Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 75
Filter
1.
Plant Cell ; 35(5): 1593-1616, 2023 04 20.
Article in English | MEDLINE | ID: mdl-36695476

ABSTRACT

High salinity, an adverse environmental factor affecting about 20% of irrigated arable land worldwide, inhibits plant growth and development by causing oxidative stress, damaging cellular components, and disturbing global metabolism. However, whether and how reactive oxygen species disturb the metabolism of salt-stressed plants remain elusive. Here, we report that salt-induced hydrogen peroxide (H2O2) inhibits the activity of plastid triose phosphate isomerase (pdTPI) to promote methylglyoxal (MG) accumulation and stimulates the sulfenylation of pdTPI at cysteine 74. We also show that MG is a key factor limiting the plant growth, as a decrease in MG levels completely rescued the stunted growth and repressed salt stress tolerance of the pdtpi mutant. Furthermore, targeting CATALASE 2 into chloroplasts to prevent salt-induced overaccumulation of H2O2 conferred salt stress tolerance, revealing a role for chloroplastic H2O2 in salt-caused plant damage. In addition, we demonstrate that the H2O2-mediated accumulation of MG in turn induces H2O2 production, thus forming a regulatory loop that further inhibits the pdTPI activity in salt-stressed plants. Our findings, therefore, illustrate how salt stress induces MG production to inhibit the plant growth.


Subject(s)
Hydrogen Peroxide , Pyruvaldehyde , Hydrogen Peroxide/metabolism , Pyruvaldehyde/metabolism , Salt Stress , Oxidative Stress , Plants/metabolism , Chloroplasts/metabolism , Stress, Physiological
2.
Plant Cell ; 35(7): 2570-2591, 2023 06 26.
Article in English | MEDLINE | ID: mdl-37040621

ABSTRACT

SALT OVERLY SENSITIVE1 (SOS1) is a key component of plant salt tolerance. However, how SOS1 transcription is dynamically regulated in plant response to different salinity conditions remains elusive. Here, we report that C-type Cyclin1;1 (CycC1;1) negatively regulates salt tolerance by interfering with WRKY75-mediated transcriptional activation of SOS1 in Arabidopsis (Arabidopsis thaliana). Disruption of CycC1;1 promotes SOS1 expression and salt tolerance in Arabidopsis because CycC1;1 interferes with RNA polymerase II recruitment by occupying the SOS1 promoter. Enhanced salt tolerance of the cycc1;1 mutant was completely compromised by an SOS1 mutation. Moreover, CycC1;1 physically interacts with the transcription factor WRKY75, which can bind to the SOS1 promoter and activate SOS1 expression. In contrast to the cycc1;1 mutant, the wrky75 mutant has attenuated SOS1 expression and salt tolerance, whereas overexpression of SOS1 rescues the salt sensitivity of wrky75. Intriguingly, CycC1;1 inhibits WRKY75-mediated transcriptional activation of SOS1 via their interaction. Thus, increased SOS1 expression and salt tolerance in cycc1;1 were abolished by WRKY75 mutation. Our findings demonstrate that CycC1;1 forms a complex with WRKY75 to inactivate SOS1 transcription under low salinity conditions. By contrast, under high salinity conditions, SOS1 transcription and plant salt tolerance are activated at least partially by increased WRKY75 expression but decreased CycC1;1 expression.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis/metabolism , Salt Tolerance/genetics , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Gene Expression Regulation, Plant/genetics , Sodium-Hydrogen Exchangers/genetics , Sodium-Hydrogen Exchangers/metabolism
3.
Nucleic Acids Res ; 51(2): 619-630, 2023 01 25.
Article in English | MEDLINE | ID: mdl-36546827

ABSTRACT

Jasmonic acid (JA) signaling plays a pivotal role in plant development and defense. MYC2 is a master transcription factor in JA signaling, and was found to be phosphorylated and negatively regulated by MAP kinase and receptor-like kinase. However, the kinases that positively regulate MYC2 through phosphorylation and promote MYC2-mediated activation of JA response have not been identified. Here, we identified CK2 as a kinase that phosphorylates MYC2 and thus regulates the JA signaling. CK2 holoenzyme can interact with MYC2 using its regulatory subunits and phosphorylate MYC2 at multiple sites with its catalytic subunits. Inhibition of CK2 activity in a dominant-negative plant line, CK2mut, repressed JA response. On the other hand, increasing CK2 activity by overexpression of CKB4, a regulatory subunit gene of CK2, enhanced JA response in a MYC2-dependent manner. Substitution of the Ser and Thr residues at phosphorylation sites of MYC2 by CK2 with Ala impaired MYC2 function in activating JA response. Further investigations evidenced that CK2 facilitated the JA-induced increase of MYC2 binding to the promoters of JA-responsive genes in vivo. Our study demonstrated that CK2 plays a positive role in JA signaling, and reveals a previously undiscovered mechanism that regulates MYC2 function.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors , Casein Kinase II , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/genetics , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/metabolism , Cyclopentanes/metabolism , Gene Expression Regulation, Plant , Phosphotransferases/genetics , Casein Kinase II/metabolism
4.
Plant J ; 114(6): 1369-1384, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36948886

ABSTRACT

Hydrogen sulfide (H2 S) promotes plant tolerance against various environmental cues, and d-cysteine desulfhydrase (DCD) is an enzymatic source of H2 S to enhance abiotic stress resistance. However, the role of DCD-mediated H2 S production in root growth under abiotic stress remains to be further elucidated. Here, we report that DCD-mediated H2 S production alleviates osmotic stress-mediated root growth inhibition by promoting auxin homeostasis. Osmotic stress up-regulated DCD gene transcript and DCD protein levels and thus H2 S production in roots. When subjected to osmotic stress, a dcd mutant showed more severe root growth inhibition, whereas the transgenic lines DCDox overexpressing DCD exhibited less sensitivity to osmotic stress in terms of longer root compared to the wild-type. Moreover, osmotic stress inhibited root growth through repressing auxin signaling, whereas H2 S treatment significantly alleviated osmotic stress-mediated inhibition of auxin. Under osmotic stress, auxin accumulation was increased in DCDox but decreased in dcd mutant. H2 S promoted auxin biosynthesis gene expression and auxin efflux carrier PIN-FORMED 1 (PIN1) protein level under osmotic stress. Taken together, our results reveal that mannitol-induced DCD and H2 S in roots promote auxin homeostasis, contributing to alleviating the inhibition of root growth under osmotic stress.


Subject(s)
Arabidopsis Proteins , Hydrogen Sulfide , Hydrogen Sulfide/metabolism , Plant Roots/metabolism , Osmotic Pressure , Homeostasis , Indoleacetic Acids/metabolism , Gene Expression Regulation, Plant , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism
5.
Nucleic Acids Res ; 49(4): 1886-1899, 2021 02 26.
Article in English | MEDLINE | ID: mdl-33476385

ABSTRACT

Methylglyoxal (MG) is a byproduct of glycolysis that functions in diverse mammalian developmental processes and diseases and in plant responses to various stresses, including salt stress. However, it is unknown whether MG-regulated gene expression is associated with an epigenetic modification. Here we report that MG methylglyoxalates H3 including H3K4 and increases chromatin accessibility, consistent with the result that H3 methylglyoxalation positively correlates with gene expression. Salt stress also increases H3 methylglyoxalation at salt stress responsive genes correlated to their higher expression. Following exposure to salt stress, salt stress responsive genes were expressed at higher levels in the Arabidopsis glyI2 mutant than in wild-type plants, but at lower levels in 35S::GLYI2 35S::GLYII4 plants, consistent with the higher and lower MG accumulation and H3 methylglyoxalation of target genes in glyI2 and 35S::GLYI2 35S::GLYII4, respectively. Further, ABI3 and MYC2, regulators of salt stress responsive genes, affect the distribution of H3 methylglyoxalation at salt stress responsive genes. Thus, MG functions as a histone-modifying group associated with gene expression that links glucose metabolism and epigenetic regulation.


Subject(s)
Gene Expression Regulation, Plant , Histone Code , Pyruvaldehyde/metabolism , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis Proteins/metabolism , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/metabolism , Epigenesis, Genetic , Salt Stress/genetics , Transcription Factors/metabolism
6.
Int J Mol Sci ; 24(10)2023 May 19.
Article in English | MEDLINE | ID: mdl-37240339

ABSTRACT

Seed germination is a complex process that is regulated by various exogenous and endogenous factors, in which abscisic acid (ABA) plays a crucial role. The triphosphate tunnel metalloenzyme (TTM) superfamily exists in all living organisms, but research on its biological role is limited. Here, we reveal that TTM2 functions in ABA-mediated seed germination. Our study indicates that TTM2 expression is enhanced but repressed by ABA during seed germination. Promoted TTM2 expression in 35S::TTM2-FLAG rescues ABA-mediated inhibition of seed germination and early seedling development and ttm2 mutants exhibit lower seed germination rate and reduced cotyledon greening compared with the wild type, revealing that the repression of TTM2 expression is required for ABA-mediated inhibition of seed germination and early seedling development. Further, ABA inhibits TTM2 expression by ABA insensitive 4 (ABI4) binding of TTM2 promoter and the ABA-insensitive phenotype of abi4-1 with higher TTM2 expression can be rescued by mutation of TTM2 in abi4-1 ttm2-1 mutant, indicating that TTM2 acts downstream of ABI4. In addition, TTM1, a homolog of TTM2, is not involved in ABA-mediated regulation of seed germination. In summary, our findings reveal that TTM2 acts as a downstream factor of ABI4 in ABA-mediated seed germination and early seedling growth.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Metalloproteins , Abscisic Acid/pharmacology , Abscisic Acid/metabolism , Transcription Factors/metabolism , Germination/genetics , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Seeds/metabolism , Seedlings/metabolism , Metalloproteins/metabolism , Gene Expression Regulation, Plant , Acid Anhydride Hydrolases/genetics
7.
New Phytol ; 232(4): 1661-1673, 2021 11.
Article in English | MEDLINE | ID: mdl-34420215

