Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 69
Filter
1.
Plant Biotechnol J ; 22(8): 2216-2234, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38572508

ABSTRACT

Climate change may result in a drier climate and increased salinization, threatening agricultural productivity worldwide. Quinoa (Chenopodium quinoa) produces highly nutritious seeds and tolerates abiotic stresses such as drought and high salinity, making it a promising future food source. However, the presence of antinutritional saponins in their seeds is an undesirable trait. We mapped genes controlling seed saponin content to a genomic region that includes TSARL1. We isolated desired genetic variation in this gene by producing a large mutant library of a commercial quinoa cultivar and screening the library for specific nucleotide substitutions using droplet digital PCR. We were able to rapidly isolate two independent tsarl1 mutants, which retained saponins in the leaves and roots for defence, but saponins were undetectable in the seed coat. We further could show that TSARL1 specifically controls seed saponin biosynthesis in the committed step after 2,3-oxidosqualene. Our work provides new important knowledge on the function of TSARL1 and represents a breakthrough for quinoa breeding.


Subject(s)
Chenopodium quinoa , Genotype , Saponins , Seeds , Chenopodium quinoa/genetics , Chenopodium quinoa/metabolism , Saponins/biosynthesis , Saponins/metabolism , Seeds/genetics , Seeds/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism
2.
Plant Biotechnol J ; 21(2): 317-330, 2023 02.
Article in English | MEDLINE | ID: mdl-36209479

ABSTRACT

Duckweeds are amongst the fastest growing of higher plants, making them attractive high-biomass targets for biofuel feedstock production. Their fronds have high rates of fatty acid synthesis to meet the demand for new membranes, but triacylglycerols (TAG) only accumulate to very low levels. Here we report on the engineering of Lemna japonica for the synthesis and accumulation of TAG in its fronds. This was achieved by expression of an estradiol-inducible cyan fluorescent protein-Arabidopsis WRINKLED1 fusion protein (CFP-AtWRI1), strong constitutive expression of a mouse diacylglycerol:acyl-CoA acyltransferase2 (MmDGAT), and a sesame oleosin variant (SiOLE(*)). Individual expression of each gene increased TAG accumulation by 1- to 7-fold relative to controls, while expression of pairs of these genes increased TAG by 7- to 45-fold. In uninduced transgenics containing all three genes, TAG accumulation increased by 45-fold to 3.6% of dry weight (DW) without severely impacting growth, and by 108-fold to 8.7% of DW after incubation on medium containing 100 µm estradiol for 4 days. TAG accumulation was accompanied by an increase in total fatty acids of up to three-fold to approximately 15% of DW. Lipid droplets from fronds of all transgenic lines were visible by confocal microscopy of BODIPY-stained fronds. At a conservative 12 tonnes (dry matter) per acre and 10% (DW) TAG, duckweed could produce 350 gallons of oil/acre/year, approximately seven-fold the yield of soybean, and similar to that of oil palm. These findings provide the foundation for optimizing TAG accumulation in duckweed and present a new opportunity for producing biofuels and lipidic bioproducts.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Araceae , Animals , Mice , Triglycerides/metabolism , Lipids , Fatty Acids/metabolism , Arabidopsis/genetics , Araceae/genetics , Plants, Genetically Modified/genetics , Transcription Factors/genetics , Arabidopsis Proteins/genetics
3.
Plant J ; 108(6): 1704-1720, 2021 12.
Article in English | MEDLINE | ID: mdl-34634158

ABSTRACT

Only a few transcriptional regulators of seed storage protein (SSP) genes have been identified in common wheat (Triticum aestivum L.). Coexpression analysis could be an efficient approach to characterize novel transcriptional regulators at the genome-scale considering the correlated expression between transcriptional regulators and target genes. As the A genome donor of common wheat, Triticum urartu is more suitable for coexpression analysis than common wheat considering the diploid genome and single gene copy. In this work, the transcriptome dynamics in endosperm of T. urartu throughout grain filling were revealed by RNA-Seq analysis. In the coexpression analysis, a total of 71 transcription factors (TFs) from 23 families were found to be coexpressed with SSP genes. Among these TFs, TuNAC77 enhanced the transcription of SSP genes by binding to cis-elements distributed in promoters. The homolog of TuNAC77 in common wheat, TaNAC77, shared an identical function, and the total SSPs were reduced by about 24% in common wheat when TaNAC77 was knocked down. This is the first genome-wide identification of transcriptional regulators of SSP genes in wheat, and the newly characterized transcriptional regulators will undoubtedly expand our knowledge of the transcriptional regulation of SSP synthesis.


