Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Proc Natl Acad Sci U S A ; 121(35): e2320804121, 2024 Aug 27.
Article in English | MEDLINE | ID: mdl-39172790

ABSTRACT

Breast Cancer Type 1 Susceptibility Protein (BRCA1) is a tumor-suppressor protein that regulates various cellular pathways, including those that are essential for preserving genome stability. One essential mechanism involves a BRCA1-A complex that is recruited to double-strand breaks (DSBs) by RAP80 before initiating DNA damage repair (DDR). How RAP80 itself is recruited to DNA damage sites, however, is unclear. Here, we demonstrate an intrinsic correlation between a methyltransferase DOT1L-mediated RAP80 methylation and BRCA1-A complex chromatin recruitment that occurs during cancer cell radiotherapy resistance. Mechanistically, DOT1L is quickly recruited onto chromatin and methylates RAP80 at multiple lysines in response to DNA damage. Methylated RAP80 is then indispensable for binding to ubiquitinated H2A and subsequently triggering BRCA1-A complex recruitment onto DSBs. Importantly, DOT1L-catalyzed RAP80 methylation and recruitment of BRCA1 have clinical relevance, as inhibition of DOT1L or RAP80 methylation seems to enhance the radiosensitivity of cancer cells both in vivo and in vitro. These data reveal a crucial role for DOT1L in DDR through initiating recruitment of RAP80 and BRCA1 onto chromatin and underscore a therapeutic strategy based on targeting DOT1L to overcome tumor radiotherapy resistance.


Subject(s)
BRCA1 Protein , DNA Repair , Histone Chaperones , Histone-Lysine N-Methyltransferase , Animals , Humans , Mice , BRCA1 Protein/metabolism , BRCA1 Protein/genetics , Cell Line, Tumor , Chromatin/metabolism , DNA Breaks, Double-Stranded , DNA Methylation , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/genetics , Histone Chaperones/metabolism , Histone Chaperones/genetics , Histone-Lysine N-Methyltransferase/metabolism , Histone-Lysine N-Methyltransferase/genetics , Methylation , Methyltransferases/metabolism , Nuclear Proteins/metabolism , Nuclear Proteins/genetics , Radiation Tolerance/genetics
2.
Kaohsiung J Med Sci ; 40(7): 621-630, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38820598

ABSTRACT

Suitable biomaterials with seed cells have promising potential to repair bone defects. However, bone marrow mesenchymal stem cells (BMSCs), one of the most common seed cells used in tissue engineering, cannot differentiate efficiently and accurately into functional osteoblasts. In view of this, a new tissue engineering technique combined with BMSCs and scaffolds is a major task for bone defect repair. Lentiviruses interfering with miR-136-5p or Smurf1 expression were transfected into BMSCs. The effects of miR-136-5p or Smurf1 on the osteogenic differentiation (OD) of BMSCs were evaluated by measuring alkaline phosphatase activity and calcium deposition. Then, the targeting relationship between miR-136-5p and Smurf1 was verified by bioinformatics website analysis and dual luciferase reporter assay. Then, a rabbit femoral condyle bone defect model was established. miR-136-5p/BMSCs/ß-TCP scaffold was implanted into the defect, and the repair of the bone defect was detected by Micro-CT and HE staining. Elevating miR-136-5p-3p or suppressing Smurf1 could stimulate OD of BMSCs. miR-136-5p negatively regulated Smurf1 expression. Overexpressing Smurf1 reduced the promoting effect of miR-136-5p on the OD of BMSCs. miR-136-5p/BMSCs/ß-TCP could strengthen bone density in the defected area and accelerate bone repair. SmurF1-targeting miR-136-5p-modified BMSCs combined with 3D-printed ß-TCP scaffolds can strengthen osteogenic activity and alleviate bone defects.


Subject(s)
Calcium Phosphates , Mesenchymal Stem Cells , MicroRNAs , Osteogenesis , Printing, Three-Dimensional , Tissue Scaffolds , Ubiquitin-Protein Ligases , MicroRNAs/genetics , MicroRNAs/metabolism , Mesenchymal Stem Cells/metabolism , Animals , Tissue Scaffolds/chemistry , Rabbits , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism , Calcium Phosphates/chemistry , Cell Differentiation , Tissue Engineering/methods , Male , Bone Regeneration/genetics
3.
Free Radic Biol Med ; 160: 403-417, 2020 11 20.
Article in English | MEDLINE | ID: mdl-32649985

ABSTRACT

Cancer therapeutics produce reactive oxygen species (ROS) that damage the cancer genome and lead to cell death. However, cancer cells can resist ROS-induced cytotoxicity and survive. We show that nuclear-localized uracil-DNA N-glycosylase isoform 2 (UNG2) has a critical role in preventing ROS-induced DNA damage and enabling cancer-cell resistance. Under physiological conditions, UNG2 is targeted for rapid degradation via an interaction with the E3 ligase UHRF1. In response to ROS, however, UNG2 protein in cancer cells exhibits a remarkably extended half-life. Upon ROS exposure, UNG2 is deacetylated at lysine 78 by histone deacetylases, which prevents the UNG2-UHRF1 interaction. Accumulated UNG2 protein can thus excise the base damaged by ROS and enable the cell to survive these otherwise toxic conditions. Consequently, combining HDAC inhibitors (to permit UNG2 degradation) with genotoxic agents (to produce cytotoxic cellular levels of ROS) leads to a robust synergistic killing effect in cancer cells in vitro. Altogether, these data support the application of a novel approach to cancer treatment based on promoting UNG2 degradation by altering its acetylation status using an HDAC inhibitor.


Subject(s)
Hydrogen Peroxide , Neoplasms , Cell Nucleus , DNA Damage , Histone Deacetylase Inhibitors/pharmacology , Neoplasms/drug therapy , Neoplasms/genetics , Uracil-DNA Glycosidase/genetics
4.
Oncogene ; 39(24): 4650-4665, 2020 06.
Article in English | MEDLINE | ID: mdl-32404984

ABSTRACT

Sirtuin 7 (SIRT7), an NAD+-dependent deacetylase, plays vital roles in energy sensing, but the underlying mechanisms of action remain less clear. Here, we report that SIRT7 is required for p53-dependent cell-cycle arrest during glucose deprivation. We show that SIRT7 directly interacts with p300/CBP-associated factor (PCAF) and the affinity for this interaction increases during glucose deprivation. Upon binding, SIRT7 deacetylates PCAF at lysine 720 (K720), which augments PCAF binding to murine double minute (MDM2), the p53 E3 ubiquitin ligase, leading to accelerated MDM2 degradation. This effect results in upregulated expression of the cell-cycle inhibitor, p21Waf1/Cip1, which further leads to cell-cycle arrest and decreased cell viability. These data highlight the importance of the SIRT7-PCAF interaction in regulating p53 activity and cell-cycle progression during conditions of glucose deprivation. This axis may represent a new avenue to design effective therapeutics based on tumor starvation.


Subject(s)
Cell Cycle Checkpoints , Neoplasms/metabolism , Proteolysis , Proto-Oncogene Proteins c-mdm2/metabolism , Sirtuins/metabolism , Tumor Suppressor Protein p53/metabolism , p300-CBP Transcription Factors/metabolism , Glucose/genetics , Glucose/metabolism , HCT116 Cells , Humans , Neoplasms/genetics , Neoplasms/pathology , Proto-Oncogene Proteins c-mdm2/genetics , Sirtuins/genetics , Tumor Suppressor Protein p53/genetics , p300-CBP Transcription Factors/genetics
SELECTION OF CITATIONS
SEARCH DETAIL