ABSTRACT

Osmotic stress influences root system architecture, and polar auxin transport (PAT) is well established to regulate root growth and development. However, how PAT responds to osmotic stress at the molecular level remains poorly understood. In this study, we explored whether and how the auxin efflux carrier PIN-FORMED3 (PIN3) participates in osmotic stress-induced root growth inhibition in Arabidopsis (Arabidopsis thaliana). We observed that osmotic stress induces a HD-ZIP II transcription factor-encoding gene HOMEODOMAIN ARABIDOPSIS THALIANA2 (HAT2) expression in roots. The hat2 loss-of-function mutant is less sensitive to osmotic stress in terms of root meristem growth. Consistent with this phenotype, whereas the auxin response is downregulated in wild-type roots under osmotic stress, the inhibition of auxin response by osmotic stress was alleviated in hat2 roots. Conversely, transgenic lines overexpressing HAT2 (Pro35S::HAT2) had shorter roots and reduced auxin accumulation compared with wild-type plants. PIN3 expression was significantly reduced in the Pro35S::HAT2 lines. We determined that osmotic stress-mediated repression of PIN3 was alleviated in the hat2 mutant because HAT2 normally binds to the promoter of PIN3 and inhibits its expression. Taken together, our data revealed that osmotic stress inhibits root growth via HAT2, which regulates auxin activity by directly repressing PIN3 transcription.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Gene Expression Regulation, Plant , Homeodomain Proteins , Osmotic Pressure , Plant Roots/genetics , Plant Roots/metabolism
8.
Plant Physiol ; 183(1): 345-357, 2020 05.
Article in English | MEDLINE | ID: mdl-32179630

ABSTRACT

Hydrogen sulfide (H2S), a plant gasotransmitter, functions in the plant response to cadmium (Cd) stress, implying a role for cysteine desulfhydrase in producing H2S in this process. Whether d -CYSTEINE DESULFHYDRASE (DCD) acts in the plant Cd response remains to be identified, and if it does, how DCD is regulated in this process is also unknown. Here, we report that DCD-mediated H2S production enhances plant Cd tolerance in Arabidopsis (Arabidopsis thaliana). When subjected to Cd stress, a dcd mutant accumulated more Cd and reactive oxygen species and showed increased Cd sensitivity, whereas transgenic lines overexpressing DCD had decreased Cd and reactive oxygen species levels and were more tolerant to Cd stress compared with wild-type plants. Furthermore, the expression of DCD was stimulated by Cd stress, and this up-regulation was mediated by a Cd-induced transcription factor, WRKY13, which bound to the DCD promoter. Consistently, the higher Cd sensitivity of the wrky13-3 mutant was rescued by the overexpression of DCD Together, our results demonstrate that Cd-induced WRKY13 activates DCD expression to increase the production of H2S, leading to higher Cd tolerance in plants.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , Cadmium/pharmacology , Cystathionine gamma-Lyase/metabolism , Hydrogen Sulfide/metabolism , Transcription Factors/metabolism , Arabidopsis/drug effects , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Cystathionine gamma-Lyase/genetics , Gene Expression Regulation, Plant , Plants, Genetically Modified/drug effects , Plants, Genetically Modified/genetics , Plants, Genetically Modified/metabolism , Transcription Factors/genetics
9.
Plant Cell ; 30(10): 2368-2382, 2018 10.
Article in English | MEDLINE | ID: mdl-30150309