Subject(s)
Endosperm/growth & development , Seed Storage Proteins/genetics , Transcription Factors/genetics , Triticum/genetics , Endosperm/genetics , Gene Expression Regulation, Plant , Gene Knockdown Techniques , Genome, Plant , Promoter Regions, Genetic , Triticum/growth & development
4.
Plant Cell Physiol ; 63(11): 1624-1640, 2022 Nov 22.
Article in English | MEDLINE | ID: mdl-35583202

ABSTRACT

Sustainable agriculture in the future will depend on crops that are tolerant to biotic and abiotic stresses, require minimal input of water and nutrients and can be cultivated with a minimal carbon footprint. Wild plants that fulfill these requirements abound in nature but are typically low yielding. Thus, replacing current high-yielding crops with less productive but resilient species will require the intractable trade-off of increasing land area under cultivation to produce the same yield. Cultivating more land reduces natural resources, reduces biodiversity and increases our carbon footprint. Sustainable intensification can be achieved by increasing the yield of underutilized or wild plant species that are already resilient, but achieving this goal by conventional breeding programs may be a long-term prospect. De novo domestication of orphan or crop wild relatives using mutagenesis is an alternative and fast approach to achieve resilient crops with high yields. With new precise molecular techniques, it should be possible to reach economically sustainable yields in a much shorter period of time than ever before in the history of agriculture.


Subject(s)
Domestication , Plant Breeding , Crops, Agricultural/genetics , Agriculture , Biodiversity
5.
BMC Biotechnol ; 22(1): 24, 2022 08 30.
Article in English | MEDLINE | ID: mdl-36042455

ABSTRACT

BACKGROUND: The metabolic engineering of high-biomass crops for lipid production in their vegetative biomass has recently been proposed as a strategy to elevate energy density and lipid yields for biodiesel production. Energycane and sugarcane are highly polyploid, interspecific hybrids between Saccharum officinarum and Saccharum spontaneum that differ in the amount of ancestral contribution to their genomes. This results in greater biomass yield and persistence in energycane, which makes it the preferred target crop for biofuel production. RESULTS: Here, we report on the hyperaccumulation of triacylglycerol (TAG) in energycane following the overexpression of the lipogenic factors Diacylglycerol acyltransferase1-2 (DGAT1-2) and Oleosin1 (OLE1) in combination with RNAi suppression of SUGAR-DEPENDENT1 (SDP1) and Trigalactosyl diacylglycerol1 (TGD1). TAG accumulated up to 1.52% of leaf dry weight (DW,) a rate that was 30-fold that of non-modified energycane, in addition to almost doubling the total fatty acid content in leaves to 4.42% of its DW. Pearson's correlation analysis showed that the accumulation of TAG had the highest correlation with the expression level of ZmDGAT1-2, followed by the level of RNAi suppression for SDP1. CONCLUSIONS: This is the first report on the metabolic engineering of energycane and demonstrates that this resilient, high-biomass crop is an excellent target for the further optimization of the production of lipids from vegetative tissues.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Saccharum , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Biofuels , Biomass , Carboxylic Ester Hydrolases/metabolism , Diacylglycerol O-Acyltransferase/genetics , Diacylglycerol O-Acyltransferase/metabolism , Metabolic Engineering , Plants, Genetically Modified/genetics , Plants, Genetically Modified/metabolism , Saccharum/metabolism , Triglycerides/metabolism
6.
Plant Biotechnol J ; 19(9): 1863-1877, 2021 09.
Article in English | MEDLINE | ID: mdl-33949074

ABSTRACT

Seed storage proteins (SSPs) are determinants of wheat end-product quality. SSP synthesis is mainly regulated at the transcriptional level. Few transcriptional regulators of SSP synthesis have been identified in wheat and this study aims to identify novel SSP gene regulators. Here, the R2R3 MYB transcription factor TuODORANT1 from Triticum urartu was found to be preferentially expressed in the developing endosperm during grain filling. In common wheat (Triticum aestivum) overexpressing TuODORANT1, the transcription levels of all the SSP genes tested by RNA-Seq analysis were reduced by 49.71% throughout grain filling, which contributed to 13.38%-35.60% declines in the total SSP levels of mature grains. In in vitro assays, TuODORANT1 inhibited both the promoter activities and the transcription of SSP genes by 1- to 13-fold. The electrophoretic mobility shift assay (EMSA) and ChIP-qPCR analysis demonstrated that TuODORANT1 bound to the cis-elements 5'-T/CAACCA-3' and 5'-T/CAACT/AG-3' in SSP gene promoters both in vitro and in vivo. Similarly, the homolog TaODORANT1 in common wheat hindered both the promoter activities and the transcription of SSP genes by 1- to 112-fold in vitro. Knockdown of TaODORANT1 in common wheat led to 14.73%-232.78% increases in the transcription of the tested SSP genes, which contributed to 11.43%-19.35% elevation in the total SSP levels. Our data show that both TuODORANT1 and TaODORANT1 are repressors of SSP synthesis.


