Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 581
Filter
Add more filters

Publication year range
1.
Nat Rev Mol Cell Biol ; 20(1): 21-37, 2019 01.
Article in English | MEDLINE | ID: mdl-30108335

ABSTRACT

Since their serendipitous discovery in nematodes, microRNAs (miRNAs) have emerged as key regulators of biological processes in animals. These small RNAs form complex networks that regulate cell differentiation, development and homeostasis. Deregulation of miRNA function is associated with an increasing number of human diseases, particularly cancer. Recent discoveries have expanded our understanding of the control of miRNA function. Here, we review the mechanisms that modulate miRNA activity, stability and cellular localization through alternative processing and maturation, sequence editing, post-translational modifications of Argonaute proteins, viral factors, transport from the cytoplasm and regulation of miRNA-target interactions. We conclude by discussing intriguing, unresolved research questions.


Subject(s)
MicroRNAs/genetics , Animals , Argonaute Proteins/genetics , Cell Differentiation/genetics , Cytoplasm/genetics , Homeostasis/genetics , Humans , Neoplasms/genetics , Protein Processing, Post-Translational/genetics
2.
Nucleic Acids Res ; 2024 Jul 22.
Article in English | MEDLINE | ID: mdl-39036963

ABSTRACT

Co-transcriptional assembly is an integral feature of the formation of RNA-protein complexes that mediate translation. For ribosome synthesis, prior studies have indicated that the strict order of transcription of rRNA domains may not be obligatory during bacterial ribosome biogenesis, since a series of circularly permuted rRNAs are viable. In this work, we report the structural insights into assembly of the bacterial ribosome large subunit (LSU) based on cryo-EM density maps of intermediates that accumulate during in vitro ribosome synthesis using a set of circularly permuted (CiPer) rRNAs. The observed ensemble of 23 resolved ribosome large subunit intermediates reveals conserved assembly routes with an underlying hierarchy among cooperative assembly blocks. There are intricate interdependencies for the formation of key structural rRNA helices revealed from the circular permutation of rRNA. While the order of domain synthesis is not obligatory, the order of domain association does appear to proceed with a particular order, likely due to the strong evolutionary pressure on efficient ribosome synthesis. This work reinforces the robustness of the known assembly hierarchy of the bacterial large ribosomal subunit and offers a coherent view of how efficient assembly of CiPer rRNAs can be understood in that context.

3.
J Magn Reson Imaging ; 2024 Jan 24.
Article in English | MEDLINE | ID: mdl-38265188

ABSTRACT

Ever since its introduction as a diagnostic imaging tool the potential of magnetic resonance imaging (MRI) in radiation therapy (RT) treatment simulation and planning has been recognized. Recent technical advances have addressed many of the impediments to use of this technology and as a result have resulted in rapid and growing adoption of MRI in RT. The purpose of this article is to provide a broad review of the multiple uses of MR in the RT treatment simulation and planning process, identify several of the most used clinical scenarios in which MR is integral to the simulation and planning process, highlight existing limitations and provide multiple unmet needs thereby highlighting opportunities for the diagnostic MR imaging community to contribute and collaborate with our oncology colleagues. EVIDENCE LEVEL: 5 TECHNICAL EFFICACY: Stage 5.

4.
Curr Treat Options Oncol ; 25(2): 191-205, 2024 02.
Article in English | MEDLINE | ID: mdl-38270802

ABSTRACT

OPINION STATEMENT: PSMA-PET has been a practice-changing imaging biomarker for the management of men with PCa. Research suggests improved accuracy over conventional imaging and other PET radiotracers in many contexts. With multiple approved PSMA-targeting radiotracers, PSMA PET will become even more available in clinical practice. Its increased use requires an understanding of the prospective data available and caution when extrapolating from prior trial data that utilized other imaging modalities. Future trials leveraging PSMA PET for treatment optimization and management decision-making will ultimately drive its clinical utility.