ABSTRACT

Plant seedlings undergo distinct developmental processes in the dark and in the light. Several genes, including ELONGATED HYPOCOTYL5 (HY5), B-BOX PROTEIN21 (BBX21), and BBX22, have been identified as photomorphogenesis-promoting factors in Arabidopsis thaliana; however, the overexpression of these genes does not induce photomorphogenesis in the dark. Using an activation-tagging approach, we identified SRS5ox, which overexpresses SHI-RELATED SEQUENCE5 (SRS5) following induction with estradiol. SRS5 overexpression in SRS5ox and Pro35S:SRS5-GFP seedlings results in a constitutive photomorphogenesis phenotype in the dark, whereas SRS5 loss of function in the srs5-2 mutant results in long hypocotyls in the light. This indicates that SRS5 is a positive regulator of photomorphogenesis. Furthermore, SRS5 promotes photomorphogenesis by directly binding to the promoters of photomorphogenesis-promoting genes, such as HY5, BBX21, and BBX22, and activating their expression, thus affecting the expression of downstream light-signaling genes. These data indicate that SRS5 acts in the upregulation of photomorphogenesis-promoting genes. In addition, CONSTITUTIVELY PHOTOMORPHOGENIC1 (COP1), which plays a central repressive role in seedling photomorphogenesis, directly ubiquitinates SRS5, promoting its degradation in the dark. Taken together, our results demonstrate that SRS5 directly activates the expression of downstream genes HY5, BBX21, and BBX22 and is a target of COP1-mediated degradation in Arabidopsis.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/physiology , Ubiquitin-Protein Ligases/metabolism , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Basic-Leucine Zipper Transcription Factors/genetics , Gene Expression Regulation, Plant , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Hypocotyl/genetics , Hypocotyl/growth & development , Nuclear Proteins/genetics , Plants, Genetically Modified , Promoter Regions, Genetic , Seedlings/genetics , Seedlings/physiology , Transcription Factors/genetics , Ubiquitin-Protein Ligases/genetics
10.
New Phytol ; 225(1): 297-309, 2020 01.
Article in English | MEDLINE | ID: mdl-31403703

ABSTRACT

Lateral roots (LRs), which form in the plant postembryonically, determine the architecture of the root system. While negative regulatory factors that inhibit LR formation and are counteracted by auxin exist in the pericycle, these factors have not been characterised. Here, we report that SHI-RELATED SEQUENCE5 (SRS5) is an intrinsic negative regulator of LR formation and that auxin signalling abolishes this inhibitory effect of SRS5. Whereas LR primordia (LRPs) and LRs were fewer and less dense in SRS5ox and Pro35S:SRS5-GFP plants than in the wild-type, they were more abundant and denser in the srs5-2 loss-of-function mutant. SRS5 inhibited LR formation by directly downregulating the expression of LATERAL ORGAN BOUNDARIES-DOMAIN 16 (LBD16) and LBD29. Auxin repressed SRS5 expression. Auxin-mediated repression of SRS5 expression was not observed in the arf7-1 arf19-1 double mutant, likely because ARF7 and ARF19 bind to the promoter of SRS5 and inhibit its expression in response to auxin. Taken together, our data reveal that SRS5 negatively regulates LR formation by repressing the expression of LBD16 and LBD29 and that auxin releases this inhibitory effect through ARF7 and ARF19.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/growth & development , Indoleacetic Acids/pharmacology , Plant Roots/growth & development , Trans-Activators/metabolism , Arabidopsis/drug effects , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Down-Regulation/drug effects , Down-Regulation/genetics , Estradiol/pharmacology , Gene Expression Regulation, Plant/drug effects , Genes, Plant , Models, Biological , Plant Roots/drug effects , Plant Roots/genetics , Promoter Regions, Genetic/genetics , Seedlings/drug effects , Seedlings/genetics , Seedlings/growth & development , Trans-Activators/genetics
11.
Plant J ; 93(5): 883-893, 2018 03.
Article in English | MEDLINE | ID: mdl-29315929

ABSTRACT

Although nitric oxide (NO) is known to regulate root growth, the factor(s) modulating NO during this process have not yet been elucidated. Here, we identified Arabidopsis WD40-REPEAT 5a (WDR5a) as a novel factor that functions in root growth by modulating NO accumulation. The wdr5a-1 mutant accumulated less NO and produced longer roots than the wild type, whereas the WDR5a overexpression lines had the opposite phenotype. The role of NO was further supported by our observation that the NO donor sodium nitroprusside (SNP) and the NO scavenger 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (cPTIO) rescued the root meristem growth phenotypes of the wdr5a-1 and WDR5a overexpression lines, respectively. The regulation of root growth by WDR5a was found to involve auxin because the auxin levels were similar in SNP-treated wdr5a-1 and wild-type roots, but higher in untreated wdr5a-1 roots than in wild-type roots. In addition, the wdr5a-1 mutant had higher production and activity levels of the auxin biosynthetic enzyme TRYPTOPHAN AMINOTRANSFERASE OF ARABIDOPSIS1 (TAA1), in contrast to its reduced expression and activity in the WDR5a overexpression lines, and the increased root meristem growth in wdr5a-1 was suppressed by treatment with l-kynurenine, which inhibits TAA1, as well as by mutating TAA1. WDR5a therefore functions in root meristem growth by maintaining NO homeostasis, and thus TAA1-mediated auxin biosynthesis.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/growth & development , Carrier Proteins/metabolism , Indoleacetic Acids/metabolism , Meristem/growth & development , Nitric Oxide/metabolism , Arabidopsis/drug effects , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Carrier Proteins/genetics , Gene Expression Regulation, Plant , Kynurenine/pharmacology , Meristem/genetics , Meristem/metabolism , Plant Roots/drug effects , Plant Roots/growth & development , Plant Roots/metabolism , Plants, Genetically Modified , Promoter Regions, Genetic
12.
BMC Plant Biol ; 18(1): 274, 2018 Nov 12.
Article in English | MEDLINE | ID: mdl-30419826

ABSTRACT

BACKGROUND: Most ABC transporters are engaged in transport of various compounds, but its subfamily F lacks transmembrane domain essential for chemical transportation. Thus the function of subfamily F remains further elusive. RESULTS: Here, we identified General Control Non-Repressible 20 (GCN20), a member of subfamily F, as new factor for DNA damage repair in root growth. While gcn20-1 mutant had a short primary root with reduced meristem size and cell number, similar primary root lengths were assayed in both wild-type and GCN20::GCN20 gcn20-1 plants, indicating the involvement of GCN20 in root elongation. Further experiments with EdU incorporation and comet assay demonstrated that gcn20-1 displays increased cell cycle arrest at G2/M checkpoint and accumulates more damaged DNA. This is possible due to impaired ability of DNA repair in gcn20-1 since gcn20-1 seedlings are hypersensitive to DNA damage inducers MMC and MMS compared with the wild type plants. This note was further supported by the observation that gcn20-1 is more sensitive than the wild type when subjected to UV treatment in term of changes of both fresh weight and survival rate. CONCLUSIONS: Our study indicates that GCN20 functions in primary root growth by modulating DNA damage repair in Arabidopsis. Our study will be useful to understand the functions of non-transporter ABC proteins in plant growth.


Subject(s)
ATP-Binding Cassette Transporters/metabolism , Arabidopsis Proteins/metabolism , Arabidopsis/genetics , DNA Repair , ATP-Binding Cassette Transporters/genetics , Arabidopsis/cytology , Arabidopsis/growth & development , Arabidopsis/radiation effects , Arabidopsis Proteins/genetics , Cell Cycle , DNA Damage , DNA, Plant/genetics , Genes, Reporter , Meristem/cytology , Meristem/genetics , Meristem/growth & development , Meristem/radiation effects , Plant Roots/cytology , Plant Roots/genetics , Plant Roots/growth & development , Plant Roots/radiation effects , Plants, Genetically Modified , Ultraviolet Rays
13.
Plant Cell Environ ; 40(4): 543-552, 2017 Apr.
Article in English | MEDLINE | ID: mdl-26825291

ABSTRACT

Nitric oxide (NO) generation by NO synthase (NOS) in guard cells plays a vital role in stomatal closure for adaptive plant response to drought stress. However, the mechanism underlying the regulation of NOS activity in plants is unclear. Here, by screening yeast deletion mutants with decreased NO accumulation and NOS-like activity when subjected to H2 O2 stress, we identified TUP1 as a novel regulator of NOS-like activity in yeast. Arabidopsis WD40-REPEAT 5a (WDR5a), a homolog of yeast TUP1, complemented H2 O2 -induced NO accumulation of a yeast mutant Δtup1, suggesting the conserved role of WDR5a in regulating NO accumulation and NOS-like activity. This note was further confirmed by using an Arabidopsis RNAi line wdr5a-1 and two T-DNA insertion mutants of WDR5a with reduced WDR5a expression, in which both H2 O2 -induced NO accumulation and stomatal closure were repressed. This was because H2 O2 -induced NOS-like activity was inhibited in the mutants compared with that of the wild type. Furthermore, these wdr5a mutants were more sensitive to drought stress as they had reduced stomatal closure and decreased expression of drought-related genes. Together, our results revealed that WDR5a functions as a novel factor to modulate NOS-like activity for changes of NO accumulation and stomatal closure in drought stress tolerance.


Subject(s)
Adaptation, Physiological , Arabidopsis Proteins/metabolism , Arabidopsis/physiology , Carrier Proteins/metabolism , Droughts , Nitric Oxide/metabolism , Stress, Physiological , Adaptation, Physiological/drug effects , Adaptation, Physiological/genetics , Apoptosis/drug effects , Arabidopsis/drug effects , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Carrier Proteins/genetics , Gene Expression Regulation, Plant/drug effects , Genes, Plant , Hydrogen Peroxide/pharmacology , Nitric Oxide Synthase/metabolism , Plant Stomata/drug effects , Plant Stomata/physiology , Saccharomyces cerevisiae/metabolism , Stress, Physiological/drug effects , Stress, Physiological/genetics
14.
Plant Cell Environ ; 40(11): 2720-2728, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28722222

ABSTRACT

Increased fatty acid ß-oxidation is essential for early postgerminative growth in seedlings, but high levels of H2 O2 produced by ß-oxidation can induce oxidative stress. Whether and how catalase (CAT) functions in fine-tuning H2 O2 homeostasis during seedling growth remain unclear. Here, we report that CAT2 functions in early seedling growth. Compared to the wild type, the cat2-1 mutant, with elevated H2 O2 levels, exhibited reduced root elongation on sucrose (Suc)-free medium, mimicking soils without exogenous sugar supply. Treatment with the H2 O2 scavenger potassium iodide rescued the mutant phenotype of cat2-1. In contrast to the wild type, the cat2-1 mutant was insensitive to the CAT inhibitor 3-amino-1,2,4-triazole in terms of root elongation when grown on Suc-free medium, suggesting that CAT2 modulates early seedling growth by altering H2 O2 accumulation. Furthermore, like cat2-1, the acyl-CoA oxidase (ACX) double mutant acx2-1 acx3-6 showed repressed root elongation, suggesting that CAT2 functions in early seedling growth by regulating ACX activity, as this activity was inhibited in cat2-1. Indeed, decreased ACX activity and short root of cat2-1 seedlings grown on Suc-free medium were rescued by overexpressing ACX3. Together, these findings suggest that CAT2 functions in early seedling growth by scavenging H2 O2 and stimulating ACX2/3 activity.


Subject(s)
Acyl-CoA Oxidase/metabolism , Arabidopsis Proteins/metabolism , Arabidopsis/growth & development , Free Radical Scavengers/metabolism , Germination , Hydrogen Peroxide/metabolism , Seedlings/growth & development , 2,4-Dichlorophenoxyacetic Acid/analogs & derivatives , 2,4-Dichlorophenoxyacetic Acid/pharmacology , Amitrole/pharmacology , Arabidopsis/drug effects , Arabidopsis/enzymology , Arabidopsis/genetics , Germination/drug effects , Mutation/genetics , Plant Roots/drug effects , Plant Roots/growth & development , Plants, Genetically Modified , Potassium Iodide/pharmacology , Seedlings/drug effects , Sucrose
15.
Plant Physiol ; 168(4): 1777-91, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26109425

ABSTRACT

Soil alkalinity causes major reductions in yield and quality of crops worldwide. The plant root is the first organ sensing soil alkalinity, which results in shorter primary roots. However, the mechanism underlying alkaline stress-mediated inhibition of root elongation remains to be further elucidated. Here, we report that alkaline conditions inhibit primary root elongation of Arabidopsis (Arabidopsis thaliana) seedlings by reducing cell division potential in the meristem zones and that ethylene signaling affects this process. The ethylene perception antagonist silver (Ag(+)) alleviated the inhibition of root elongation by alkaline stress. Moreover, the ethylene signaling mutants ethylene response1-3 (etr1-3), ethylene insensitive2 (ein2), and ein3-1 showed less reduction in root length under alkaline conditions, indicating a reduced sensitivity to alkalinity. Ethylene biosynthesis also was found to play a role in alkaline stress-mediated root inhibition; the ethylene overproducer1-1 mutant, which overproduces ethylene because of increased stability of 1-AMINOCYCLOPROPANE-1-CARBOXYLIC ACID SYNTHASE5, was hypersensitive to alkaline stress. In addition, the ethylene biosynthesis inhibitor cobalt (Co(2+)) suppressed alkaline stress-mediated inhibition of root elongation. We further found that alkaline stress caused an increase in auxin levels by promoting expression of auxin biosynthesis-related genes, but the increase in auxin levels was reduced in the roots of the etr1-3 and ein3-1 mutants and in Ag(+)/Co(2+)-treated wild-type plants. Additional genetic and physiological data showed that AUXIN1 (AUX1) was involved in alkaline stress-mediated inhibition of root elongation. Taken together, our results reveal that ethylene modulates alkaline stress-mediated inhibition of root growth by increasing auxin accumulation by stimulating the expression of AUX1 and auxin biosynthesis-related genes.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , Ethylenes/metabolism , Indoleacetic Acids/metabolism , Plant Roots/metabolism , Alkalies/chemistry , Arabidopsis/genetics , Arabidopsis/growth & development , Arabidopsis Proteins/genetics , Gene Expression Regulation, Developmental , Gene Expression Regulation, Plant , Hydrogen-Ion Concentration , Luminescent Proteins/genetics , Luminescent Proteins/metabolism , Meristem/genetics , Meristem/metabolism , Microscopy, Confocal , Mutation , Plant Roots/genetics , Plant Roots/growth & development , Plants, Genetically Modified , Receptors, Cell Surface/genetics , Receptors, Cell Surface/metabolism , Reverse Transcriptase Polymerase Chain Reaction , Silver Nitrate/pharmacology , Soil/chemistry , Stress, Physiological/drug effects
16.
Plant Physiol ; 168(1): 343-56, 2015 May.
Article in English | MEDLINE | ID: mdl-25818700

ABSTRACT

The development of the plant root system is highly plastic, which allows the plant to adapt to various environmental stresses. Salt stress inhibits root elongation by reducing the size of the root meristem. However, the mechanism underlying this process remains unclear. In this study, we explored whether and how auxin and nitric oxide (NO) are involved in salt-mediated inhibition of root meristem growth in Arabidopsis (Arabidopsis thaliana) using physiological, pharmacological, and genetic approaches. We found that salt stress significantly reduced root meristem size by down-regulating the expression of PINFORMED (PIN) genes, thereby reducing auxin levels. In addition, salt stress promoted AUXIN RESISTANT3 (AXR3)/INDOLE-3-ACETIC ACID17 (IAA17) stabilization, which repressed auxin signaling during this process. Furthermore, salt stress stimulated NO accumulation, whereas blocking NO production with the inhibitor N(ω)-nitro-l-arginine-methylester compromised the salt-mediated reduction of root meristem size, PIN down-regulation, and stabilization of AXR3/IAA17, indicating that NO is involved in salt-mediated inhibition of root meristem growth. Taken together, these findings suggest that salt stress inhibits root meristem growth by repressing PIN expression (thereby reducing auxin levels) and stabilizing IAA17 (thereby repressing auxin signaling) via increasing NO levels.


Subject(s)
Arabidopsis/anatomy & histology , Arabidopsis/physiology , Indoleacetic Acids/metabolism , Meristem/anatomy & histology , Nitric Oxide/metabolism , Signal Transduction/drug effects , Sodium Chloride/pharmacology , Stress, Physiological/drug effects , Arabidopsis/drug effects , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Gene Expression Regulation, Plant/drug effects , Meristem/drug effects , Meristem/genetics , Organ Size/drug effects , Protein Stability/drug effects
17.
Plant Cell Rep ; 35(5): 1071-80, 2016 May.
Article in English | MEDLINE | ID: mdl-26883224

ABSTRACT

KEY MESSAGE: Arabidopsis CK2 α4 subunit regulates the primary root and hypocotyl elongation, lateral root formation, cotyledon expansion, rosette leaf initiation and growth, flowering, and anthocyanin biosynthesis. Casein kinase 2 (CK2) is a conserved tetrameric kinase composed of two α and two ß subunits. The inhibition of CK2 activity usually results in severe developmental deficiency. Four genes (CKA1-CKA4) encode CK2 α subunit in Arabidopsis. Single mutations of CKA1, CKA2, and CKA3 do not affect the normal growth of Arabidopsis, while the cka1 cka2 cka3 triple mutants are defective in cotyledon and hypocotyl growth, lateral root development, and flowering. The inhibition of CKA4 expression in cka1 cka2 cka3 background further reduces the number of lateral roots and delays the flowering time. Here, we report the characterization of a novel knockout mutant of CKA4, which exhibits various developmental defects including reduced primary root and hypocotyl elongation, increased lateral root density, delayed cotyledon expansion, retarded rosette leaf initiation and growth, and late flowering. The examination of the cellular basis for abnormal root development of this mutant revealed reduced root meristem cells with enhanced RETINOBLASTOMA-RELATED (RBR) expression that promotes cell differentiation in root meristem. Moreover, this cka4-2 mutant accumulates higher anthocyanin in the aerial part and shows an increased expression of anthocyanin biosynthetic genes, suggesting a novel role of CK2 in modulating anthocyanin biosynthesis. In addition, the complementation test using primary root elongation assay as a sample confirms that the changed phenotypes of this cka4-2 mutant are due to the lack of CKA4. Taken together, this study reveals an essential role of CK2 α4 subunit in multiple developmental processes in Arabidopsis.


Subject(s)
Anthocyanins/metabolism , Arabidopsis/enzymology , Casein Kinase II/metabolism , Gene Expression Regulation, Plant , Arabidopsis/cytology , Arabidopsis/genetics , Arabidopsis/growth & development , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Casein Kinase II/genetics , Cotyledon/cytology , Cotyledon/enzymology , Cotyledon/genetics , Cotyledon/growth & development , Flowers/cytology , Flowers/enzymology , Flowers/genetics , Flowers/growth & development , Genes, Reporter , Hypocotyl/cytology , Hypocotyl/enzymology , Hypocotyl/genetics , Hypocotyl/growth & development , Mutation , Phenotype , Plant Leaves/cytology , Plant Leaves/enzymology , Plant Leaves/genetics , Plant Leaves/growth & development , Plant Roots/cytology , Plant Roots/enzymology , Plant Roots/genetics , Plant Roots/growth & development , Seedlings/cytology , Seedlings/enzymology , Seedlings/genetics , Seedlings/growth & development , Sequence Alignment
18.
Plant Cell Physiol ; 56(4): 727-36, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25552473

ABSTRACT

Plants exhibit reduced root growth when exposed to low temperature; however, how low temperature modulates root growth remains to be understood. Our study demonstrated that low temperature reduces both meristem size and cell number, repressing the division potential of meristematic cells by reducing auxin accumulation, possibly through the repressed expression of PIN1/3/7 and auxin biosynthesis-related genes, although the experiments with exogenous auxin application also suggest the involvement of other factor(s). In addition, we verified that ARABIDOPSIS RESPONSE REGULATOR 1 (ARR1) and ARR12 are involved in low temperature-mediated inhibition of root growth by showing that the roots of arr1-3 arr12-1 seedlings were less sensitive than wild-type roots to low temperature, in terms of changes in root length and meristem cell number. Furthermore, low temperature reduced the levels of PIN1/3 transcripts and the auxin level to a lesser extent in arr1-3 arr12-1 roots than in wild-type roots, suggesting that cytokinin signaling is involved in the low-temperature-mediated reduction of auxin accumulation. Taken together, our data suggest that low temperature inhibits root growth by reducing auxin accumulation via ARR1/12.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , Cold Temperature , DNA-Binding Proteins/metabolism , Indoleacetic Acids/metabolism , Plant Roots/growth & development , Plant Roots/metabolism , Transcription Factors/metabolism , Arabidopsis/cytology , Arabidopsis Proteins/genetics , Cell Count , Cell Division , DNA-Binding Proteins/genetics , Gene Expression Regulation, Plant , Meristem/cytology , Meristem/growth & development , Meristem/metabolism , Plant Roots/cytology , Stress, Physiological , Transcription Factors/genetics
19.
FEMS Yeast Res ; 15(6)2015 Sep.
Article in English | MEDLINE | ID: mdl-26100262

ABSTRACT

Nitric oxide (NO) plays key roles in yeast responses to various environmental factors, such as H2O2 and high temperature. However, the gene encoding NO synthase (NOS) in yeast has not yet been identified, and the mechanism underlying the regulation of NOS-like activity is poorly understood. Here, we report on the involvement of CKA2 in H2O2-induced yeast apoptosis and yeast high-temperature stress tolerance. Our results showed that although Δcka2 mutant had reduced NO accumulation with decreased apoptosis after H2O2 exposure, treatment with a NO donor, sodium nitroprusside, resulted in similar survival rate of Δcka2 mutant compared to that of wild-type yeast when subjected to H2O2 stress. This finding occurred because H2O2-enhanced NOS-like activity in wild-type yeast was significantly repressed in Δcka2. Our additional experiments indicated that both high-temperature-enhanced NO accumulation and NOS-like activity were also suppressed in Δcka2, leading to the hypersensitivity of the mutant to high temperature in terms of changes in survival rate. Thus, our results showed that CKA2 functioned in H2O2-induced apoptosis and high-temperature stress tolerance by regulating NOS-like-dependent NO accumulation in yeast.


Subject(s)
Apoptosis , Casein Kinase II/metabolism , Hot Temperature/adverse effects , Hydrogen Peroxide/toxicity , Nitric Oxide/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/drug effects , Saccharomyces cerevisiae/physiology , Casein Kinase II/genetics , Gene Deletion , Microbial Viability/drug effects , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins/genetics , Stress, Physiological
20.
Plant J ; 76(2): 308-21, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23888933

ABSTRACT

Root negative phototropism is an important response in plants. Although blue light is known to mediate this response, the cellular and molecular mechanisms underlying root negative phototropism remain unclear. Here, we report that the auxin efflux carrier PIN-FORMED (PIN) 3 is involved in asymmetric auxin distribution and root negative phototropism. Unilateral blue-light illumination polarized PIN3 to the outer lateral membrane of columella cells at the illuminated root side, and increased auxin activity at the illuminated side of roots, where auxin promotes growth and causes roots bending away from the light source. Furthermore, root negative phototropic response and blue-light-induced PIN3 polarization were modulated by a brefeldin A-sensitive, GNOM-dependent, trafficking pathway and by phot1-regulated PINOID (PID)/PROTEIN PHOSPHATASE 2A (PP2A) activity. Our results indicate that blue-light-induced PIN3 polarization is needed for asymmetric auxin distribution during root negative phototropic response.


Subject(s)
Arabidopsis Proteins/physiology , Arabidopsis/physiology , Light , Phototropism/physiology , Plant Roots/physiology , Arabidopsis/genetics , Arabidopsis/radiation effects , Arabidopsis Proteins/genetics , Indoleacetic Acids/metabolism , Plant Roots/radiation effects , Plants, Genetically Modified/genetics , Plants, Genetically Modified/physiology , Protein Phosphatase 2/physiology , Protein Serine-Threonine Kinases/physiology , Protein Transport
SELECTION OF CITATIONS
SEARCH DETAIL