Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Water Sci Technol ; 90(3): 824-843, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39141037

ABSTRACT

In recent years, studies on the degradation of emerging organic contaminants by sulfate radical (SO4-·) based advanced oxidation processes (SR-AOPs) have triggered increasing attention. Metal-loaded biochar (Me-BC) can effectively prevent the agglomeration and leaching of transition metals, and its good physicochemical properties and abundant active sites induce outstanding in activating persulfate (PS) for pollutant degradation, which is of great significance in the field of advanced oxidation. In this paper, we reviewed the preparation method and stability of Me-BC, the effect of metal loading on the physicochemical properties of biochar, the pathways of pollutant degradation by Me-BC-activated PS (including free radical pathways: SO4-·, hydroxyl radical (·OH), superoxide radicals (O2-·); non-free radical pathways: singlet oxygen (1O2), direct electron transfer), and discussed the activation of different active sites (including metal ions, persistent free radicals, oxygen-containing functional groups, defective structures, etc.) in the SR-AOPs system. Finally, the prospect was presented for the current research progress of Me-BC in SR-AOPs technology.


Subject(s)
Charcoal , Sulfates , Water Pollutants, Chemical , Charcoal/chemistry , Sulfates/chemistry , Water Pollutants, Chemical/chemistry , Metals/chemistry , Oxidation-Reduction
2.
Appl Microbiol Biotechnol ; 102(24): 10485-10494, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30368580

ABSTRACT

Leather biotechnology based on enzyme is one of the main directions toward clean technology in the leather manufacturing process. Proteins such as collagen, elastin, and keratin are important components in animal hides or skins, and proteases are most frequently used in the leather manufacturing process for the removal of interfibrillar substance and opening-up of collagen fiber instead of toxic chemicals. Elastin is an important and highly elastic structural protein in the animal hides or skins and significantly affects the properties of the final leather product. For improving the quality of leather product, thorough understanding of the mechanism of action of proteases on elastin is necessary. The action of proteases on elastin has been mostly studied either qualitatively by histological analysis or quantitatively based on substrate casein or stained substrates, such as congo red-elastin and Remazol Brilliant Blue R-elastin; however, the resulting products have not been accurately characterized and thus these methods are not up to the standard. Besides, controlling the hydrolytic action of proteases to elastin has been very difficult, and excessive hydrolytic action of protease damages the elastin, restricting the wide application of proteases in the leather manufacturing process. In order to quantitatively evaluate the hydrolytic action of proteases on elastin in a more accurate manner, in this study, a new method was established by determining the unique amino acid desmosine based on the covalently bonded elastin-desmosine conjugate. Quantitative analysis of desmosine was performed in liquor based on cowhides substrate, and qualitative characterization was accomplished by histological analysis of elastic fiber in hides using an optical microscope. The results of this study indicated that the newly developed method is sensitive, accurate, and reproducible. In addition, the unhairing trials also demonstrated the suitability of newly established method in the leather manufacturing process to evaluate the action of proteases on the elastin in animal hides or skins.


Subject(s)
Desmosine/analysis , Elastin/metabolism , Peptide Hydrolases/metabolism , Tanning/methods , Animals , Caseins/metabolism , Cattle , Desmosine/metabolism , Hydrogen-Ion Concentration , Hydrolysis , Peptide Hydrolases/analysis , Reproducibility of Results , Skin , Temperature , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL