Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 37
Filter
1.
Cell ; 187(6): 1363-1373.e12, 2024 Mar 14.
Article in English | MEDLINE | ID: mdl-38366591

ABSTRACT

In response to the 2022 outbreak of mpox driven by unprecedented human-to-human monkeypox virus (MPXV) transmission, we designed BNT166, aiming to create a highly immunogenic, safe, accessible, and scalable next-generation vaccine against MPXV and related orthopoxviruses. To address the multiple viral forms and increase the breadth of immune response, two candidate multivalent mRNA vaccines were evaluated pre-clinically: a quadrivalent vaccine (BNT166a; encoding the MPXV antigens A35, B6, M1, H3) and a trivalent vaccine (BNT166c; without H3). Both candidates induced robust T cell responses and IgG antibodies in mice, including neutralizing antibodies to both MPXV and vaccinia virus. In challenge studies, BNT166a and BNT166c provided complete protection from vaccinia, clade I, and clade IIb MPXV. Furthermore, immunization with BNT166a was 100% effective at preventing death and at suppressing lesions in a lethal clade I MPXV challenge in cynomolgus macaques. These findings support the clinical evaluation of BNT166, now underway (NCT05988203).


Subject(s)
Monkeypox virus , Mpox (monkeypox) , Smallpox Vaccine , Animals , Humans , Mice , Macaca fascicularis , Monkeypox virus/genetics , Mpox (monkeypox)/immunology , Mpox (monkeypox)/prevention & control , Vaccines, Combined , Vaccinia virus/genetics
2.
Small ; 20(25): e2307774, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38200683

ABSTRACT

Tin (Sn)-based perovskites are being investigated in many optoelectronic applications given their similar valence electron configuration to that of lead-based perovskites and the potential environmental hazards of lead-based perovskites. However, the formation of high-quality Sn-based perovskite films faces several challenges, mainly due to the easy oxidation of Sn2+ to Sn4+ and the fast crystallization rate. Here, to develop an environmentally friendly process for Sn-based perovskite fabrication, a series of natural antioxidants are studied as additives and ascorbic acid (VitC) is found to have a superior ability to inhibit the oxidation problem. A common cyclic molecule, 18-Crown-6, is further added as a second additive, which synergizes with VitC to significantly reduce the nonradiative recombination pathways in the PEA2SnI4 film. This synergistic effect greatly improves the performance of 2D red Sn-based PeLED, with a maximum external quantum efficiency of 1.87% (≈9 times that of the pristine device), a purer color, and better bias stability. This work demonstrates the potential of the dual-additive approach in enhancing the performance of 2D Sn-based PeLEDs, while the use of these environmentally friendly additives contributes to their future sustainability.

3.
Small ; : e2400724, 2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38639018

ABSTRACT

The lack of intrinsic active sites for photocatalytic CO2 reduction reaction (CO2RR) and fast recombination rate of charge carriers are the main obstacles to achieving high photocatalytic activity. In this work, a novel phosphorus and boron binary-doped graphitic carbon nitride, highly porous material that exhibits powerful photocatalytic CO2 reduction activity, specifically toward selective CO generation, is disclosed. The coexistence of Lewis-acidic and Lewis-basic sites plays a key role in tuning the electronic structure, promoting charge distribution, extending light-harvesting ability, and promoting dissociation of excitons into active carriers. Porosity and dual dopants create local chemical environments that activate the pyridinic nitrogen atom between the phosphorus and boron atoms on the exposed surface, enabling it to function as an active site for CO2RR. The P-N-B triad is found to lower the activation barrier for reduction of CO2 by stabilizing the COOH reaction intermediate and altering the rate-determining step. As a result, CO yield increased to 22.45 µmol g-1 h-1 under visible light irradiation, which is ≈12 times larger than that of pristine graphitic carbon nitride. This study provides insights into the mechanism of charge carrier dynamics and active site determination, contributing to the understanding of the photocatalytic CO2RR mechanism.

