Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 75
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Nature ; 618(7966): 687-697, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37344649

ABSTRACT

Light and sound are the most ubiquitous forms of waves, associated with a variety of phenomena and physical effects such as rainbows and echoes. Light and sound, both categorized as classical waves, have lately been brought into unexpected connections with exotic topological phases of matter. We are currently witnessing the onset of a second wave of active research into this topic. The past decade has been marked by fundamental advances comprising two-dimensional quantum Hall insulators and quantum spin and valley Hall insulators, whose topological properties are characterized using linear band topology. Here, going beyond these conventional topological systems, we focus on the latest frontiers, including non-Hermitian, nonlinear and non-Abelian topology as well as topological defects, for which the characterization of the topological features goes beyond the standard band-topology language. In addition to an overview of the current state of the art, we also survey future research directions for valuable applications.

2.
Nano Lett ; 2024 Nov 04.
Article in English | MEDLINE | ID: mdl-39495307

ABSTRACT

Bulk quantum Hall effect (QHE), the natural extension of the two-dimensional (2D) QHE, is one of the representative phenomena of coherent electron transport. However, bulk QHE has rarely been reported in real materials with macroscopic sizes. Here, we report a novel bulk QHE in macroscopic millimeter-sized and nanostructured TaP crystals consisting of nanometer-scale lamellae. Specifically, the simultaneous quantum plateaus were observed in both transverse resistivity ρxy and vertical resistivity ρzz. The bulk QHE is attributable to synergetic action between Landau cyclotron movement under magnetic field B and periodically modulated potential due to the nanometer-scaled lamellae. This mechanism would form the fixed number of edge states along B-perpendicular and B-parallel directions respectively, equivalent to stacked 2D-QHE layers, leading to quantized ρxy and ρzz. Our work verifies that microstructure engineering could result in the coherent transport of electrons and generate new quantum phenomena in bulk materials.

3.
Phys Rev Lett ; 132(8): 086302, 2024 Feb 23.
Article in English | MEDLINE | ID: mdl-38457715

ABSTRACT

Chiral anomaly bulk states (CABSs) can be realized by choosing appropriate boundary conditions in a finite-size waveguide composed of two-dimensional Dirac semimetals, which have unidirectional and robust transport similar to that of valley edge states. CABSs use almost all available guiding space, which greatly improves the utilization of metamaterials. Here, free-boundary-induced CABSs in elastic twisted kagome metamaterials with C_{3v} symmetry are experimentally confirmed. The robust valley-locked transport and complete valley state conversion are experimentally observed. Importantly, the sign of the group velocity near the K and K^{'} points can be reversed by suspending masses at the boundary to manipulate the onsite potential. Moreover, CABSs are demonstrated in nanoelectromechanical phononic crystals by constructing an impedance-mismatched hard boundary. These results open new possibilities for designing more compact, space-efficient, and robust elastic wave macro- and microfunctional devices.

4.
Phys Rev Lett ; 131(1): 014001, 2023 Jul 07.
Article in English | MEDLINE | ID: mdl-37478448

ABSTRACT

Recently, the discovery of optical spatiotemporal (ST) vortex beams with transverse orbital angular momentum (OAM) has attracted increasing attention and is expected to extend the research scope and open new opportunities for practical applications of OAM states. The ST vortex beams are also applicable to other physical fields that involve wave phenomena, and here we develop the ST vortex concept in the field of acoustics and report the generation of Bessel-type ST acoustic vortex beams. The ST vortex beams are fully characterized using the scalar approach for the pressure field and the vector approach for the velocity field. We further investigate the transverse spreading effect and construct ST vortex beams with an ellipse-shaped spectrum to reduce the spreading effect. We also experimentally demonstrated the orthogonality relations between ST vortex beams with different charges. Our study successfully demonstrates the versatility of the acoustic system for exploring and discovering spatiotemporally structured waves, inspiring further investigation of exotic wave physics.

5.
Fish Shellfish Immunol ; 129: 127-136, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36055559

ABSTRACT

The present study evaluated the protective effect and the regulatory mechanism of taurine on growth inhibition and intestinal damage induced by glycinin in juvenile Rhynchocypris lagowskii Dybowski. The control diets had no glycinin and taurine, the glycinin diets contained only 80 g/kg glycinin, and the glycinin + taurine diets contained 80 g/kg glycinin+10 g/kg taurine. Juvenile Rhynchocypris lagowskii Dybowski (4.65 ± 0.03 g/tail) were respectively fed with these 3 diets for 8 weeks. The results showed that glycinin significantly decreased the final body weight, weight gain rate, specific growth rate, protein efficiency rate, feed efficiency rate and feeding rate of fish compared with the control group (P < 0.05). While taurine supplementation improved the growth performance and feed efficiency, but final body weight, weight gain rate, specific growth rate of the glycinin + taurine group were still significantly lower than the control group (P < 0.05). Compared with the glycinin group, taurine supplementation significantly increased whole-body and muscle crude protein content, and hepatopancreas and intestinal protease activities (P < 0.05). Distal intestinal villous dysplasia and mucosal damage, and increased intestinal mucosal permeability were observed in the glycinin group, while taurine supplementation alleviated these adverse effects. Usefully, taurine supplementation could also partially restore the impaired immune function and antioxidant capacity of fish fed glycinin diets. Compared with the glycinin group, taurine supplementation down-regulated pro-inflammatory cytokines TNF-α and IL-1ß mRNA levels, and up-regulated anti-inflammatory cytokines IL-10 and TGF-ß mRNA levels. Furthermore, taurine partially reversed the reduction of antioxidant genes Nrf2、HO-1, CAT and GPx mRNA levels in distal intestine induced by glycinin. Concluded, 80 g/kg glycinin led to intestinal damage, digestive dysfunction and increased intestinal mucosal permeability in juvenile Rhynchocypris lagowskii Dybowski, and these adverse effects were ultimately manifested in growth inhibition. But taurine supplementation could partially mitigate the negative effects induced by glycinin.


Subject(s)
Interleukin-10 , NF-E2-Related Factor 2 , Animal Feed/analysis , Animals , Anti-Inflammatory Agents , Antioxidants/metabolism , Body Weight , Diet/veterinary , Dietary Supplements/analysis , NF-E2-Related Factor 2/metabolism , Peptide Hydrolases , RNA, Messenger/genetics , Taurine/pharmacology , Transforming Growth Factor beta , Tumor Necrosis Factor-alpha , Weight Gain
6.
Phys Rev Lett ; 126(15): 156401, 2021 Apr 16.
Article in English | MEDLINE | ID: mdl-33929224

ABSTRACT

Higher-order topological insulators (HOTIs), a new horizon of topological phases of matter, host lower-dimensional corner or hinge states, providing important stepping stones to the realization of robust topological waveguides in higher dimensions. The nontrivial band topology that gives rise to the corner or hinge states is usually enabled by certain crystalline symmetries. As a result, higher-order topological boundary states are tied to specific corners or hinges, lacking the flexibility of switching and selecting. Here, we report the experimental realization of topologically switchable and valley-selective corner states in a two-dimensional sonic crystal. Such intriguing properties are enabled by exploiting the higher-order topology assisted with the valley degree of freedom. For this purpose, we realize a valley HOTI of second-order topology characterized by the nontrivial bulk polarization. Interestingly, the hosted corner states are found to be valley dependent and therefore enable flexible control and manipulation on the wave localization. Topological switch on or off and valley selection of the corner states are directly observed through spatial scanning of the sound field. We further design an arbitrary structure of complex patterns containing corners with various intersection angles, among which selected corners can be illuminated or darkened upon valley selection. The reported valley HOTI and the valley-selective corner states provide fundamental understanding on the interplay between higher-order topology and valley degree of freedom and pave the way for lower-dimensional valleytronics, which may find potential applications in integrated acoustics and photonics.

7.
Phys Rev Lett ; 127(14): 144502, 2021 Oct 01.
Article in English | MEDLINE | ID: mdl-34652207

ABSTRACT

Despite a long history of studies, acoustic waves are generally regarded as spinless scalar waves, until recent research revealed their rich structures. Here, we report the experimental observation of skyrmion configurations in acoustic waves. We find that surface acoustic waves trapped by a designed hexagonal acoustic metasurface give rise to skyrmion lattice patterns in the dynamic acoustic velocity fields (i.e., the oscillating acoustic air flows). Using an acoustic velocity sensing technique, we directly visualize a Néel-type skyrmion configuration of the acoustic velocity fields. We further demonstrate, respectively, the controllability and robustness of the acoustic skyrmion lattices by tuning the phase differences between the acoustic sources and by introducing local perturbations in our setup. Our study unveils a fundamental acoustic phenomenon that may enable unprecedented manipulation of acoustic waves and may inspire future technologies including advanced acoustic tweezers for the control of small particles.