Subject(s)
Transcription Factors , Triticum , Endosperm/metabolism , Gene Expression Regulation, Plant , Plant Proteins/genetics , Plant Proteins/metabolism , Seed Storage Proteins , Transcription Factors/genetics , Transcription Factors/metabolism , Triticum/genetics , Triticum/metabolism
7.
Plant Biotechnol J ; 19(5): 992-1007, 2021 05.
Article in English | MEDLINE | ID: mdl-33305445

ABSTRACT

The synthesis of seed storage protein (SSP) is mainly regulated at the transcriptional level. However, few transcriptional regulators of SSP synthesis have been characterized in common wheat (Triticum aestivum) owing to the complex genome. As the A genome donor of common wheat, Triticum urartu could be an elite model in wheat research considering its simple genome. Here, a novel NAC family transcription factor TuSPR from T. urartu was found preferentially expressed in developing endosperm during grain-filling stages. In common wheat transgenically overexpressing TuSPR, the content of total SSPs was reduced by c. 15.97% attributed to the transcription declines of SSP genes. Both in vitro and in vivo assays showed that TuSPR bound to the cis-element 5'-CANNTG-3' distributed in SSP gene promoters and suppressed the transcription. The homolog in common wheat TaSPR shared a conserved function with TuSPR on SSP synthesis suppression. The knock-down of TaSPR in common wheat resulted in 7.07%-20.34% increases in the total SSPs. Both TuSPR and TaSPR could be superior targets in genetic engineering to manipulate SSP content in wheat, and this work undoubtedly expands our knowledge of SSP gene regulation.


Subject(s)
Transcription Factors , Triticum , Endosperm/metabolism , Gene Expression Regulation, Plant , Plant Proteins/genetics , Plant Proteins/metabolism , Seed Storage Proteins , Surface Plasmon Resonance , Transcription Factors/genetics , Triticum/genetics , Triticum/metabolism
8.
Genes Dev ; 27(9): 1046-58, 2013 May 01.
Article in English | MEDLINE | ID: mdl-23618873

ABSTRACT

The assembly and disassembly of ribonucleoproteins (RNPs) are dynamic processes that control every step of RNA metabolism, including mRNA stability. However, our knowledge of how RNP remodeling is achieved is largely limited to RNA helicase functions. Here, we report a previously unknown mechanism that implicates the ATPase p97, a protein-remodeling machine, in the dynamic regulation of mRNP disassembly. We found that p97 and its cofactor, UBXD8, destabilize p21, MKP-1, and SIRT1, three established mRNA targets of the RNA-binding protein HuR, by promoting release of HuR from mRNA. Importantly, ubiquitination of HuR with a short K29 chain serves as the signal for release. When cells are subjected to stress conditions, the steady-state levels of HuR ubiquitination change, suggesting a new mechanism through which HuR mediates the stress response. Our studies reveal a new paradigm in RNA biology: nondegradative ubiquitin signaling-dependent disassembly of mRNP promoted by the p97-UBXD8 complex to control mRNA stability.


Subject(s)
Adenosine Triphosphatases/metabolism , Blood Proteins/metabolism , ELAV Proteins/metabolism , Membrane Proteins/metabolism , Nuclear Proteins/metabolism , RNA Stability , RNA, Messenger/metabolism , Ribonucleoproteins/metabolism , Animals , Cyclin-Dependent Kinase Inhibitor p21/metabolism , HeLa Cells , Humans , Mice , Protein Binding , RNA, Messenger/genetics , Stress, Physiological , Ubiquitin/metabolism , Ubiquitination
9.
New Phytol ; 226(5): 1384-1398, 2020 06.
Article in English | MEDLINE | ID: mdl-31955424