4.
Nano Lett ; 23(24): 11387-11394, 2023 Dec 27.
Article in English | MEDLINE | ID: mdl-37906586

ABSTRACT

With a growing demand for detecting light at the single-photon level in various fields, researchers are focused on optimizing the performance of superconducting single-photon detectors (SSPDs) by using multiple approaches. However, input light coupling for visible light has remained a challenge in the development of efficient SSPDs. To overcome these limitations, we developed a novel system that integrates NbN superconducting microwire photon detectors (SMPDs) with gap-plasmon resonators to improve the photon detection efficiency to 98% while preserving all detector performance features, such as polarization insensitivity. The plasmonic SMPDs exhibit a hot-belt effect that generates a nonlinear photoresponse in the visible range operated at 9 K (∼0.64Tc), resulting in a 233-fold increase in phonon-electron interaction factor (γ) compared to pristine SMPDs at resonance under CW illumination. These findings open up new opportunities for ultrasensitive single-photon detection in areas like quantum information processing, quantum optics, imaging, and sensing at visible wavelengths.

5.
Nano Lett ; 21(12): 4928-4936, 2021 Jun 23.
Article in English | MEDLINE | ID: mdl-34109795

ABSTRACT

Room-temperature photoluminescence enhancement of molybdenum disulfide (MoS2) monolayers on epitaxial titanium nitride (TiN) thin films grown by molecular-beam-epitaxy as well as magnetron-sputtered TiN films is observed by a confocal laser scanning microscope with excitation wavelengths covering the transition of TiN's macroscopic optical properties from dielectric to plasmonic. The photoluminescence enhancement increases as TiN becomes more metallic, and strong enhancement is obtained at the excitation wavelengths equal to or longer than the epsilon-near-zero (ENZ) wavelength of TiN films. A good agreement is observed between measured and calculated enhancements. The enhancement is attributed to the increased excitation field in MoS2 at TiN's ENZ wavelength and interference effects for thick spacers that separate the MoS2 flakes from TiN films in the metallic regime. This study enriches the fundamental understanding of emission properties on ENZ substrates that could be important for the development of advanced nanoscale lasers/light sources, optical/biosensors, and nano-optoelectronic devices.

6.
Nano Lett ; 21(7): 3083-3091, 2021 Apr 14.
Article in English | MEDLINE | ID: mdl-33761260

ABSTRACT

Monolayer transition metal dichalcogenides (TMDs), direct bandgap materials with an atomically thin nature, are promising materials for electronics and photonics, especially at highly scaled lateral dimensions. However, the characteristically low total absorption of photons in the monolayer TMD has become a challenge in the access to and realization of monolayer TMD-based high-performance optoelectronic functionalities and devices. Here, we demonstrate gate-tunable plasmonic phototransistors (photoFETs) that consist of monolayer molybdenum disulfide (MoS2) photoFETs integrated with the two-dimensional plasmonic crystals. The plasmonic photoFET has an ultrahigh photoresponsivity of 2.7 × 104 AW-1, achieving a 7.2-fold enhancement in the photocurrent compared to pristine photoFETs. This benefits predominately from the combination of the enhancement of the photon-absorption-rate via the strongly localized-electromagnetic-field and the gate-tunable plasmon-induced photocarrier-generation-rate in the monolayer MoS2. These results demonstrate a systematic methodology for designing ultrathin plasmon-enhanced photodetectors based on monolayer TMDs for next-generation ultracompact optoelectronic devices in the trans-Moore era.

7.
Opt Express ; 29(11): 17087-17096, 2021 May 24.
Article in English | MEDLINE | ID: mdl-34154259

ABSTRACT

Quantum technologies such as quantum computing and quantum cryptography exhibit rapid progress. This requires the provision of high-quality photodetectors and the ability to efficiently detect single photons. Hence, conventional avalanche photodiodes for single photon detection are not the first choice anymore. A better alternative are superconducting nanowire single photon detectors, which use the superconducting to normal conductance phase transition. One big challenge is to reduce the product between recovery time and detection efficiency. To address this problem, we enhance the absorption using resonant plasmonic perfect absorber effects, to reach near-100% absorption over small areas. This is aided by the high resonant absorption cross section and the angle insensitivity of plasmonic resonances. In this work we present a superconducting niobium nitride plasmonic perfect absorber structure and use its tunable plasmonic resonance to create a polarization dependent photodetector with near-100% absorption efficiency in the infrared spectral range. Further we fabricated a detector and investigated its response to an external light source. We also demonstrate the resonant plasmonic behavior which manifests itself through a polarization dependence detector response.

8.
Bioorg Chem ; 109: 104715, 2021 04.
Article in English | MEDLINE | ID: mdl-33647741

ABSTRACT

This paper presents the design and synthesis of 4-(3-hydroxyanilino)-6-(1H-1,2,3-triazol-4-yl)quinazolines of scaffold 9 as selective B-Raf/B-RafV600E and potent EGFR/VEGFR2 kinase inhibitors. Total 14 compounds of scaffold 9 having different side chains at the triazolyl group with/without fluoro substituents at the anilino group were synthesized and investigated. Among them, 9m with a 2-carbamoylethyl side chain and C-4'/C-6' difluoro substituents was the most potent, which selectively inhibited B-Raf (IC50: 57 nM) and B-RafV600E (IC50: 51 nM) over C-Raf (IC50: 1.0 µM). Compound 9m also actively inhibited EGFR (IC50: 73 nM) and VEGFR2 (IC50: 7.0 nM) but not EGFRT790M and PDGFR-ß (IC50: >10 µM). Despite having good potency for B-Raf and B-RafV600E in the enzymatic assays, 9m was less active to inhibit melanoma A375 cells which proliferate due to constitutively activated B-Raf600E. The inferior activity of 9m for A375 was similar to that of sorafenib (6), suggesting that 9m might bind to the inactive conformations of B-Raf and B-RafV600E. Docking simulations could thus be performed to reveal the binding poses of 9m in B-Raf, B-RafV600E, and VEGFR2 kinases.


Subject(s)
ErbB Receptors/antagonists & inhibitors , Proto-Oncogene Proteins B-raf/antagonists & inhibitors , Quinazolines/pharmacology , Vascular Endothelial Growth Factor Receptor-2/antagonists & inhibitors , raf Kinases/antagonists & inhibitors , Cell Line, Tumor , ErbB Receptors/genetics , ErbB Receptors/metabolism , Gene Expression Regulation, Neoplastic/drug effects , Humans , Molecular Docking Simulation , Quinazolines/chemistry , Vascular Endothelial Growth Factor Receptor-2/genetics , Vascular Endothelial Growth Factor Receptor-2/metabolism
9.
PLoS Pathog ; 14(5): e1007060, 2018 02.
Article in English | MEDLINE | ID: mdl-29782535

ABSTRACT

Containment of Mycobacterium tuberculosis (Mtb) infection requires T cell recognition of infected macrophages. Mtb has evolved to tolerate, evade, and subvert host immunity. Despite a vigorous and sustained CD8+ T cell response during Mtb infection, CD8+ T cells make limited contribution to protection. Here, we ask whether the ability of Mtb-specific T cells to restrict Mtb growth is related to their capacity to recognize Mtb-infected macrophages. We derived CD8+ T cell lines that recognized the Mtb immunodominant epitope TB10.44-11 and compared them to CD4+ T cell lines that recognized Ag85b240-254 or ESAT63-17. While the CD4+ T cells recognized Mtb-infected macrophages and inhibited Mtb growth in vitro, the TB10.4-specific CD8+ T cells neither recognized Mtb-infected macrophages nor restricted Mtb growth. TB10.4-specific CD8+ T cells recognized macrophages infected with Listeria monocytogenes expressing TB10.4. However, over-expression of TB10.4 in Mtb did not confer recognition by TB10.4-specific CD8+ T cells. CD8+ T cells recognized macrophages pulsed with irradiated Mtb, indicating that macrophages can efficiently cross-present the TB10.4 protein and raising the possibility that viable bacilli might suppress cross-presentation. Importantly, polyclonal CD8+ T cells specific for Mtb antigens other than TB10.4 recognized Mtb-infected macrophages in a MHC-restricted manner. As TB10.4 elicits a dominant CD8+ T cell response that poorly recognizes Mtb-infected macrophages, we propose that TB10.4 acts as a decoy antigen. Moreover, it appears that this response overshadows subdominant CD8+ T cell response that can recognize Mtb-infected macrophages. The ability of Mtb to subvert the CD8+ T cell response may explain why CD8+ T cells make a disproportionately small contribution to host defense compared to CD4+ T cells. The selection of Mtb antigens for vaccines has focused on antigens that generate immunodominant responses. We propose that establishing whether vaccine-elicited, Mtb-specific T cells recognize Mtb-infected macrophages could be a useful criterion for preclinical vaccine development.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , Macrophages, Peritoneal/microbiology , Mycobacterium tuberculosis/growth & development , Tuberculosis, Pulmonary/immunology , Animals , Antigens, Bacterial/immunology , Blotting, Western , Cell Line , Flow Cytometry , Listeria/physiology , Lung/cytology , Lung/microbiology , Macrophages, Peritoneal/drug effects , Macrophages, Peritoneal/immunology , Mice , Mice, Inbred C57BL , Mycobacterium tuberculosis/immunology , Mycobacterium tuberculosis/radiation effects , Thioglycolates/pharmacology , Tuberculosis, Pulmonary/microbiology
10.
Opt Express ; 28(17): 24919-24927, 2020 Aug 17.
Article in English | MEDLINE | ID: mdl-32907023