8.
Phys Rev Lett ; 123(19): 195503, 2019 Nov 08.
Article in English | MEDLINE | ID: mdl-31765180

ABSTRACT

Topological insulators (TIs), featured by a symmetry-protected gapless surface Dirac cone(s) in their complete energy band gaps, have been extended from condensed-matter physics to classical bosonic systems in the last decade. However, acoustic TIs in three dimensions remain elusive because of a lack of a spin or polarization degree of freedom for longitudinal airborne sound. Here, we experimentally demonstrate a feasible way to hybridize an acoustic TI in three dimensions based on band inversion through a three-dimensional (3D) hybrid Dirac point (HDP). Such a 3D HDP, with linear dispersion in the layer plane while quadratic out of the layer, is distinct from a general point with linear dispersion in all directions. Interestingly, a single nearly gapless conical-like dispersion for acoustic surface states can be achieved at both zigzag and armchair interfaces, supporting robust sound transport. Our findings can serve as a tabletop platform for exploring unique acoustic applications based on the two-dimensional topological interfaces.

9.
Phys Rev Lett ; 122(23): 233903, 2019 Jun 14.
Article in English | MEDLINE | ID: mdl-31298912

ABSTRACT

The studies of topological phases of matter have been developed from condensed matter physics to photonic systems, resulting in fascinating designs of robust photonic devices. Recently, higher-order topological insulators have been investigated as a novel topological phase of matter beyond the conventional bulk-boundary correspondence. Previous studies of higher-order topological insulators have been mainly focused on the topological multipole systems with negative coupling between lattice sites. Here we experimentally demonstrate that second-order topological insulating phases without negative coupling can be realized in two-dimensional dielectric photonic crystals. We visualize both one-dimensional topological edge states and zero-dimensional topological corner states by using the near-field scanning technique. Our findings open new research frontiers for photonic topological phases and provide a new mechanism for light manipulating in a hierarchical way.

10.
Proc Natl Acad Sci U S A ; 113(18): 4924-8, 2016 May 03.
Article in English | MEDLINE | ID: mdl-27092005

ABSTRACT

A topological insulator is a material with an insulating interior but time-reversal symmetry-protected conducting edge states. Since its prediction and discovery almost a decade ago, such a symmetry-protected topological phase has been explored beyond electronic systems in the realm of photonics. Electrons are spin-1/2 particles, whereas photons are spin-1 particles. The distinct spin difference between these two kinds of particles means that their corresponding symmetry is fundamentally different. It is well understood that an electronic topological insulator is protected by the electron's spin-1/2 (fermionic) time-reversal symmetry [Formula: see text] However, the same protection does not exist under normal circumstances for a photonic topological insulator, due to photon's spin-1 (bosonic) time-reversal symmetry [Formula: see text] In this work, we report a design of photonic topological insulator using the Tellegen magnetoelectric coupling as the photonic pseudospin orbit interaction for left and right circularly polarized helical spin states. The Tellegen magnetoelectric coupling breaks bosonic time-reversal symmetry but instead gives rise to a conserved artificial fermionic-like-pseudo time-reversal symmetry, Tp ([Formula: see text]), due to the electromagnetic duality. Surprisingly, we find that, in this system, the helical edge states are, in fact, protected by this fermionic-like pseudo time-reversal symmetry Tp rather than by the bosonic time-reversal symmetry Tb This remarkable finding is expected to pave a new path to understanding the symmetry protection mechanism for topological phases of other fundamental particles and to searching for novel implementations for topological insulators.

11.
Opt Express ; 26(19): 24531-24550, 2018 Sep 17.
Article in English | MEDLINE | ID: mdl-30469568

ABSTRACT

The topological phases in materials have been studied in recent decades for their unique boundary states and transport properties. Photonic systems with band structures embrace the topological phases closely, where they not only provide platforms to testify the topological band theory, but also shed light on designing novel optical devices. In this review, we present exciting developments, supported by brief descriptions of prominent milestones of topological phases in photonic systems in recent years. These studies may sustain further developments of optical devices and offer novel methods for light manipulations.

12.
Opt Express ; 26(19): 24307-24317, 2018 Sep 17.
Article in English | MEDLINE | ID: mdl-30469552

ABSTRACT

Two-dimensional (2D) coupled resonant optical waveguide (CROW), exhibiting topological edge states, provides an efficient platform for designing integrated topological photonic devices. In this paper, we propose an experimentally feasible design of 2D honeycomb CROW photonic structure. The characteristic optical system possesses two-fold and three-fold Dirac points at different positions in the Brillouin zone. The effective gauge fields implemented by the intrinsic pseudo-spin-orbit interaction open up topologically nontrivial bandgaps through the Dirac points. Spatial lattice geometries allow destructive wave interference, leading to a dispersionless, near-flat energy band in the vicinity of the three-fold Dirac point in the telecommunication frequency regime. This nontrivial structure with a near-flat band yields topologically protected edge states. These characteristics underpin the fundamental importance as well as the potential applications in various optical devices. Based on the honeycomb CROW lattice, we design the shape-independent topological cavity and the beam splitter, which demonstrate the relevance for a wide range of photonic applications.

13.
Opt Express ; 26(20): 25602-25610, 2018 Oct 01.
Article in English | MEDLINE | ID: mdl-30469659

ABSTRACT

Waveguide crossing is an important integrated photonic component that will be routinely used for high-density and large-scale photonic integrated circuits, such as optical switches and routers. Several techniques have been reported in achieving high performance waveguide crossings on a silicon-on-insulator photonic platform, i.e., low-loss and low-crosstalk waveguide crossings based on multimode interference, bi-layer tapering, optical transformation, metamaterials, and subwavelength gratings. Until recently, not much attention has been given to the reduction of the footprint of waveguide crossings. Here we experimentally demonstrate an ultra-compact waveguide crossing on silicon photonic platform with a footprint only ~1 × 1 µm2. Our simulations show that it has a low insertion loss (< 0.175 dB) and low crosstalk (< -37dB) across the whole C-band, while the fabricated one has an insertion loss < 0.28 dB and crosstalk around -30 dB for the C-band.

14.
Nat Mater ; 15(12): 1243-1247, 2016 12.
Article in English | MEDLINE | ID: mdl-27595348

ABSTRACT

Strategic manipulation of wave and particle transport in various media is the key driving force for modern information processing and communication. In a strongly scattering medium, waves and particles exhibit versatile transport characteristics such as localization, tunnelling with exponential decay, ballistic, and diffusion behaviours due to dynamical multiple scattering from strong scatters or impurities. Recent investigations of graphene have offered a unique approach, from a quantum point of view, to design the dispersion of electrons on demand, enabling relativistic massless Dirac quasiparticles, and thus inducing low-loss transport either ballistically or diffusively. Here, we report an experimental demonstration of an artificial phononic graphene tailored for surface phonons on a LiNbO3 integrated platform. The system exhibits Dirac quasiparticle-like transport, that is, pseudo-diffusion at the Dirac point, which gives rise to a thickness-independent temporal beating for transmitted pulses, an analogue of Zitterbewegung effects. The demonstrated fully integrated artificial phononic graphene platform here constitutes a step towards on-chip quantum simulators of graphene and unique monolithic electro-acoustic integrated circuits.

15.
Phys Rev Lett ; 118(9): 096603, 2017 Mar 03.
Article in English | MEDLINE | ID: mdl-28306288

ABSTRACT

The asymmetric electron dispersion in type-II Weyl semimetal theoretically hosts anisotropic transport properties. Here, we observe the significant anisotropic Adler-Bell-Jackiw (ABJ) anomaly in the Fermi-level delicately adjusted WTe_{1.98} crystals. Quantitatively, C_{W}, a coefficient representing the intensity of the ABJ anomaly along the a and b axis of WTe_{1.98} are 0.030 and 0.051 T^{-2} at 2 K, respectively. We found that the temperature-sensitive ABJ anomaly is attributed to a topological phase transition from a type-II Weyl semimetal to a trivial semimetal, which is verified by a first-principles calculation using experimentally determined lattice parameters at different temperatures. Theoretical electrical transport study reveals that the observation of an anisotropic ABJ along both the a and b axes in WTe_{1.98} is attributed to electrical transport in the quasiclassical regime. Our work may suggest that electron-doped WTe_{2} is an ideal playground to explore the novel properties in type-II Weyl semimetals.

16.
Phys Rev Lett ; 116(17): 176803, 2016 Apr 29.
Article in English | MEDLINE | ID: mdl-27176532

ABSTRACT

We report an atomic-scale characterization of ZrTe_{5} by using scanning tunneling microscopy. We observe a bulk band gap of ∼80 meV with topological edge states at the step edge and, thus, demonstrate that ZrTe_{5} is a two-dimensional topological insulator. We also find that an applied magnetic field induces an energetic splitting of the topological edge states, which can be attributed to a strong link between the topological edge states and bulk topology. The relatively large band gap makes ZrTe_{5} a potential candidate for future fundamental studies and device applications.

17.
BMC Plant Biol ; 15: 151, 2015 Jun 19.
Article in English | MEDLINE | ID: mdl-26088319

ABSTRACT

BACKGROUND: Heat shock factors (Hsfs) play crucial roles in plant developmental and defence processes. The production and quality of pepper (Capsicum annuum L.), an economically important vegetable crop, are severely reduced by adverse environmental stress conditions, such as heat, salt and osmotic stress. Although the pepper genome has been fully sequenced, the characterization of the Hsf gene family under abiotic stress conditions remains incomplete. RESULTS: A total of 25 CaHsf members were identified in the pepper genome by bioinformatics analysis and PCR assays. They were grouped into three classes, CaHsfA, B and C, based on highly conserved Hsf domains, were distributed over 11 of 12 chromosomes, with none found on chromosome 11, and all of them, except CaHsfA5, formed a protein-protein interaction network. According to the RNA-seq data of pepper cultivar CM334, most CaHsf members were expressed in at least one tissue among root, stem, leaf, pericarp and placenta. Quantitative real-time PCR assays showed that all of the CaHsfs responded to heat stress (40 °C for 2 h), except CaHsfC1 in thermotolerant line R9 leaves, and that the expression patterns were different from those in thermosensitive line B6. Many CaHsfs were also regulated by salt and osmotic stresses, as well as exogenous Ca(2+), putrescine, abscisic acid and methyl jasmonate. Additionally, CaHsfA2 was located in the nucleus and had transcriptional activity, consistent with the typical features of Hsfs. Time-course expression profiling of CaHsfA2 in response to heat stress revealed differences in its expression level and pattern between the pepper thermosensitive line B6 and thermotolerant line R9. CONCLUSIONS: Twenty-five Hsf genes were identified in the pepper genome and most of them responded to heat, salt, osmotic stress, and exogenous substances, which provided potential clues for further analyses of CaHsfs functions in various kinds of abiotic stresses and of corresponding signal transduction pathways in pepper.


Subject(s)
Capsicum/genetics , DNA-Binding Proteins/genetics , Gene Expression Profiling , Genome, Plant , Multigene Family , Plant Proteins/genetics , Transcription Factors/genetics , Adaptation, Physiological/drug effects , Adaptation, Physiological/genetics , Amino Acid Motifs , Amino Acid Sequence , Capsicum/drug effects , Capsicum/growth & development , Cell Nucleus/drug effects , Cell Nucleus/metabolism , Chromosomes, Plant/genetics , Conserved Sequence , DNA-Binding Proteins/chemistry , DNA-Binding Proteins/metabolism , Gene Duplication/drug effects , Gene Expression Regulation, Developmental/drug effects , Gene Expression Regulation, Plant/drug effects , Genes, Plant , Heat Shock Transcription Factors , Molecular Sequence Data , Organ Specificity/drug effects , Organ Specificity/genetics , Osmotic Pressure/drug effects , Phylogeny , Plant Growth Regulators/pharmacology , Plant Proteins/chemistry , Plant Proteins/metabolism , Protein Interaction Maps/genetics , Protein Structure, Tertiary , Sequence Analysis, Protein , Sodium Chloride/pharmacology , Transcription Factors/chemistry , Transcription Factors/metabolism
18.
Nat Mater ; 12(2): 108-13, 2013 Feb.
Article in English | MEDLINE | ID: mdl-23178268

ABSTRACT

Invisibility by metamaterials is of great interest, where optical properties are manipulated in the real permittivity-permeability plane. However, the most effective approach to achieving invisibility in various military applications is to absorb the electromagnetic waves emitted from radar to minimize the corresponding reflection and scattering, such that no signal gets bounced back. Here, we show the experimental realization of chip-scale unidirectional reflectionless optical metamaterials near the spontaneous parity-time symmetry phase transition point where reflection from one side is significantly suppressed. This is enabled by engineering the corresponding optical properties of the designed parity-time metamaterial in the complex dielectric permittivity plane. Numerical simulations and experimental verification consistently exhibit asymmetric reflection with high contrast ratios around a wavelength of of 1,550 nm. The demonstrated unidirectional phenomenon at the corresponding parity-time exceptional point on-a-chip confirms the feasibility of creating complicated on-chip parity-time metamaterials and optical devices based on their properties.

19.
Int J Mol Sci ; 15(11): 19741-59, 2014 Oct 29.
Article in English | MEDLINE | ID: mdl-25356507

ABSTRACT

Pepper (Capsicum annuum L.) is sensitive to heat stress (HS). Heat shock proteins 70 (Hsp70s) play a crucial role in protecting plant cells against HS and control varies characters in different plants. However, CaHsp70-1 gene was not well characterized in pepper. In this study, CaHsp70-1 was cloned from the pepper thermotolerant line R9, which encoded a protein of 652 amino acids, with a molecular weight of 71.54 kDa and an isoelectric point of 5.20. CaHsp70-1 belongs to the cytosolic Hsp70 subgroup, and best matched with tomato SlHsp70. CaHsp70-1 was highly induced in root, stem, leaf and flower in R9 with HS treatment (40 °C for 2 h). In both thermosensitive line B6 and thermotolerant line R9, CaHsp70-1 significantly increased after 0.5 h of HS (40 °C), and maintained in a higher level after 4 h HS. The expression of CaHsp70-1 induced by CaCl2, H2O2 and putrescine (Put) under HS were difference between B6 and R9 lines. The different expression patterns may be related to the differences in promoters of CaHsp70-1 from the two lines. These results suggest that CaHsp70-1 as a member of cytosolic Hsp70 subgroup, may be involved in HS defense response via a signal transduction pathway contained Ca2+, H2O2 and Put.


Subject(s)
Capsicum/metabolism , HSP70 Heat-Shock Proteins/metabolism , Plant Proteins/metabolism , Base Sequence , Calcium Chloride/pharmacology , Cell Line , Cell Nucleus/metabolism , Cytoplasm/metabolism , Gene Expression Regulation, Plant/drug effects , HSP70 Heat-Shock Proteins/genetics , Hydrogen Peroxide/toxicity , Molecular Sequence Data , Molecular Weight , Plant Cells/metabolism , Plant Leaves/metabolism , Plant Proteins/chemistry , Plant Proteins/genetics , Promoter Regions, Genetic , Putrescine/pharmacology , Temperature
20.
Adv Mater ; 36(21): e2312861, 2024 May.
Article in English | MEDLINE | ID: mdl-38340067

ABSTRACT

Coherent phonon transfer via high-quality factor (Q) mechanical resonator strong coupling has garnered significant interest. Yet, the practical applications of these strongly coupled resonator devices are largely constrained by their vulnerability to fabrication defects. In this study, topological strong coupling of gigahertz frequency surface acoustic wave (SAW) resonators with lithium niobate is achieved. The nanoscale grooves are etched onto the lithium niobate surface to establish robust SAW topological interface states (TISs). By constructing phononic crystal (PnC) heterostructures, a strong coupling of two SAW TISs, achieving a maximum Rabi splitting of 22 MHz and frequency quality factor product fQm of ≈1.2 × 1013 Hz, is realized. This coupling can be tuned by adjusting geometric parameters and a distinct spectral anticrossing is experimentally observed. Furthermore, a dense wavelength division multiplexing device based on the coupling of multiple TISs is demonstrated. These findings open new avenues for the development of practical topological acoustic devices for on-chip sensing, filtering, phonon entanglement, and beyond.

SELECTION OF CITATIONS
SEARCH DETAIL