ABSTRACT

Starch in wheat grain provides humans with carbohydrates and influences the quality of wheaten food. However, no transcriptional regulator of starch synthesis has been identified first in common wheat (Triticum aestivum) due to the complex genome. Here, a novel basic leucine zipper (bZIP) family transcription factor TubZIP28 was found to be preferentially expressed in the endosperm throughout grain-filling stages in Triticum urartu, the A genome donor of common wheat. When TubZIP28 was overexpressed in common wheat, the total starch content increased by c. 4%, which contributed to c. 5% increase in the thousand kernel weight. The grain weight per plant of overexpression wheat was also elevated by c. 9%. Both in vitro and in vivo assays showed that TubZIP28 bound to the promoter of cytosolic AGPase and enhanced both the transcription and activity of the latter. Knockout of the homologue TabZIP28 in common wheat resulted in declines of both the transcription and activity of cytosolic AGPase in developing endosperms and c. 4% reduction of the total starch in mature grains. To the best of our knowledge, TubZIP28 and TabZIP28 are transcriptional activators of starch synthesis first identified in wheat, and they could be superior targets to improve the starch content and yield potential of wheat.


Subject(s)
Basic-Leucine Zipper Transcription Factors , Triticum , Basic-Leucine Zipper Transcription Factors/genetics , Plant Proteins/genetics , Starch , Transcription Factors/genetics , Triticum/genetics
10.
Hum Mol Genet ; 26(19): 3797-3807, 2017 10 01.
Article in English | MEDLINE | ID: mdl-28934393

ABSTRACT

Appropriate activation of the Ras/extracellular signal-regulated kinase (ERK) protein signaling cascade within the brain is crucial for optimal learning and memory. One key regulator of this cascade is the Nf1 Ras GTPase activating protein (RasGAP), which attenuates Ras/ERK signaling by converting active Ras is bound to guanosine triphosphate, activating Ras into inactive Ras is bound to guanosine diphosphate, inactivating Ras. A previous study using embryonic stem cells and embryonic stem cell-derived neurons indicated that Nf1 RasGAP activity is modulated by the highly regulated alternative splicing of Nf1 exon 23a. In this study, we generated Nf123aIN/23aIN mice, in which the splicing signals surrounding Nf1 exon 23a were manipulated to increase exon inclusion. Nf123aIN/23aIN mice are viable and exon 23a inclusion approaches 100% in all tissues, including the brain, where the exon is normally almost completely skipped. Ras activation and phosphorylation of ERK1/2 downstream of Ras are both greatly increased in Nf123aIN/23aIN mouse brain lysates, confirming that exon 23a inclusion inhibits Nf1 RasGAP activity in vivo as it does in cultured cells. Consistent with the finding of altered Ras/ERK signaling in the brain, Nf123aIN/23aIN mice showed specific deficits in learning and memory compared with Nf1+/+ mice. Nf123aIN/23aIN mice performed poorly on the T-maze and Morris water maze tests, which measure short- and long-term spatial memory, respectively. In addition, Nf123aIN/23aIN mice showed abnormally elevated context-dependent fear and a diminished ability to extinguish a cued fear response, indicating defective associative fear learning. Therefore, the regulated alternative splicing of Nf1 is an important mechanism for fine-tuning Ras/ERK signaling as well as learning and memory in mice.


Subject(s)
MAP Kinase Signaling System , Neurofibromatosis 1/genetics , ras Proteins/metabolism , Alternative Splicing , Animals , Embryonic Stem Cells/metabolism , Exons , Extracellular Signal-Regulated MAP Kinases/metabolism , Learning , Mice , Mitogen-Activated Protein Kinase 3/metabolism , Neurofibromatosis 1/metabolism , Neurofibromin 1/genetics , Neurofibromin 1/metabolism , Neurons/metabolism , Phosphorylation , Signal Transduction
11.
Nature ; 496(7443): 87-90, 2013 Apr 04.
Article in English | MEDLINE | ID: mdl-23535596

ABSTRACT

Bread wheat (Triticum aestivum, AABBDD) is one of the most widely cultivated and consumed food crops in the world. However, the complex polyploid nature of its genome makes genetic and functional analyses extremely challenging. The A genome, as a basic genome of bread wheat and other polyploid wheats, for example, T. turgidum (AABB), T. timopheevii (AAGG) and T. zhukovskyi (AAGGA(m)A(m)), is central to wheat evolution, domestication and genetic improvement. The progenitor species of the A genome is the diploid wild einkorn wheat T. urartu, which resembles cultivated wheat more extensively than do Aegilops speltoides (the ancestor of the B genome) and Ae. tauschii (the donor of the D genome), especially in the morphology and development of spike and seed. Here we present the generation, assembly and analysis of a whole-genome shotgun draft sequence of the T. urartu genome. We identified protein-coding gene models, performed genome structure analyses and assessed its utility for analysing agronomically important genes and for developing molecular markers. Our T. urartu genome assembly provides a diploid reference for analysis of polyploid wheat genomes and is a valuable resource for the genetic improvement of wheat.


Subject(s)
Genome, Plant/genetics , Triticum/genetics , Base Sequence , Brachypodium/genetics , Crops, Agricultural/classification , Crops, Agricultural/genetics , Diploidy , Genetic Markers/genetics , Molecular Sequence Data , Oryza/genetics , Phylogeny , Sorghum/genetics , Synteny/genetics , Triticum/classification , Zea mays/genetics
12.
Theor Appl Genet ; 131(12): 2745-2763, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30225644

ABSTRACT

KEY MESSAGE: A comprehensive comparison of LMW-GS genes between Ae. tauschii and its progeny common wheat. Low molecular weight glutenin subunits (LMW-GSs) are determinant of wheat flour processing quality. However, the LMW-GS gene composition in Aegilops tauschii, the wheat D genome progenitor, has not been comprehensively elucidated and the impact of allohexaploidization on the Glu-D3 locus remains elusive. In this work, using the LMW-GS gene molecular marker system and the full-length gene-cloning method, LMW-GS genes at the Glu-D3 loci of 218 Ae. tauschii and 173 common wheat (Triticum aestivum L.) were characterized. Each Ae. tauschii contained 11 LMW-GS genes, and the whole collection was divided into 25 haplotypes (AeH01-AeH25). The Glu-D3 locus in common wheat lacked the LMW-GS genes D3-417, D3-507 and D3-552, but shared eight genes of identical open reading frame (ORF) sequences when compared to that of Ae. tauschii. Therefore, the allohexaploidization induces deletions, but exerts no influence on LMW-GS gene coding sequences at the Glu-D3 locus. 92.17% Ae. tauschii had 7-9 LMW-GSs, more than the six subunits in common wheat. The haplotypes AeH16, AeH20 and AeH23 of Ae. tauschii ssp. strangulate distributed in southeastern Caspian Iran were the main putative D genome donor of common wheat. These results facilitate the utilization of the Ae. tauschii glutenin gene resources and the understanding of wheat evolution.


Subject(s)
Aegilops/genetics , Biological Evolution , Glutens/genetics , Triticum/genetics , Cloning, Molecular , Genes, Plant , Genetics, Population , Haplotypes , Molecular Weight , Open Reading Frames
13.
Theor Appl Genet ; 131(7): 1561-1575, 2018 Jul.
Article in English | MEDLINE | ID: mdl-29696298

ABSTRACT

KEY MESSAGE: Allotetraploidization drives Glu-1Ay silencing in polyploid wheat. The high-molecular-weight glutenin subunit gene, Glu-1Ay, is always silenced in common wheat via elusive mechanisms. To investigate its silencing and heredity during wheat polyploidization and domestication, the Glu-1Ay gene was characterized in 1246 accessions containing diploid and polyploid wheat worldwide. Eight expressed Glu-1Ay alleles (in 71.81% accessions) and five silenced alleles with a premature termination codon (PTC) were identified in Triticum urartu; 4 expressed alleles (in 41.21% accessions), 13 alleles with PTCs and 1 allele with a WIS 2-1A retrotransposon were present in wild tetraploid wheat; and only silenced alleles with PTC or WIS 2-1A were in cultivated tetra- and hexaploid wheat. Both the PTC number and position in T. urartu Glu-1Ay alleles (one in the N-terminal region) differed from its progeny wild tetraploid wheat (1-5 PTCs mainly in the repetitive domain). The WIS 2-1A insertion occurred ~ 0.13 million years ago in wild tetraploid wheat, much later than the allotetraploidization event. The Glu-1Ay alleles with PTCs or WIS 2-1A that arose in wild tetraploid wheat were fully succeeded to cultivated tetraploid and hexaploid wheat. In addition, the Glu-1Ay gene in wild einkorn inherited to cultivated einkorn. Our data demonstrated that the silencing of Glu-1Ay in tetraploid and hexaploid wheat was attributed to the new PTCs and WIS 2-1A insertion in wild tetraploid wheat, and most silenced alleles were delivered to the cultivated tetraploid and hexaploid wheat, providing a clear evolutionary history of the Glu-1Ay gene in the wheat polyploidization and domestication processes.