ABSTRACT

The nonlinear optical properties of low-dimensional polycrystalline halide perovskite films consisting of ethylammonium (EA) and butylammonium (BA) cations are investigated using Z-scan technique. Across the band-edge, two-dimensional (BA)2PbI4 exhibits a transition from saturable absorption (SA) to reverse-SA and its nonlinear absorption and nonlinear refractive index are much smaller than those of bulk counterparts. Meanwhile, EAPbI3 with one-dimensionality of the inorganic structure shows the SA behavior both above and below band-edge and the estimated nonlinear optical parameters of polycrystalline EAPbI3 are comparable to those of single-crystalline ones, attributed to high dielectric contrast between the inorganic and organic elements in one-dimensional structures.

11.
Nano Lett ; 14(8): 4381-8, 2014 Aug 13.
Article in English | MEDLINE | ID: mdl-25029207

ABSTRACT

We report on the first demonstration of broadband tunable, single-mode plasmonic nanolasers (spasers) emitting in the full visible spectrum. These nanolasers are based on a single metal-oxide-semiconductor nanostructure platform comprising of InGaN/GaN semiconductor nanorods supported on an Al2O3-capped epitaxial Ag film. In particular, all-color lasing in subdiffraction plasmonic resonators is achieved via a novel mechanism based on a property of weak size dependence inherent in spasers. Moreover, we have successfully reduced the continuous-wave (CW) lasing thresholds to ultrasmall values for all three primary colors and have clearly demonstrated the possibility of "thresholdless" lasing for the blue plasmonic nanolaser.

12.
Nanotechnology ; 25(23): 235602, 2014 Jun 13.
Article in English | MEDLINE | ID: mdl-24848377

ABSTRACT

A 3-dimensional chain-network anatase/TiO2 (B) was obtained via the basic hydrothermal treatment of a sandwich Ti/TiO2/Ti film on a glass substrate that was prepared from 16 nm anatase TiO2 nanoparticles. The Ti film was converted to the TiO2 (B) phase in a Teflon vessel containing a 10 M NaOH aqueous solution that was encapsulated in a stainless-steel autoclave and heated at 130 °C for 2 h. The TiO2 (B) then served as a binder layer that enabled the formation of pearl-necklace chains made of anatase TiO2 nanoparticles, and these chain-like structures thoroughly interpenetrated into the textured layer. Decomposition tests using methylene blue indicated that the chain-network anatase/TiO2 (B) mixed-phase film had a photocatalytic half-life that was 0.84 and 0.69 times shorter than those of as-prepared anatase TiO2 and P25, respectively. In addition, the intensity of the room temperature photoluminescence spectra of anatase TiO2 was 2.55-fold higher than that of the chain-network anatase/TiO2 (B). We thus conclude that the remarkable photocatalytic activity of the chain-network anatase/TiO2 (B) is attributed to the chain-network structural characteristics and a synergistic effect of the matching band gap potentials, which increases the transfer of photogenerated electrons and reduces electron-hole recombination.

13.
ACS Nano ; 2024 Feb 05.
Article in English | MEDLINE | ID: mdl-38315422

ABSTRACT

Absorption of photons in atomically thin materials has become a challenge in the realization of ultrathin, high-performance optoelectronics. While numerous schemes have been used to enhance absorption in 2D semiconductors, such enhanced device performance in scalable monolayer photodetectors remains unattained. Here, we demonstrate wafer-scale integration of monolayer single-crystal MoS2 photodetectors with a nitride-based resonant plasmonic metasurface to achieve a high detectivity of 2.58 × 1012 Jones with a record-low dark current of 8 pA and long-term stability over 40 days. Upon comparison with control devices, we observe an overall enhancement factor of >100; this can be attributed to the local strong EM field enhanced photogating effect by the resonant plasmonic metasurface. Considering the compatibility of 2D semiconductors and hafnium nitride with the Si CMOS process and their scalability across wafer sizes, our results facilitate the smooth incorporation of 2D semiconductor-based photodetectors into the fields of imaging, sensing, and optical communication applications.

14.
Nano Lett ; 12(12): 6187-91, 2012 Dec 12.
Article in English | MEDLINE | ID: mdl-23131144

ABSTRACT

In this Letter we report a comparative study, in the infrared regime, of surface plasmon polariton (SPP) propagation in epitaxially grown Ag films and in polycrystalline Ag films, all grown on Si substrates. Plasmonic resonance features are analyzed using extraordinary optical transmission (EOT) measurements, and SPP band structures for the two dielectric/metal interfaces are investigated for both types of film. At the Si/Ag interface, EOT spectra show almost identical features for epitaxial and polycrystalline Ag films and are characterized by sharp Fano resonances. On the contrary, at the air/Ag interface, dramatic differences are observed: while the epitaxial film continues to exhibit sharp Fano resonances, the polycrystalline film shows only broad spectral features and much lower transmission intensities. In corroboration with theoretical simulations, we find that surface roughness plays a critical role in SPP propagation for this wavelength range.

15.
Adv Sci (Weinh) ; 10(14): e2206523, 2023 May.
Article in English | MEDLINE | ID: mdl-36965030

ABSTRACT

Superconductivity remains one of most fascinating quantum phenomena existing on a macroscopic scale. Its rich phenomenology is usually described by the Ginzburg-Landau (GL) theory in terms of the order parameter, representing the macroscopic wave function of the superconducting condensate. The GL theory addresses one of the prime superconducting properties, screening of the electromagnetic field because it becomes massive within a superconductor, the famous Anderson-Higgs mechanism. Here the authors describe another widely-spread type of superconductivity where the Anderson-Higgs mechanism does not work and must be replaced by the Deser-Jackiw-Templeton topological mass generation and, correspondingly, the GL effective field theory must be replaced by an effective topological gauge theory. These superconductors are inherently inhomogeneous granular superconductors, where electronic granularity is either fundamental or emerging. It is shown that the corresponding superconducting transition is a 3D generalization of the 2D Berezinskii-Kosterlitz-Thouless vortex binding-unbinding transition. The binding-unbinding of the line-like vortices in 3D results in the Vogel-Fulcher-Tamman scaling of the resistance near the superconducting transition. The authors report experimental data fully confirming the VFT behavior of the resistance.

16.
Adv Sci (Weinh) ; 10(26): e2302232, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37400366

ABSTRACT

Quasi-2D perovskites have recently flourished in the field of luminescence due to the quantum-confinement effect and the efficient energy transfer between different n phases resulting in exceptional optical properties. However, owing to the lower conductivity and poor charge injection, quasi-2D perovskite light-emitting diodes (PeLEDs) typically suffer from low brightness and high-efficiency roll-off at high current densities compared to 3D perovskite-based PeLEDs, which is undoubtedly one of the most critical issues in this field. In this work, quasi-2D PeLEDs with high brightness, reduced trap density, and low-efficiency roll-off are successfully demonstrated by introducing a thin layer of conductive phosphine oxide at the perovskite/electron transport layer interface. The results surprisingly show that this additional layer does not improve the energy transfer between multiple quasi-2D phases in the perovskite film, but purely improves the electronic properties of the perovskite interface. On the one hand, it passivates the surface defects of the perovskite film; on the other hand, it promotes electron injection and prevents hole leakage across this interface. As a result, the modified quasi-2D pure Cs-based device shows a maximum brightness of > 70,000 cd m-2 (twice that of the control device), a maximum external quantum efficiency (EQE) of > 10% and a much lower efficiency roll-off at high bias voltages.

17.
Nat Nanotechnol ; 18(11): 1289-1294, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37474684

ABSTRACT

Two-dimensional (2D) semiconducting transition metal dichalcogenides (TMDs) represent the ultimate thickness for scaling down channel materials. They provide a tantalizing solution to push the limit of semiconductor technology nodes in the sub-1 nm range. One key challenge with 2D semiconducting TMD channel materials is to achieve large-scale batch growth on insulating substrates of single crystals with spatial homogeneity and compelling electrical properties. Recent studies have claimed the epitaxy growth of wafer-scale, single-crystal 2D TMDs on a c-plane sapphire substrate with deliberately engineered off-cut angles. It has been postulated that exposed step edges break the energy degeneracy of nucleation and thus drive the seamless stitching of mono-oriented flakes. Here we show that a more dominant factor should be considered: in particular, the interaction of 2D TMD grains with the exposed oxygen-aluminium atomic plane establishes an energy-minimized 2D TMD-sapphire configuration. Reconstructing the surfaces of c-plane sapphire substrates to only a single type of atomic plane (plane symmetry) already guarantees the single-crystal epitaxy of monolayer TMDs without the aid of step edges. Electrical results evidence the structural uniformity of the monolayers. Our findings elucidate a long-standing question that curbs the wafer-scale batch epitaxy of 2D TMD single crystals-an important step towards using 2D materials for future electronics. Experiments extended to perovskite materials also support the argument that the interaction with sapphire atomic surfaces is more dominant than step-edge docking.

18.
mBio ; 13(6): e0302022, 2022 12 20.
Article in English | MEDLINE | ID: mdl-36409085

ABSTRACT

The cytotoxic granules of human NK and CD8 T cells contain the effector molecule granulysin. Although in vitro studies indicate that granulysin is bactericidal to Mycobacterium tuberculosis and human CD8 T cells restrict intracellular M. tuberculosis by granule exocytosis, the role of granulysin in cell-mediated immunity against infection is incompletely understood, in part because a granulysin gene ortholog is absent in mice. Transgenic mice that express human granulysin (GNLY-Tg) under the control of human regulatory DNA sequences permit the study of granulysin in vivo. We assessed whether granulysin expression by murine CD8 T cells enhances their control of M. tuberculosis infection. GNLY-Tg mice did not control pulmonary M. tuberculosis infection better than non-Tg control mice, and purified GNLY-Tg and non-Tg CD8 T cells had a similar ability to transfer protection to T cell deficient mice. Lung CD8 T cells from infected control and GNLY-transgenic mice similarly controlled intracellular M. tuberculosis growth in macrophages in vitro. Importantly, after M. tuberculosis infection of GNLY-Tg mice, granulysin was detected in NK cells but not in CD8 T cells. Only after prolonged in vitro stimulation could granulysin expression be detected in antigen-specific CD8 T cells. GNLY-Tg mice are an imperfect model to determine whether granulysin expression by CD8 T cells enhances immunity against M. tuberculosis. Better models expressing granulysin are needed to explore the role of this antimicrobial effector molecule in vivo. IMPORTANCE Human CD8 T cells express the antimicrobial peptide granulysin in their cytotoxic granules, and in vitro analysis suggest that it restricts growth of Mycobacterium tuberculosis and other intracellular pathogens. The murine model of tuberculosis cannot assess granulysin's role in vivo, as rodents lack the granulysin gene. A long-held hypothesis is that murine CD8 T cells inefficiently control M. tuberculosis infection because they lack granulysin. We used human granulysin transgenic (GNLY-Tg) mice to test this hypothesis. GNLY-Tg mice did not differ in their susceptibility to tuberculosis. However, granulysin expression by pulmonary CD8 T cells could not be detected after M. tuberculosis infection. As the pattern of granulysin expression in human CD8 T cells and GNLY-Tg mice seem to differ, GNLY-Tg mice are an imperfect model to study the role of granulysin. An improved model is needed to answer the importance of granulysin expression by CD8 T cells in different diseases.


Subject(s)
Mycobacterium tuberculosis , Tuberculosis, Pulmonary , Tuberculosis , Humans , Mice , Animals , Mycobacterium tuberculosis/genetics , Mice, Transgenic , CD8-Positive T-Lymphocytes
19.
ACS Appl Mater Interfaces ; 14(14): 16839-16845, 2022 Apr 13.
Article in English | MEDLINE | ID: mdl-35363462

ABSTRACT

Titanium nitride (TiN), a transition-metal compound with tight covalent Ti-N bonding, has a high melting temperature and superior mechanical and chemical stabilities compared to noble metals. With a reduction in thickness, the optical transmittance of TiN films can be drastically increased, and in combination with its excellent electrical conductivity, the ultrathin and continuous TiN film can be considered as an ideal alternative of the metal oxide electrodes. However, the deposition of ultrathin and continuous metallic layer with a smooth surface morphology is a major challenge for typical deposition methods such as thermal evaporation or reactive sputtering. In particular, defects mainly related with oxygen contents and surface scattering can significantly limit the performance of ultrathin TiN films. In this work, ultrathin TiN films with 2-10 nm in thickness are grown by using the nitrogen plasma-assisted molecular-beam epitaxy (MBE) method in an ultrahigh vacuum environment. Excellent surface morphology with a root-mean-square roughness of ≤0.12 nm and a high optical transparency of 75% over the whole visible regime are achieved for ultrathin TiN epitaxial films. The dielectric properties determined by the spectroscopic ellipsometry and the electrical properties measured by the terahertz spectroscopy and the Hall effect method reveal that the percolation thickness of the TiN epitaxial film is less than 2.4 nm and its electrical conductivity is higher than 1.1 × 104 Ω-1 cm-1. These features make MBE-grown ultrathin TiN epitaxial films a good candidate for robust, low cost, and large-area transparent conductive electrodes.

20.
ACS Nano ; 16(4): 5975-5983, 2022 Apr 26.
Article in English | MEDLINE | ID: mdl-35333048

ABSTRACT

We demonstrate here the growth of aluminum (Al), copper (Cu), gold (Au), and silver (Ag) epitaxial films on two-dimensional, layered muscovite mica (Mica) substrates via van der Waals (vdW) heteroepitaxy with controllable film thicknesses from a few to hundreds of nanometers. In this approach, the mica thin sheet acts as a flexible and transparent substrate for vdW heteroepitaxy, which allows for large-area formation of atomically smooth, single-crystalline, and ultrathin plasmonic metals without the issue of film dewetting. The high-quality plasmonic metal films grown on mica enable us to design and fabricate well-controlled Al and Cu plasmonic nanostructures with tunable surface plasmon resonances ranging from visible to the near-infrared spectral region. Using these films, two kinds of plasmonic device applications are reported, including (1) plasmonic sensors with high effective index sensitivities based on surface plasmon interferometers fabricated on the Al/Mica film and (2) Cu/Mica nanoslit arrays for plasmonic color filters in the visible and near-infrared regions. Furthermore, we show that the responses of plasmonic nanostructures fabricated on the Mica substrates remain unaltered under large substrate bending conditions. Therefore, the metal-on-mica vdW heteroepitaxy platform is suitable for flexible plasmonics based on their bendable properties.

SELECTION OF CITATIONS
SEARCH DETAIL