Subject(s)
Antigens, Surface , Prostatic Neoplasms , Humans , Male , Neoplasm Staging , Positron Emission Tomography Computed Tomography/methods , Prospective Studies , Prostatic Neoplasms/therapy , Prostatic Neoplasms/drug therapy , Radiopharmaceuticals/therapeutic use , Prostate-Specific Antigen
5.
Proc Natl Acad Sci U S A ; 118(33)2021 08 17.
Article in English | MEDLINE | ID: mdl-34385308

ABSTRACT

Hepatitis C virus (HCV) is a positive-sense RNA virus that interacts with a liver-specific microRNA called miR-122. miR-122 binds to two sites in the 5' untranslated region of the viral genome and promotes HCV RNA accumulation. This interaction is important for viral RNA accumulation in cell culture, and miR-122 inhibitors have been shown to be effective at reducing viral titers in chronic HCV-infected patients. Herein, we analyzed resistance-associated variants that were isolated in cell culture or from patients who underwent miR-122 inhibitor-based therapy and discovered three distinct resistance mechanisms all based on changes to the structure of the viral RNA. Specifically, resistance-associated variants promoted riboswitch activity, genome stability, or positive-strand viral RNA synthesis, all in the absence of miR-122. Taken together, these findings provide insight into the mechanism(s) of miR-122-mediated viral RNA accumulation and provide mechanisms of antiviral resistance mediated by changes in RNA structure.


Subject(s)
Antiviral Agents/pharmacology , Drug Resistance, Viral/genetics , Hepacivirus/genetics , MicroRNAs/metabolism , RNA, Viral/metabolism , Cell Line, Tumor , Gene Expression Regulation, Viral/drug effects , Gene Expression Regulation, Viral/physiology , Genetic Variation , Hepatitis C, Chronic/drug therapy , Humans , MicroRNAs/antagonists & inhibitors , MicroRNAs/genetics
6.
Proc Natl Acad Sci U S A ; 118(50)2021 12 14.
Article in English | MEDLINE | ID: mdl-34873041

ABSTRACT

The treatment of infectious diseases caused by multidrug-resistant pathogens is a major clinical challenge of the 21st century. The membrane-embedded respiratory cytochrome bd-type oxygen reductase is a critical survival factor utilized by pathogenic bacteria during infection, proliferation and the transition from acute to chronic states. Escherichia coli encodes for two cytochrome bd isoforms that are both involved in respiration under oxygen limited conditions. Mechanistic and structural differences between cydABX (Ecbd-I) and appCBX (Ecbd-II) operon encoded cytochrome bd variants have remained elusive in the past. Here, we demonstrate that cytochrome bd-II catalyzes oxidation of benzoquinols while possessing additional specificity for naphthoquinones. Our data show that although menaquinol-1 (MK1) is not able to directly transfer electrons onto cytochrome bd-II from E. coli, it has a stimulatory effect on its oxygen reduction rate in the presence of ubiquinol-1. We further determined cryo-EM structures of cytochrome bd-II to high resolution of 2.1 Å. Our structural insights confirm that the general architecture and substrate accessible pathways are conserved between the two bd oxidase isoforms, but two notable differences are apparent upon inspection: (i) Ecbd-II does not contain a CydH-like subunit, thereby exposing heme b595 to the membrane environment and (ii) the AppB subunit harbors a structural demethylmenaquinone-8 molecule instead of ubiquinone-8 as found in CydB of Ecbd-I Our work completes the structural landscape of terminal respiratory oxygen reductases of E. coli and suggests that structural and functional properties of the respective oxidases are linked to quinol-pool dependent metabolic adaptations in E. coli.


Subject(s)
Cytochrome b Group/metabolism , Electron Transport Chain Complex Proteins/metabolism , Escherichia coli Proteins/metabolism , Escherichia coli/metabolism , Gene Expression Regulation, Bacterial/physiology , Oxidoreductases/metabolism , Cytochrome b Group/genetics , Electron Transport Chain Complex Proteins/genetics , Escherichia coli/genetics , Escherichia coli Proteins/genetics , Models, Molecular , Oxidoreductases/genetics , Protein Conformation , Protein Isoforms
7.
J Bacteriol ; 205(10): e0006423, 2023 10 26.
Article in English | MEDLINE | ID: mdl-37791752

ABSTRACT

To eradicate bacterial pathogens, neutrophils are recruited to the sites of infection, where they engulf and kill microbes through the production of reactive oxygen and chlorine species (ROS/RCS). The most prominent RCS is the antimicrobial oxidant hypochlorous acid (HOCl), which rapidly reacts with various amino acid side chains, including those containing sulfur and primary/tertiary amines, causing significant macromolecular damage. Pathogens like uropathogenic Escherichia coli (UPEC), the primary causative agent of urinary tract infections, have developed sophisticated defense systems to protect themselves from HOCl. We recently identified the RcrR regulon as a novel HOCl defense strategy in UPEC. Expression of the rcrARB operon is controlled by the HOCl-sensing transcriptional repressor RcrR, which is oxidatively inactivated by HOCl resulting in the expression of its target genes, including rcrB. The rcrB gene encodes a hypothetical membrane protein, deletion of which substantially increases UPEC's susceptibility to HOCl. However, the mechanism behind protection by RcrB is unclear. In this study, we investigated whether (i) its mode of action requires additional help, (ii) rcrARB expression is induced by physiologically relevant oxidants other than HOCl, and (iii) expression of this defense system is limited to specific media and/or cultivation conditions. We provide evidence that RcrB expression is sufficient to protect E. coli from HOCl. Furthermore, RcrB expression is induced by and protects from several RCS but not from ROS. RcrB plays a protective role for RCS-stressed planktonic cells under various growth and cultivation conditions but appears to be irrelevant for UPEC's biofilm formation. IMPORTANCE Bacterial infections pose an increasing threat to human health, exacerbating the demand for alternative treatments. Uropathogenic Escherichia coli (UPEC), the most common etiological agent of urinary tract infections (UTIs), are confronted by neutrophilic attacks in the bladder, and must therefore be equipped with powerful defense systems to fend off the toxic effects of reactive chlorine species. How UPEC deal with the negative consequences of the oxidative burst in the neutrophil phagosome remains unclear. Our study sheds light on the requirements for the expression and protective effects of RcrB, which we recently identified as UPEC's most potent defense system toward hypochlorous acid (HOCl) stress and phagocytosis. Thus, this novel HOCl stress defense system could potentially serve as an attractive drug target to increase the body's own capacity to fight UTIs.


Subject(s)
Escherichia coli Infections , Escherichia coli Proteins , Urinary Tract Infections , Uropathogenic Escherichia coli , Humans , Hypochlorous Acid/pharmacology , Uropathogenic Escherichia coli/metabolism , Chlorine , Urinary Tract Infections/microbiology , Oxidants/pharmacology , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Escherichia coli Infections/microbiology
8.
Oncologist ; 28(6): e473-e477, 2023 06 02.
Article in English | MEDLINE | ID: mdl-37084789

ABSTRACT

Black Veterans have higher a incidence of localized and metastatic prostate cancer compared to White Veterans yet are underrepresented in reports of frequencies of somatic and germline alterations. This retrospective analysis of somatic and putative germline alterations was conducted in a large cohort of Veterans with prostate cancer (N = 835 Black, 1613 White) who underwent next generation sequencing through the VA Precision Oncology Program, which facilitates molecular testing for Veterans with metastatic cancer. No differences were observed in gene alterations for FDA approved targetable therapies (13.5% in Black Veterans vs. 15.5% in White Veterans, P = .21), nor in any potentially actionable alterations (25.5% vs. 28.7%, P =.1). Black Veterans had higher rates of BRAF (5.5% vs. 2.6%, P < .001) alterations, White Veterans TMPRSS2 fusions (27.2% vs. 11.7%, P < .0001). Putative germline alteration rates were higher in White Veterans (12.0% vs. 6.1%, P < .0001). Racial disparities in outcome are unlikely attributable to acquired somatic alterations in actionable pathways.


Subject(s)
Prostatic Neoplasms , Veterans , Male , Humans , United States/epidemiology , Retrospective Studies , Black or African American/genetics , Precision Medicine , Prostatic Neoplasms/epidemiology , Prostatic Neoplasms/genetics , Prostatic Neoplasms/pathology , Genomics , White
9.
Curr Oncol Rep ; 25(3): 221-229, 2023 03.
Article in English | MEDLINE | ID: mdl-36723856

ABSTRACT

PURPOSE OF REVIEW: Multimodality therapy including radical prostatectomy, radiation therapy, and hormone therapy are frequently deployed in the management of localized prostate cancer. We sought to perform a critical appraisal of the most contemporary literature focusing on the multimodality management of localized prostate cancer. RECENT FINDINGS: Men who are ideal candidates for multimodality therapy include those with unfavorable intermediate-risk disease, high-risk disease, and very high-risk disease. Enhancements in both systemic agents (including second-generation antiandrogens) as well as localized therapies (such as stereotactic body radiotherapy and brachytherapy) are refining the optimal balance between the use of systemic and local therapies for localized prostate cancer. Genomic predictors are emerging as critical tools for more precisely allocating treatment intensification with multimodality therapies as well as treatment de-intensification. Close collaboration among medical oncologists, surgeons, and radiation oncologists will be critical for coordinating evidence-based multimodality therapies when clearly indicated and for supporting shared decision-making in areas where the evidence is mixed.


Subject(s)
Brachytherapy , Prostatic Neoplasms , Male , Humans , Prostatic Neoplasms/therapy , Combined Modality Therapy , Prostatectomy , Androgen Antagonists
10.
Bull Math Biol ; 85(3): 22, 2023 02 15.
Article in English | MEDLINE | ID: mdl-36790516

ABSTRACT

The Brugada syndrome (BrS) is a cardiac arrhythmic disorder responsible for sudden cardiac death associated with the onset of ventricular arrhythmias, such as reentrant ventricular tachycardia and fibrillation. The mechanisms which lead to the onset of such electrical disorders in patients affected by BrS are not completely understood, yet. The aim of the present study is to investigate by means of numerical simulations the electrophysiological mechanisms at the basis of the morphology of electrocardiogram (ECG) and the onset of reentry associated with BrS. To this end, we consider the Bidomain equations coupled with the ten Tusscher-Panfilov membrane model, on an idealized wedge of human right ventricular tissue. The results have shown that: (1) epicardial dispersion of repolarization, generated by the coexistence of regions of early and late repolarization, due to different modulation of the [Formula: see text] current, produces ECG waveforms exhibiting qualitatively the typical BrS morphology, characterized by ST elevation and partially negative T-waves; (2) epicardial dispersion of repolarization promotes the onset of reentry during the implementation of the programmed stimulation protocol, because of the conduction block occurring when a premature beat reaches the border of late repolarizing regions; and (3) the modulation of the [Formula: see text] current affects the duration of reentry, which becomes sustained with a remarkable increase of [Formula: see text] in the subepicardial layers.


Subject(s)
Brugada Syndrome , Humans , Mathematical Concepts , Models, Biological , Arrhythmias, Cardiac/diagnosis , Arrhythmias, Cardiac/etiology , Heart Ventricles
11.
Nucleic Acids Res ; 49(1): 25-37, 2021 01 11.
Article in English | MEDLINE | ID: mdl-33300035

ABSTRACT

Many microRNAs regulate gene expression via atypical mechanisms, which are difficult to discern using native cross-linking methods. To ascertain the scope of non-canonical miRNA targeting, methods are needed that identify all targets of a given miRNA. We designed a new class of miR-CLIP probe, whereby psoralen is conjugated to the 3p arm of a pre-microRNA to capture targetomes of miR-124 and miR-132 in HEK293T cells. Processing of pre-miR-124 yields miR-124 and a 5'-extended isoform, iso-miR-124. Using miR-CLIP, we identified overlapping targetomes from both isoforms. From a set of 16 targets, 13 were differently inhibited at mRNA/protein levels by the isoforms. Moreover, delivery of pre-miR-124 into cells repressed these targets more strongly than individual treatments with miR-124 and iso-miR-124, suggesting that isomirs from one pre-miRNA may function synergistically. By mining the miR-CLIP targetome, we identified nine G-bulged target-sites that are regulated at the protein level by miR-124 but not isomiR-124. Using structural data, we propose a model involving AGO2 helix-7 that suggests why only miR-124 can engage these sites. In summary, access to the miR-124 targetome via miR-CLIP revealed for the first time how heterogeneous processing of miRNAs combined with non-canonical targeting mechanisms expand the regulatory range of a miRNA.


Subject(s)
Argonaute Proteins/metabolism , Gene Expression Regulation , MicroRNAs/genetics , Models, Genetic , 3' Untranslated Regions/genetics , Amino Acid Motifs , Argonaute Proteins/chemistry , Base Sequence , Binding Sites , Biotin , Cross-Linking Reagents/pharmacology , DNA, Complementary/genetics , GTP-Binding Proteins/genetics , HEK293 Cells , Humans , Immunoprecipitation , MicroRNAs/antagonists & inhibitors , Nuclear Proteins/genetics , Nucleic Acid Conformation , Photochemistry , Sequence Analysis, DNA , Streptavidin , Trioxsalen/radiation effects
12.
Clin Adv Hematol Oncol ; 21(9): 494-501, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37647496

ABSTRACT

There are numerous radiation modalities for the definitive treatment of localized prostate cancer. Classic clinical trials have established the basic tenets of treatment approaches, and emerging data have generated new potential avenues of treatment that optimize the therapeutic ratio by increasing prostate cancer tumor control while minimizing treatment-related toxicity. In the definitive setting, the selection of the optimal radiation therapy approach depends largely on the appropriate up-front risk stratification of men with prostate cancer, with greater intensification of treatment and greater integration of multimodality therapies for men with higher-risk disease. Hormonal therapy should be selectively deployed based on prognostic information derived from the National Comprehensive Cancer Network risk group and biologic tumor aggressiveness informed by genomic classifiers. Moreover, treatment intensification and target volume delineation are increasingly informed by molecular imaging and multiparametric magnetic resonance imaging. Herein, we perform a critical appraisal of the literature focusing on the optimal selection of radiation therapy modality for localized prostate cancer. Collaboration among medical oncologists, surgeons, and radiation oncologists will be critical for coordinating evidence-based radiation therapies when clearly indicated and for supporting shared decision-making when the evidence is incomplete.


Subject(s)
Prostatic Neoplasms , Male , Humans , Prostatic Neoplasms/radiotherapy , Prostate , Combined Modality Therapy , Genomics , Molecular Imaging
13.
Int J Mol Sci ; 24(24)2023 Dec 14.
Article in English | MEDLINE | ID: mdl-38139309

ABSTRACT

Steroid hormone production via the adrenal cortex, gonads, and placenta (so-called glandular steroidogenesis) is responsible for the endocrine control of the body's homeostasis and is organized by a feedback regulatory mechanism based on the hypothalamus-pituitary-steroidogenic gland axis. On the other hand, recently discovered extraglandular steroidogenesis occurring locally in different tissues is instead linked to paracrine or autocrine signaling, and it is independent of the control by the hypothalamus and pituitary glands. Bone cells, such as bone-forming osteoblasts, osteoblast-derived osteocytes, and bone-resorbing osteoclasts, respond to steroid hormones produced by both glandular and extraglandular steroidogenesis. Recently, new techniques to identify steroid hormones, as well as synthetic steroids and steroidogenesis inhibitors, have been introduced, which greatly empowered steroid hormone research. Based on recent literature and new advances in the field, here we review the local role of steroid hormones in regulating bone homeostasis and skeletal lesion formation. The novel idea of extraglandular steroidogenesis occurring within the skeletal system raises the possibility of the development of new therapies for the treatment of bone diseases.


Subject(s)
Adrenal Cortex , Steroids , Pregnancy , Female , Humans , Adrenal Cortex Hormones , Gonads , Bone and Bones
14.
Crit Care ; 26(1): 265, 2022 09 05.
Article in English | MEDLINE | ID: mdl-36064438

ABSTRACT

BACKGROUND: Adequate antibiotic dosing may improve outcomes in critically ill patients but is challenging due to altered and variable pharmacokinetics. To address this challenge, AutoKinetics was developed, a decision support system for bedside, real-time, data-driven and personalised antibiotic dosing. This study evaluates the feasibility, safety and efficacy of its clinical implementation. METHODS: In this two-centre randomised clinical trial, critically ill patients with sepsis or septic shock were randomised to AutoKinetics dosing or standard dosing for four antibiotics: vancomycin, ciprofloxacin, meropenem, and ceftriaxone. Adult patients with a confirmed or suspected infection and either lactate > 2 mmol/L or vasopressor requirement were eligible for inclusion. The primary outcome was pharmacokinetic target attainment in the first 24 h after randomisation. Clinical endpoints included mortality, ICU length of stay and incidence of acute kidney injury. RESULTS: After inclusion of 252 patients, the study was stopped early due to the COVID-19 pandemic. In the ciprofloxacin intervention group, the primary outcome was obtained in 69% compared to 3% in the control group (OR 62.5, CI 11.4-1173.78, p < 0.001). Furthermore, target attainment was faster (26 h, CI 18-42 h, p < 0.001) and better (65% increase, CI 49-84%, p < 0.001). For the other antibiotics, AutoKinetics dosing did not improve target attainment. Clinical endpoints were not significantly different. Importantly, higher dosing did not lead to increased mortality or renal failure. CONCLUSIONS: In critically ill patients, personalised dosing was feasible, safe and significantly improved target attainment for ciprofloxacin. TRIAL REGISTRATION: The trial was prospectively registered at Netherlands Trial Register (NTR), NL6501/NTR6689 on 25 August 2017 and at the European Clinical Trials Database (EudraCT), 2017-002478-37 on 6 November 2017.


Subject(s)
COVID-19 , Sepsis , Shock, Septic , Adult , Anti-Bacterial Agents , Ciprofloxacin/therapeutic use , Critical Illness/therapy , Humans , Pandemics , Sepsis/drug therapy , Shock, Septic/drug therapy
15.
J Math Biol ; 84(3): 17, 2022 02 10.
Article in English | MEDLINE | ID: mdl-35142929

ABSTRACT

In this study, the cardiac electro-mechanical model in a deforming domain is taken with the addition of mechanical feedback and stretch-activated channel current coupled with the ten Tusscher human ventricular cell level model that results in a coupled PDE-ODE system. The existence and uniqueness of such a coupled system in a deforming domain is proved. At first, the existence of a solution is proved in the deformed domain. The local existence of the solution is proved using the regularization and the Faedo-Galerkin technique. Then, the global existence is proved using the energy estimates in appropriate Banach spaces, Gronwall lemma, and the compactness procedure. The existence of the solution in an undeformed domain is proved using the lower semi-continuity of the norms. Uniqueness is proved using Young's inequality, Gronwall lemma, and the Cauchy-Schwartz inequality. For the application purpose, this model is applied to understand the electro-mechanical activity in ischemic cardiac tissue. It also takes care of the development of active tension, conductive, convective, and ionic feedback. The Second Piola-Kirchoff stress tensor arising in Lagrangian mapping between reference and moving frames is taken as a combination of active, passive, and volumetric components. We investigated the effect of varying strength of hyperkalemia and hypoxia, in the ischemic subregions of human cardiac tissue with local multiple ischemic subregions, on the electro-mechanical activity of healthy and ischemic zones. This system is solved numerically using the [Formula: see text] finite element method in space and the implicit-explicit Euler method in time. Discontinuities arising with the modeled multiple ischemic regions are treated to the desired order of accuracy by a simple regularization technique using the interpolating polynomials. We examined the cardiac electro-mechanical activity for several cases in multiple hyperkalemic and hypoxic human cardiac tissue. We concluded that local multiple ischemic subregions severely affect the cardiac electro-mechanical activity more, in terms of action potential (v) and mechanical parameters, intracellular calcium ion concentration [Formula: see text], active tension ([Formula: see text]), stretch ([Formula: see text]) and stretch rate ([Formula: see text]), of a healthy cell in its vicinity, compared to a single Hyperkalemic or Hypoxic subregion. The four moderate hypoxically generated ischemic subregions affect the waveform of the stretch along the fiber and the stretch rate more than a single severe ischemic subregion.


Subject(s)
Algorithms , Heart , Action Potentials/physiology , Electric Conductivity , Finite Element Analysis , Humans
16.
J Physiol ; 599(17): 4065-4084, 2021 09.
Article in English | MEDLINE | ID: mdl-34174096

ABSTRACT

KEY POINTS: GABA depolarized sural nerve axons and increased the electrical excitability of C-fibres via GABAA receptor. Axonal excitability responses to GABA increased monotonically with the rate of action potential firing. Action potential activity in unmyelinated C-fibres is coupled to Na-K-Cl cotransporter type 1 (NKCC1) loading of axonal chloride. Activation of axonal GABAA receptor stabilized C-fibre excitability during prolonged low frequency (2.5 Hz) firing. NKCC1 maintains intra-axonal chloride to provide feed-forward stabilization of C-fibre excitability and thus support sustained firing. ABSTRACT: GABAA receptor (GABAA R)-mediated depolarization of dorsal root ganglia (DRG) axonal projections in the spinal dorsal horn is implicated in pre-synaptic inhibition. Inhibition, in this case, is predicated on an elevated intra-axonal chloride concentration and a depolarizing GABA response. In the present study, we report that the peripheral axons of DRG neurons are also depolarized by GABA and this results in an increase in the electrical excitability of unmyelinated C-fibre axons. GABAA R agonists increased axonal excitability, whereas GABA excitability responses were blocked by GABAA R antagonists and were absent in mice lacking the GABAA R ß3 subunit selectively in DRG neurons (AdvillinCre or snsCre ). Under control conditions, excitability responses to GABA became larger at higher rates of electrical stimulation (0.5-2.5 Hz). However, during Na-K-Cl cotransporter type 1 (NKCC1) blockade, the electrical stimulation rate did not affect GABA response size, suggesting that NKCC1 regulation of axonal chloride is coupled to action potential firing. To examine this, activity-dependent conduction velocity slowing (activity-dependent slowing; ADS) was used to quantify C-fibre excitability loss during a 2.5 Hz challenge. ADS was reduced by GABAA R agonists and exacerbated by either GABAA R antagonists, ß3 deletion or NKCC1 blockade. This illustrates that activation of GABAA R stabilizes C-fibre excitability during sustained firing. We posit that NKCC1 acts in a feed-forward manner to maintain an elevated intra-axonal chloride in C-fibres during ongoing firing. The resulting chloride gradient can be utilized by GABAA R to stabilize axonal excitability. The data imply that therapeutic strategies targeting axonal chloride regulation at peripheral loci of pain and itch may curtail aberrant firing in C-fibres.


Subject(s)
Axons , Nerve Fibers, Unmyelinated , Animals , Mice , Solute Carrier Family 12, Member 2 , Solute Carrier Family 12, Member 3 , Symporters , gamma-Aminobutyric Acid , K Cl- Cotransporters
17.
Glycobiology ; 31(4): 372-377, 2021 05 03.
Article in English | MEDLINE | ID: mdl-33174592

ABSTRACT

A large variation in the severity of disease symptoms is one of the key open questions in coronavirus disease 2019 (COVID-19) pandemics. The fact that only a small subset of people infected with severe acute respiratory syndrome coronavirus 2 develops severe disease suggests that there have to be some predisposing factors, but biomarkers that reliably predict disease severity have not been found so far. Since overactivation of the immune system is implicated in a severe form of COVID-19 and the immunoglobulin G (IgG) glycosylation is known to be involved in the regulation of different immune processes, we evaluated the association of interindividual variation in IgG N-glycome composition with the severity of COVID-19. The analysis of 166 severe and 167 mild cases from hospitals in Spain, Italy and Portugal revealed statistically significant differences in the composition of the IgG N-glycome. The most notable difference was the decrease in bisecting N-acetylglucosamine in severe patients from all three cohorts. IgG galactosylation was also lower in severe cases in all cohorts, but the difference in galactosylation was not statistically significant after correction for multiple testing.


Subject(s)
COVID-19/epidemiology , COVID-19/pathology , Immunoglobulin G/metabolism , SARS-CoV-2/isolation & purification , Severity of Illness Index , Adult , Aged , COVID-19/metabolism , COVID-19/virology , Cohort Studies , Female , Glycosylation , Humans , Italy/epidemiology , Male , Middle Aged , Portugal/epidemiology , Spain/epidemiology
18.
Nat Methods ; 15(10): 785-788, 2018 10.
Article in English | MEDLINE | ID: mdl-30202058

ABSTRACT

The structural flexibility of RNA underlies fundamental biological processes, but there are no methods for exploring the multiple conformations adopted by RNAs in vivo. We developed cross-linking of matched RNAs and deep sequencing (COMRADES) for in-depth RNA conformation capture, and a pipeline for the retrieval of RNA structural ensembles. Using COMRADES, we determined the architecture of the Zika virus RNA genome inside cells, and identified multiple site-specific interactions with human noncoding RNAs.


Subject(s)
High-Throughput Nucleotide Sequencing/methods , Nucleic Acid Conformation , RNA, Viral/chemistry , RNA, Viral/metabolism , RNA-Binding Proteins/metabolism , Zika Virus Infection/metabolism , Zika Virus/physiology , Humans , RNA-Binding Proteins/chemistry , Sequence Analysis, RNA/methods , Transcriptome , Zika Virus/isolation & purification , Zika Virus Infection/genetics , Zika Virus Infection/virology
19.
Br J Clin Pharmacol ; 87(3): 1234-1242, 2021 03.
Article in English | MEDLINE | ID: mdl-32715505

ABSTRACT

AIMS: To explore the optimal data sampling scheme and the pharmacokinetic (PK) target exposure on which dose computation is based in the model-based therapeutic drug monitoring (TDM) practice of vancomycin in intensive care (ICU) patients. METHODS: We simulated concentration data for 1 day following four sampling schemes, Cmin , Cmax + Cmin , Cmax + Cmid-interval + Cmin , and rich sampling where a sample was drawn every hour within a dose interval. The datasets were used for Bayesian estimation to obtain PK parameters, which were used to compute the doses for the next day based on five PK target exposures: AUC24 = 400, 500, and 600 mg·h/L and Cmin = 15 and 20 mg/L. We then simulated data for the next day, adopting the computed doses, and repeated the above procedure for 7 days. Thereafter, we calculated the percentage error and the normalized root mean square error (NRMSE) of estimated against "true" PK parameters, and the percentage of optimal treatment (POT), defined as the percentage of patients who met 400 ≤ AUC24 ≤ 600 mg·h/L and Cmin ≤ 20 mg/L. RESULTS: PK parameters were unbiasedly estimated in all investigated scenarios and the 6-day average NRMSE were 32.5%/38.5% (CL/V, where CL is clearance and V is volume of distribution) in the trough sampling scheme and 27.3%/26.5% (CL/V) in the rich sampling scheme. Regarding POT, the sampling scheme had marginal influence, while target exposure showed clear impacts that the maximum POT of 71.5% was reached when doses were computed based on AUC24 = 500 mg·h/L. CONCLUSIONS: For model-based TDM of vancomycin in ICU patients, sampling more frequently than taking only trough samples adds no value and dosing based on AUC24 = 500 mg·h/L lead to the best POT.


Subject(s)
Drug Monitoring , Vancomycin , Anti-Bacterial Agents/therapeutic use , Area Under Curve , Bayes Theorem , Critical Care , Humans
20.
Nucleic Acids Res ; 47(10): 5307-5324, 2019 06 04.
Article in English | MEDLINE | ID: mdl-30941417

ABSTRACT

Hepatitis C virus (HCV) is a positive-sense RNA virus that interacts with the liver-specific microRNA, miR-122. miR-122 binds to two sites in the 5' untranslated region (UTR) and this interaction promotes HCV RNA accumulation, although the precise role of miR-122 in the HCV life cycle remains unclear. Using biophysical analyses and Selective 2' Hydroxyl Acylation analyzed by Primer Extension (SHAPE) we investigated miR-122 interactions with the 5' UTR. Our data suggests that miR-122 binding results in alteration of nucleotides 1-117 to suppress an alternative secondary structure and promote functional internal ribosomal entry site (IRES) formation. Furthermore, we demonstrate that two hAgo2:miR-122 complexes are able to bind to the HCV 5' terminus simultaneously and SHAPE analyses revealed further alterations to the structure of the 5' UTR to accommodate these complexes. Finally, we present a computational model of the hAgo2:miR-122:HCV RNA complex at the 5' terminus of the viral genome as well as hAgo2:miR-122 interactions with the IRES-40S complex that suggest hAgo2 is likely to form additional interactions with SLII which may further stabilize the HCV IRES. Taken together, our results support a model whereby hAgo2:miR-122 complexes alter the structure of the viral 5' terminus and promote formation of the HCV IRES.


Subject(s)
Argonaute Proteins/metabolism , Genome, Viral , Hepacivirus/genetics , Hepatitis C/virology , MicroRNAs/metabolism , 5' Untranslated Regions , Calorimetry , Humans , Internal Ribosome Entry Sites , Mutation , Nucleic Acid Conformation , Plasmids/metabolism , Protein Binding , RNA Stability , RNA, Viral/genetics , Software , Thermodynamics , Virus Replication
SELECTION OF CITATIONS
SEARCH DETAIL