Subject(s)
Domestication , Evolution, Molecular , Gene Silencing , Genes, Plant , Glutens/genetics , Triticum/genetics , Alleles , Cloning, Molecular , Codon, Nonsense , DNA Transposable Elements , Retroelements , Tetraploidy
14.
J Immunol ; 196(2): 715-25, 2016 Jan 15.
Article in English | MEDLINE | ID: mdl-26673144

ABSTRACT

Alternative polyadenylation (APA) has been found to be involved in tumorigenesis, development, and cell differentiation, as well as in the activation of several subsets of immune cells in vitro. Whether APA takes place in immune responses in vivo is largely unknown. We profiled the variation in tandem 3' untranslated regions (UTRs) in pathogen-challenged zebrafish and identified hundreds of APA genes with ∼ 10% being immune response genes. The detected immune response APA genes were enriched in TLR signaling, apoptosis, and JAK-STAT signaling pathways. A greater number of microRNA target sites and AU-rich elements were found in the extended 3' UTRs than in the common 3' UTRs of these APA genes. Further analysis suggested that microRNA and AU-rich element-mediated posttranscriptional regulation plays an important role in modulating the expression of APA genes. These results indicate that APA is extensively involved in immune responses in vivo, and it may be a potential new paradigm for immune regulation.


Subject(s)
Polyadenylation/immunology , Spleen/immunology , Staphylococcal Infections/genetics , Zebrafish/genetics , Zebrafish/immunology , 3' Untranslated Regions , Animals , Gene Expression Profiling , Polymerase Chain Reaction
15.
BMC Plant Biol ; 17(1): 112, 2017 07 01.
Article in English | MEDLINE | ID: mdl-28668082

ABSTRACT

BACKGROUND: Wild diploid wheat, Triticum urartu (T. urartu) is the progenitor of bread wheat, and understanding its genetic diversity and genome function will provide considerable reference for dissecting genomic information of common wheat. RESULTS: In this study, we investigated the morphological and genetic diversity and population structure of 238 T. urartu accessions collected from different geographic regions. This collection had 19.37 alleles per SSR locus and its polymorphic information content (PIC) value was 0.76, and the PIC and Nei's gene diversity (GD) of high-molecular-weight glutenin subunits (HMW-GSs) were 0.86 and 0.88, respectively. UPGMA clustering analysis indicated that the 238 T. urartu accessions could be classified into two subpopulations, of which Cluster I contained accessions from Eastern Mediterranean coast and those from Mesopotamia and Transcaucasia belonged to Cluster II. The wide range of genetic diversity along with the manageable number of accessions makes it one of the best collections for mining valuable genes based on marker-trait association. Significant associations were observed between simple sequence repeats (SSR) or HMW-GSs and six morphological traits: heading date (HD), plant height (PH), spike length (SPL), spikelet number per spike (SPLN), tiller angle (TA) and grain length (GL). CONCLUSIONS: Our data demonstrated that SSRs and HMW-GSs were useful markers for identification of beneficial genes controlling important traits in T. urartu, and subsequently for their conservation and future utilization, which may be useful for genetic improvement of the cultivated hexaploid wheat.


Subject(s)
Edible Grain/genetics , Triticum/genetics , Genetic Markers , Genetic Variation , Glutens/genetics , Linkage Disequilibrium , Microsatellite Repeats , Middle East , Phenotype , Phylogeny , Phylogeography
16.
Nucleic Acids Res ; 43(2): 893-903, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25520194

ABSTRACT

Fanconi anemia (FA) patients exhibit bone marrow failure, developmental defects and cancer. The FA pathway maintains chromosomal stability in concert with replication fork maintenance and DNA double strand break (DSB) repair pathways including RAD51-mediated homologous recombination (HR). RAD51 is a recombinase that maintains replication forks and repairs DSBs, but also rearranges chromosomes. Two RecQ helicases, RECQL5 and Bloom syndrome mutated (BLM) suppress HR through nonredundant mechanisms. Here we test the impact deletion of RECQL5 and BLM has on mouse embryonic stem (ES) cells deleted for FANCB, a member of the FA core complex. We show that RECQL5, but not BLM, conferred resistance to mitomycin C (MMC, an interstrand crosslinker) and camptothecin (CPT, a type 1 topoisomerase inhibitor) in FANCB-defective cells. RECQL5 suppressed, while BLM caused, breaks and radials in FANCB-deleted cells exposed to CPT or MMC, respectively. RECQL5 protected the nascent replication strand from MRE11-mediated degradation and restarted stressed replication forks in a manner additive to FANCB. By contrast BLM restarted, but did not protect, replication forks in a manner epistatic to FANCB. RECQL5 also lowered RAD51 levels in FANCB-deleted cells at stressed replication sites implicating a rearrangement avoidance mechanism. Thus, RECQL5 and BLM impact FANCB-defective cells differently in response to replication stress with relevance to chemotherapeutic regimes.


Subject(s)
DNA Repair , Fanconi Anemia Complementation Group Proteins/physiology , RecQ Helicases/physiology , Animals , Cells, Cultured , DNA Breaks, Double-Stranded , DNA Replication , Fanconi Anemia Complementation Group Proteins/genetics , Gene Deletion , Mice , RecQ Helicases/genetics
17.
Nucleic Acids Res ; 43(6): 3167-79, 2015 Mar 31.
Article in English | MEDLINE | ID: mdl-25735744

ABSTRACT

The activation of NF-κB has emerged as an important mechanism for the modulation of the response to DNA double-strand breaks (DSBs). The concomitant SUMOylation and phosphorylation of IKKγ by PIASy and ATM, respectively, is a key event in this mechanism. However, the mechanism through which mammalian cells are able to accomplish these IKKγ modifications in a timely and lesion-specific manner remains unclear. In this study, we demonstrate that LRP16 constitutively interacts with PARP1 and IKKγ. This interaction is essential for efficient interactions among PARP1, IKKγ, and PIASy, the modifications of IKKγ, and the activation of NF-κB following DSB induction. The regulation of LRP16 in NF-κB activation is dependent on the DSB-specific sensors Ku70/Ku80. These data strongly suggest that LRP16, through its constitutive interactions with PARP1 and IKKγ, functions to facilitate the lesion-specific recruitment of PARP1 and IKKγ and, ultimately, the concomitant recruitment of PIASy to IKKγ in response to DSB damage. Therefore, the study has provided important new mechanistic insights concerning DSB-induced NF-κB activation.


Subject(s)
DNA Breaks, Double-Stranded , NF-kappa B/metabolism , Neoplasm Proteins/metabolism , Antigens, Nuclear/metabolism , Carboxylic Ester Hydrolases , Cell Line , DNA-Binding Proteins/metabolism , HT29 Cells , HeLa Cells , Humans , I-kappa B Kinase/metabolism , Ku Autoantigen , MCF-7 Cells , Models, Biological , Multiprotein Complexes/metabolism , Neoplasm Proteins/antagonists & inhibitors , Neoplasm Proteins/genetics , Phosphorylation , Poly (ADP-Ribose) Polymerase-1 , Poly(ADP-ribose) Polymerases/metabolism , Poly-ADP-Ribose Binding Proteins , Protein Inhibitors of Activated STAT/metabolism , RNA, Small Interfering/genetics , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Signal Transduction , Sumoylation
18.
Proc Natl Acad Sci U S A ; 111(46): E4920-8, 2014 Nov 18.
Article in English | MEDLINE | ID: mdl-25368158

ABSTRACT

In cardiomyocytes, calcium is known to control gene expression at the level of transcription, whereas its role in regulating alternative splicing has not been explored. Here we report that, in mouse primary or embryonic stem cell-derived cardiomyocytes, increased calcium levels induce robust and reversible skipping of several alternative exons from endogenously expressed genes. Interestingly, we demonstrate a calcium-mediated splicing regulatory mechanism that depends on changes of histone modifications. Specifically, the regulation occurs through changes in calcium-responsive kinase activities that lead to alterations in histone modifications and subsequent changes in the transcriptional elongation rate and exon skipping. We demonstrate that increased intracellular calcium levels lead to histone hyperacetylation along the body of the genes containing calcium-responsive alternative exons by disrupting the histone deacetylase-to-histone acetyltransferase balance in the nucleus. Consequently, the RNA polymerase II elongation rate increases significantly on those genes, resulting in skipping of the alternative exons. These studies reveal a mechanism by which calcium-level changes in cardiomyocytes impact on the output of gene expression through altering alternative pre-mRNA splicing patterns.


Subject(s)
Alternative Splicing , Calcium Signaling/physiology , Histone Deacetylases/physiology , Histones/metabolism , Myocytes, Cardiac/metabolism , Protein Processing, Post-Translational/physiology , Acetylation , Alternative Splicing/drug effects , Animals , Calcium-Calmodulin-Dependent Protein Kinase Type 2/physiology , Exons , Gene Expression Regulation/physiology , Genes, Neurofibromatosis 1 , Mice , Myocytes, Cardiac/drug effects , Neurofibromin 1/biosynthesis , Neurofibromin 1/genetics , Potassium Chloride/pharmacology , Protein Kinase Inhibitors/pharmacology , RNA Polymerase II/metabolism , RNA, Messenger/biosynthesis , RNA, Small Interfering/pharmacology , Real-Time Polymerase Chain Reaction , Signal Transduction/drug effects , Signal Transduction/physiology , TRPP Cation Channels/physiology , Transcription Elongation, Genetic
19.
Proc Natl Acad Sci U S A ; 111(37): 13469-74, 2014 Sep 16.
Article in English | MEDLINE | ID: mdl-25187559

ABSTRACT

Animals exploit different germ-line-encoded proteins with various domain structures to detect the signature molecules of pathogenic microbes. These molecules are known as pathogen-associated molecular patterns (PAMPs), and the host proteins that react with PAMPs are called pattern recognition proteins (PRPs). Here, we present a novel type of protein domain structure capable of binding to bacterial peptidoglycan (PGN) and the minimal PGN motif muramyl dipeptide (MDP). This domain is designated as apextrin C-terminal domain (ApeC), and its presence was confirmed in several invertebrate phyla and subphyla. Two apextrin-like proteins (ALP1 and ALP2) were identified in a basal chordate, the Japanese amphioxus Branchiostoma japonicum (bj). bjALP1 is a mucosal effector secreted into the gut lumen to agglutinate the Gram-positive bacterium Staphylococcus aureus via PGN binding. Neutralization of secreted bjALP1 by anti-bjALP1 monoclonal antibodies caused serious damage to the gut epithelium and rapid death of the animals after bacterial infection. bjALP2 is an intracellular PGN sensor that binds to TNF receptor-associated factor 6 (TRAF6) and prevents TRAF6 from self-ubiquitination and hence from NF-κB activation. MDP was found to compete with TRAF6 for bjALP2, which released TRAF6 to activate the NF-κB pathway. BjALP1 and bjALP2 therefore play distinct and complementary functions in amphioxus gut mucosal immunity. In conclusion, discovery of the ApeC domain and the functional analyses of amphioxus ALP1 and ALP2 allowed us to define a previously undocumented type of PRP that is represented across different animal phyla.


Subject(s)
Bacteria/immunology , Extracellular Space/microbiology , Intracellular Space/microbiology , Lancelets/immunology , Lancelets/microbiology , Proteins/immunology , Acetylmuramyl-Alanyl-Isoglutamine/pharmacology , Agglutination/drug effects , Amino Acid Motifs , Amino Acid Sequence , Animals , Bacterial Infections/immunology , Bacterial Infections/pathology , Gene Expression Regulation/drug effects , HEK293 Cells , Humans , Lancelets/drug effects , Models, Biological , Molecular Sequence Data , NF-kappa B/metabolism , Peptidoglycan/metabolism , Protein Binding/drug effects , Protein Structure, Tertiary , Proteins/chemistry , Proteins/genetics , Proteins/ultrastructure , Receptors, Pattern Recognition/metabolism , Signal Transduction/drug effects , TNF Receptor-Associated Factor 6/metabolism , Ubiquitination/drug effects
20.
Nucleic Acids Res ; 42(2): 701-13, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24081581

ABSTRACT

The molecular mechanisms through which alternative splicing and histone modifications regulate gene expression are now understood in considerable detail. Here, we discuss recent studies that connect these two previously separate avenues of investigation, beginning with the unexpected discoveries that nucleosomes are preferentially positioned over exons and DNA methylation and certain histone modifications also show exonic enrichment. These findings have profound implications linking chromatin structure, histone modification and splicing regulation. Complementary single gene studies provided insight into the mechanisms through which DNA methylation and histones modifications modulate alternative splicing patterns. Here, we review an emerging theme resulting from these studies: RNA-guided mechanisms integrating chromatin modification and splicing. Several groundbreaking papers reported that small noncoding RNAs affect alternative exon usage by targeting histone methyltransferase complexes to form localized facultative heterochromatin. More recent studies provided evidence that pre-messenger RNA itself can serve as a guide to enable precise alternative splicing regulation via local recruitment of histone-modifying enzymes, and emerging evidence points to a similar role for long noncoding RNAs. An exciting challenge for the future is to understand the impact of local modulation of transcription elongation rates on the dynamic interplay between histone modifications, alternative splicing and other processes occurring on chromatin.


Subject(s)
Alternative Splicing , Histones/metabolism , RNA/metabolism , Chromatin/metabolism , Chromatin Assembly and Disassembly , DNA Methylation , Epigenesis, Genetic , Exons , RNA Precursors/metabolism , RNA, Long Noncoding/metabolism , RNA, Messenger/metabolism , RNA, Small Untranslated/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL