcription factor Atoh1 is both necessary and sufficient. Atoh1 expression is dynamic and tightly regulated during development, but the cis-regulatory elements mediating this regulation remain unresolved. Unexpectedly, we found that deleting the only recognized Atoh1 enhancer, defined here as Eh1, failed to impair HC development. By using the assay for transposase-accessible chromatin with high-throughput sequencing (ATAC-seq), we discovered two additional Atoh1 enhancers: Eh2 and Eh3. Notably, Eh2 deletion was sufficient for impairing HC development, and concurrent deletion of Eh1 and Eh2 or all three enhancers resulted in nearly complete absence of HCs. Lastly, we showed that Atoh1 binds to all three enhancers, consistent with its autoregulatory function. Our findings reveal that the cooperative action of three distinct enhancers underpins effective Atoh1 regulation during HC development, indicating potential therapeutic approaches for HC regeneration.


Subject(s)
Basic Helix-Loop-Helix Transcription Factors , Ear, Inner , Enhancer Elements, Genetic , Hair Cells, Auditory , Basic Helix-Loop-Helix Transcription Factors/genetics , Basic Helix-Loop-Helix Transcription Factors/physiology , Cell Differentiation , Cochlea/cytology , Ear, Inner/cytology , Hair Cells, Auditory/physiology
6.
Genes Dev ; 31(19): 1927-1932, 2017 10 01.
Article in English | MEDLINE | ID: mdl-29089420

ABSTRACT

Maternal imprinting at the Xist gene is essential to achieve paternal allele-specific imprinted X-chromosome inactivation (XCI) in female mammals. However, the mechanism underlying Xist imprinting is unclear. Here we show that the Xist locus is coated with a broad H3K27me3 domain that is established during oocyte growth and persists through preimplantation development in mice. Loss of maternal H3K27me3 induces maternal Xist expression and maternal XCI in preimplantation embryos. Our study thus identifies maternal H3K27me3 as the imprinting mark of Xist.


Subject(s)
Gene Expression Regulation, Developmental/genetics , Genomic Imprinting/genetics , Histone-Lysine N-Methyltransferase/metabolism , RNA, Long Noncoding/genetics , X Chromosome Inactivation/genetics , Animals , Blastocyst , Embryo, Mammalian , Female , Histone Methyltransferases , Histone-Lysine N-Methyltransferase/genetics , Male , Mice , Oocysts/physiology
7.
Nucleic Acids Res ; 50(8): 4414-4435, 2022 05 06.
Article in English | MEDLINE | ID: mdl-35390160

ABSTRACT

Mammalian early epiblasts at different phases are characterized by naïve, formative, and primed pluripotency states, involving extensive transcriptome changes. Here, we report that deadenylase Cnot8 of Ccr4-Not complex plays essential roles during the transition from naïve to formative state. Knock out (KO) Cnot8 resulted in early embryonic lethality in mice, but Cnot8 KO embryonic stem cells (ESCs) could be established. Compared with the cells differentiated from normal ESCs, Cnot8 KO cells highly expressed a great many genes during their differentiation into the formative state, including several hundred naïve-like genes enriched in lipid metabolic process and gene expression regulation that may form the naïve regulation networks. Knockdown expression of the selected genes of naïve regulation networks partially rescued the differentiation defects of Cnot8 KO ESCs. Cnot8 depletion led to the deadenylation defects of its targets, increasing their poly(A) tail lengths and half-life, eventually elevating their expression levels. We further found that Cnot8 was involved in the clearance of targets through its deadenylase activity and the binding of Ccr4-Not complex, as well as the interacting with Tob1 and Pabpc1. Our results suggest that Cnot8 eliminates naïve regulation networks through mRNA clearance, and is essential for naïve-to-formative pluripotency transition.


Subject(s)
Embryonic Stem Cells , Gene Expression Regulation , Transcription Factors , Animals , Mice , Cell Differentiation/genetics , Embryonic Stem Cells/metabolism , Mammals/genetics , RNA, Messenger/metabolism , Transcription Factors/metabolism , Transcriptome
8.
Nature ; 547(7664): 419-424, 2017 07 27.
Article in English | MEDLINE | ID: mdl-28723896

ABSTRACT

Mammalian sperm and oocytes have different epigenetic landscapes and are organized in different fashions. After fertilization, the initially distinct parental epigenomes become largely equalized with the exception of certain loci, including imprinting control regions. How parental chromatin becomes equalized and how imprinting control regions escape from this reprogramming is largely unknown. Here we profile parental allele-specific DNase I hypersensitive sites in mouse zygotes and morula embryos, and investigate the epigenetic mechanisms underlying these allelic sites. Integrated analyses of DNA methylome and tri-methylation at lysine 27 of histone H3 (H3K27me3) chromatin immunoprecipitation followed by sequencing identify 76 genes with paternal allele-specific DNase I hypersensitive sites that are devoid of DNA methylation but harbour maternal allele-specific H3K27me3. Interestingly, these genes are paternally expressed in preimplantation embryos, and ectopic removal of H3K27me3 induces maternal allele expression. H3K27me3-dependent imprinting is largely lost in the embryonic cell lineage, but at least five genes maintain their imprinted expression in the extra-embryonic cell lineage. The five genes include all paternally expressed autosomal imprinted genes previously demonstrated to be independent of oocyte DNA methylation. Thus, our study identifies maternal H3K27me3 as a DNA methylation-independent imprinting mechanism.


Subject(s)
DNA Methylation , Genomic Imprinting , Histones/metabolism , Alleles , Animals , Blastocyst/metabolism , Cell Lineage , Chromatin/metabolism , DNA/genetics , DNA/metabolism , Deoxyribonuclease I/metabolism , Embryo, Mammalian/cytology , Embryo, Mammalian/metabolism , Female , Gene Expression Regulation , Histones/chemistry , Lysine/metabolism , Male , Mice , Morula/metabolism , Oocytes/metabolism , Zygote/cytology , Zygote/metabolism
9.
Genes Dev ; 28(19): 2103-19, 2014 Oct 01.
Article in English | MEDLINE | ID: mdl-25223896

ABSTRACT

DNA methylation at the C-5 position of cytosine (5mC) is one of the best-studied epigenetic modifications and plays important roles in diverse biological processes. Iterative oxidation of 5mC by the ten-eleven translocation (Tet) family of proteins generates 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC), and 5-carboxylcytosine (5caC). 5fC and 5caC are selectively recognized and excised by thymine DNA glycosylase (TDG), leading to DNA demethylation. Functional characterization of Tet proteins has been complicated by the redundancy between the three family members. Using CRISPR/Cas9 technology, we generated mouse embryonic stem cells (ESCs) deficient for all three Tet proteins (Tet triple knockout [TKO]). Whole-genome bisulfite sequencing (WGBS) analysis revealed that Tet-mediated DNA demethylation mainly occurs at distally located enhancers and fine-tunes the transcription of genes associated with these regions. Functional characterization of Tet TKO ESCs revealed a role for Tet proteins in regulating the two-cell embryo (2C)-like state under ESC culture conditions. In addition, Tet TKO ESCs exhibited increased telomere-sister chromatid exchange and elongated telomeres. Collectively, our study reveals a role for Tet proteins in not only DNA demethylation at enhancers but also regulating the 2C-like state and telomere homeostasis.


Subject(s)
DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Enhancer Elements, Genetic/physiology , Telomere/metabolism , Animals , DNA Methylation , Dioxygenases , Embryonic Stem Cells , Gene Expression Profiling , Gene Expression Regulation , Gene Knockout Techniques , Mice , Promoter Regions, Genetic/physiology , Proto-Oncogene Proteins/genetics , Proto-Oncogene Proteins/metabolism , Telomere/genetics
10.
Proc Natl Acad Sci U S A ; 111(45): 16190-5, 2014 Nov 11.
Article in English | MEDLINE | ID: mdl-25352672

ABSTRACT

Ribosome biogenesis is a fundamental and tightly regulated cellular process, including synthesis, processing, and assembly of rRNAs with ribosomal proteins. Protein arginine methyltransferases (PRMTs) have been implicated in many important biological processes, such as ribosome biogenesis. Two alternative precursor rRNA (pre-rRNA) processing pathways coexist in yeast and mammals; however, how PRMT affects ribosome biogenesis remains largely unknown. Here we show that Arabidopsis PRMT3 (AtPRMT3) is required for ribosome biogenesis by affecting pre-rRNA processing. Disruption of AtPRMT3 results in pleiotropic developmental defects, imbalanced polyribosome profiles, and aberrant pre-rRNA processing. We further identify an alternative pre-rRNA processing pathway in Arabidopsis and demonstrate that AtPRMT3 is required for the balance of these two pathways to promote normal growth and development. Our work uncovers a previously unidentified function of PRMT in posttranscriptional regulation of rRNA, revealing an extra layer of complexity in the regulation of ribosome biogenesis.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , Protein-Arginine N-Methyltransferases/metabolism , RNA Precursors/metabolism , RNA Processing, Post-Transcriptional/physiology , RNA, Plant/metabolism , RNA, Ribosomal/metabolism , Ribosomes/metabolism , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Protein-Arginine N-Methyltransferases/genetics , RNA Precursors/genetics , RNA, Plant/genetics , RNA, Ribosomal/genetics , Ribosomes/genetics
11.
EMBO J ; 29(20): 3496-506, 2010 Oct 20.
Article in English | MEDLINE | ID: mdl-20834229

ABSTRACT

In diverse eukaryotes, constitutively silent sequences, such as transposons and repeats, are marked by methylation at histone H3 lysine 9 (H3K9me). Although selective H3K9me is critical for maintaining genome integrity, mechanisms to exclude H3K9me from active genes remain largely unexplored. Here, we show in Arabidopsis that the exclusion depends on a histone demethylase gene, IBM1 (increase in BONSAI methylation). Loss-of-function ibm1 mutation results in ectopic H3K9me and non-CG methylation in thousands of genes. The ibm1-induced genic H3K9me depends on both histone methylase KYP/SUVH4 and DNA methylase CMT3, suggesting interdependence of two epigenetic marks--H3K9me and non-CG methylation. Notably, IBM1 enhances loss of H3K9me in transcriptionally de-repressed sequences. Furthermore, disruption of transcription in genes induces ectopic non-CG methylation, which mimics the loss of IBM1 function. We propose that active chromatin is stabilized by an autocatalytic loop of transcription and H3K9 demethylation. This process counteracts a similarly autocatalytic accumulation of silent epigenetic marks, H3K9me and non-CG methylation.


Subject(s)
Arabidopsis Proteins/genetics , Arabidopsis/genetics , DNA-Binding Proteins/genetics , Epigenesis, Genetic , Gene Expression Regulation, Plant , Histone Demethylases/genetics , Arabidopsis/metabolism , Arabidopsis Proteins/metabolism , Chromatin/metabolism , DNA Methylation , DNA Transposable Elements/genetics , DNA-Binding Proteins/metabolism , Histone Demethylases/metabolism , Histones/genetics , Histones/metabolism , Jumonji Domain-Containing Histone Demethylases , Mutation , Transcription, Genetic
12.
Plant Physiol ; 162(2): 897-906, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23645632

ABSTRACT

Protein ubiquitination is involved in most cellular processes. In Arabidopsis (Arabidopsis thaliana), ubiquitin-mediated protein degradation regulates the stability of key components of the circadian clock feedback loops and the photoperiodic flowering pathway. Here, we identified two ubiquitin-specific proteases, UBP12 and UBP13, involved in circadian clock and photoperiodic flowering regulation. Double mutants of ubp12 and ubp13 display pleiotropic phenotypes, including early flowering and short periodicity of circadian rhythms. In ubp12 ubp13 double mutants, CONSTANS (CO) transcript rises earlier than that of wild-type plants during the day, which leads to increased expression of FLOWERING LOCUS T. This, and analysis of ubp12 co mutants, indicates that UBP12 and UBP13 regulate photoperiodic flowering through a CO-dependent pathway. In addition, UBP12 and UBP13 regulate the circadian rhythm of clock genes, including LATE ELONGATED HYPOCOTYL, CIRCADIAN CLOCK ASSOCIATED1, and TIMING OF CAB EXPRESSION1. Furthermore, UBP12 and UBP13 are circadian controlled. Therefore, our work reveals a role for two deubiquitinases, UBP12 and UBP13, in the control of the circadian clock and photoperiodic flowering, which extends our understanding of ubiquitin in daylength measurement in higher plants.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/physiology , Circadian Clocks/genetics , Endopeptidases/metabolism , Flowers/physiology , Photoperiod , Arabidopsis Proteins/genetics , Cell Nucleus/metabolism , Circadian Rhythm/genetics , Cytoplasm/metabolism , Endopeptidases/genetics , Gene Expression Regulation, Plant , Mutation , Phenotype , Plants, Genetically Modified , Sequence Homology, Amino Acid , Ubiquitination
13.
Nat Commun ; 15(1): 5550, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38956014

ABSTRACT

Oocyte in vitro maturation is a technique in assisted reproductive technology. Thousands of genes show abnormally high expression in in vitro maturated metaphase II (MII) oocytes compared to those matured in vivo in bovines, mice, and humans. The mechanisms underlying this phenomenon are poorly understood. Here, we use poly(A) inclusive RNA isoform sequencing (PAIso-seq) for profiling the transcriptome-wide poly(A) tails in both in vivo and in vitro matured mouse and human oocytes. Our results demonstrate that the observed increase in maternal mRNA abundance is caused by impaired deadenylation in in vitro MII oocytes. Moreover, the cytoplasmic polyadenylation of dormant Btg4 and Cnot7 mRNAs, which encode key components of deadenylation machinery, is impaired in in vitro MII oocytes, contributing to reduced translation of these deadenylase machinery components and subsequently impaired global maternal mRNA deadenylation. Our findings highlight impaired maternal mRNA deadenylation as a distinct molecular defect in in vitro MII oocytes.


Subject(s)
Oocytes , Polyadenylation , Oocytes/metabolism , Animals , Humans , Female , Mice , Poly A/metabolism , In Vitro Oocyte Maturation Techniques , RNA, Messenger/metabolism , RNA, Messenger/genetics , Transcriptome , RNA, Messenger, Stored/metabolism , RNA, Messenger, Stored/genetics , Metaphase , Exoribonucleases , Repressor Proteins , Cell Cycle Proteins
14.
Nat Commun ; 15(1): 5, 2024 01 16.
Article in English | MEDLINE | ID: mdl-38228612

ABSTRACT

Somatic cell nuclear transfer (SCNT) successfully clones cynomolgus monkeys, but the efficiency remains low due to a limited understanding of the reprogramming mechanism. Notably, no rhesus monkey has been cloned through SCNT so far. Our study conducts a comparative analysis of multi-omics datasets, comparing embryos resulting from intracytoplasmic sperm injection (ICSI) with those from SCNT. Our findings reveal a widespread decrease in DNA methylation and the loss of imprinting in maternally imprinted genes within SCNT monkey blastocysts. This loss of imprinting persists in SCNT embryos cultured in-vitro until E17 and in full-term SCNT placentas. Additionally, histological examination of SCNT placentas shows noticeable hyperplasia and calcification. To address these defects, we develop a trophoblast replacement method, ultimately leading to the successful cloning of a healthy male rhesus monkey. These discoveries provide valuable insights into the reprogramming mechanism of monkey SCNT and introduce a promising strategy for primate cloning.


Subject(s)
Nuclear Transfer Techniques , Semen , Pregnancy , Animals , Female , Male , Trophoblasts , Cloning, Organism , Blastocyst , Cellular Reprogramming/genetics
15.
Nat Genet ; 56(2): 294-305, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38267607

ABSTRACT

The human placenta has a vital role in ensuring a successful pregnancy. Despite the growing body of knowledge about its cellular compositions and functions, there has been limited research on the heterogeneity of the billions of nuclei within the syncytiotrophoblast (STB), a multinucleated entity primarily responsible for placental function. Here we conducted integrated single-nucleus RNA sequencing and single-nucleus ATAC sequencing analyses of human placentas from early and late pregnancy. Our findings demonstrate the dynamic heterogeneity and developmental trajectories of STB nuclei and their correspondence with human trophoblast stem cell (hTSC)-derived STB. Furthermore, we identified transcription factors associated with diverse STB nuclear lineages through their gene regulatory networks and experimentally confirmed their function in hTSC and trophoblast organoid-derived STBs. Together, our data provide insights into the heterogeneity of human STB and represent a valuable resource for interpreting associated pregnancy complications.


Subject(s)
Multiomics , Placenta , Pregnancy , Humans , Female , Trophoblasts , Cell Nucleus/genetics , Transcription Factors , Cell Differentiation
16.
Nat Struct Mol Biol ; 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38658621

ABSTRACT

The heterogeneity of CARM1 controls first cell fate bias during early mouse development. However, how this heterogeneity is established is unknown. Here, we show that Carm1 mRNA is of a variety of specific exon-skipping splicing (ESS) isoforms in mouse two-cell to four-cell embryos that contribute to CARM1 heterogeneity. Disruption of paraspeckles promotes the ESS of Carm1 precursor mRNAs (pre-mRNAs). LincGET, but not Neat1, is required for paraspeckle assembly and inhibits the ESS of Carm1 pre-mRNAs in mouse two-cell to four-cell embryos. We further find that LincGET recruits paraspeckles to the Carm1 gene locus through HNRNPU. Interestingly, PCBP1 binds the Carm1 pre-mRNAs and promotes its ESS in the absence of LincGET. Finally, we find that the ESS seen in mouse two-cell to four-cell embryos decreases CARM1 protein levels and leads to trophectoderm fate bias. Our findings demonstrate that alternative splicing of CARM1 has an important role in first cell fate determination.

17.
Sci China Life Sci ; 67(1): 96-112, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37698691

ABSTRACT

Chromatin accessibility remodeling driven by pioneer factors is critical for the development of early embryos. Current studies have illustrated several pioneer factors as being important for agricultural animals, but what are the pioneer factors and how the pioneer factors remodel the chromatin accessibility in porcine early embryos is not clear. By employing low-input DNase-seq (liDNase-seq), we profiled the landscapes of chromatin accessibility in porcine early embryos and uncovered a unique chromatin accessibility reprogramming pattern during porcine preimplantation development. Our data revealed that KLF4 played critical roles in remodeling chromatin accessibility in porcine early embryos. Knocking down of KLF4 led to the reduction of chromatin accessibility in early embryos, whereas KLF4 overexpression promoted the chromatin openness in porcine blastocysts. Furthermore, KLF4 deficiency resulted in mitochondrial dysfunction and developmental failure of porcine embryos. In addition, we found that overexpression of KLF4 in blastocysts promoted lipid droplet accumulation, whereas knockdown of KLF4 disrupted this process. Taken together, our study revealed the chromatin accessibility dynamics and identified KLF4 as a key regulator in chromatin accessibility and cellular metabolism during porcine preimplantation embryo development.


Subject(s)
Chromatin , Embryonic Development , Swine , Animals , Embryonic Development/genetics , Chromatin/genetics , Chromatin/metabolism , Blastocyst/metabolism , Chromosomes
18.
Proc Natl Acad Sci U S A ; 107(44): 19114-9, 2010 Nov 02.
Article in English | MEDLINE | ID: mdl-20956294

ABSTRACT

Protein arginine methylation, one of the most abundant and important posttranslational modifications, is involved in a multitude of biological processes in eukaryotes, such as transcriptional regulation and RNA processing. Symmetric arginine dimethylation is required for snRNP biogenesis and is assumed to be essential for pre-mRNA splicing; however, except for in vitro evidence, whether it affects splicing in vivo remains elusive. Mutation in an Arabidopsis symmetric arginine dimethyltransferase, AtPRMT5, causes pleiotropic developmental defects, including late flowering, but the underlying molecular mechanism is largely unknown. Here we show that AtPRMT5 methylates a wide spectrum of substrates, including some RNA binding or processing factors and U snRNP AtSmD1, D3, and AtLSm4 proteins, which are involved in RNA metabolism. RNA-seq analyses reveal that AtPRMT5 deficiency causes splicing defects in hundreds of genes involved in multiple biological processes. The splicing defects are identified in transcripts of several RNA processing factors involved in regulating flowering time. In particular, splicing defects at the flowering regulator flowering locus KH domain (FLK) in atprmt5 mutants reduce its functional transcript and protein levels, resulting in the up-regulation of a flowering repressor flowering locus C (FLC) and consequently late flowering. Taken together, our findings uncover an essential role for arginine methylation in proper pre-mRNA splicing that impacts diverse developmental processes.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/enzymology , Flowers/enzymology , Protein-Arginine N-Methyltransferases/metabolism , RNA Precursors/metabolism , RNA Splicing/physiology , RNA, Plant/metabolism , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Arginine/genetics , Arginine/metabolism , Flowers/genetics , Methylation , Mutation , Protein-Arginine N-Methyltransferases/genetics , RNA Precursors/genetics , RNA, Plant/genetics , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism
19.
Nat Struct Mol Biol ; 30(2): 200-215, 2023 02.
Article in English | MEDLINE | ID: mdl-36646905

ABSTRACT

Poly(A)-tail-mediated post-transcriptional regulation of maternal mRNAs is vital in the oocyte-to-embryo transition (OET). Nothing is known about poly(A) tail dynamics during the human OET. Here, we show that poly(A) tail length and internal non-A residues are highly dynamic during the human OET, using poly(A)-inclusive RNA isoform sequencing (PAIso-seq). Unexpectedly, maternal mRNAs undergo global remodeling: after deadenylation or partial degradation into 3'-UTRs, they are re-polyadenylated to produce polyadenylated degradation intermediates, coinciding with massive incorporation of non-A residues, particularly internal long consecutive U residues, into the newly synthesized poly(A) tails. Moreover, TUT4 and TUT7 contribute to the incorporation of these U residues, BTG4-mediated deadenylation produces substrates for maternal mRNA re-polyadenylation, and TENT4A and TENT4B incorporate internal G residues. The maternal mRNA remodeling is further confirmed using PAIso-seq2. Importantly, maternal mRNA remodeling is essential for the first cleavage of human embryos. Together, these findings broaden our understanding of the post-transcriptional regulation of maternal mRNAs during the human OET.


Subject(s)
Oocytes , RNA, Messenger, Stored , Humans , RNA, Messenger, Stored/metabolism , Oocytes/metabolism , RNA, Messenger/metabolism , Gene Expression Regulation , Polyadenylation , Poly A/chemistry
20.
Nat Plants ; 9(11): 1848-1861, 2023 11.
Article in English | MEDLINE | ID: mdl-37814022

ABSTRACT

Prevention of autonomous division of the egg apparatus and central cell in a female gametophyte before fertilization ensures successful reproduction in flowering plants. Here we show that rice ovules of Polycomb repressive complex 2 (PRC2) Osfie1 and Osfie2 double mutants exhibit asexual embryo and autonomous endosperm formation at a high frequency, while ovules of single Osfie2 mutants display asexual pre-embryo-like structures at a lower frequency without fertilization. Earlier onset, higher penetrance and better development of asexual embryos in the double mutants compared with those in Osfie2 suggest that the autonomous endosperm facilitated asexual embryo development. Transcriptomic analysis showed that male genome-expressed OsBBM1 and OsWOX8/9 were activated in the asexual embryos. Similarly, the maternal alleles of the paternally expressed imprinted genes were activated in the autonomous endosperm, suggesting that the egg apparatus and central cell convergently adopt PRC2 to maintain the non-dividing state before fertilization, possibly through silencing of the maternal alleles of male genome-expressed genes.


Subject(s)
Arabidopsis Proteins , Oryza , Polycomb Repressive Complex 2/genetics , Arabidopsis Proteins/metabolism , Oryza/metabolism , Endosperm/genetics , Endosperm/metabolism , Mutation , Seeds , Gene Expression Regulation, Plant
SELECTION OF CITATIONS
SEARCH DETAIL