Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 192
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Planta ; 260(6): 121, 2024 Oct 22.
Article in English | MEDLINE | ID: mdl-39436424

ABSTRACT

MAIN CONCLUSION: AtPLC1 plays a critical role in plant growth, development, and response to drought stress. Phosphoinositide-specific phospholipase C (PI-PLC) hydrolyzes substrates to generate secondary messengers crucial for plant growth, development, and stress responses. Drought escape (DE) response is an adaptive strategy that plants employ under drought conditions. The expression levels of the flower meristem-specific gene APETALA 1 and flowering regulatory genes FLOWERING LOCUS T and SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1 were downregulated in plc1, and FLOWERING LOCUS C was upregulated. The flowering time of the plc1flc double mutant was earlier than that of the wild type. Transcriptome analysis revealed that the Gene Ontology of differentially expressed genes (DEGs) was enriched in abscisic acid (ABA) response signaling, and Kyoto Encyclopedia of Genes and Genomes analysis revealed differential gene expression annotated to plant hormone signaling pathways. Our experiments show that AtPLC1 is upregulated by ABA in Arabidopsis. Under ABA induction and water stress, wild-type plants exhibit a DE response, and the DE response in plc1 disappears. Expression levels of ABA signaling pathway transcription factors ABA-responsive element-binding factors 3 (ABF3) and ABF4 were downregulated in plc1. In conclusion, our study suggests that AtPLC1 participates in regulating plant growth and development and participates in the DE response through the regulation of ABA signaling pathway transcription factors ABF3/ABF4. The study enhances our comprehension of the role of AtPLC1 in plant development and drought stress, providing a theoretical foundation for further investigation into DE responses.


Subject(s)
Abscisic Acid , Arabidopsis Proteins , Arabidopsis , Droughts , Gene Expression Regulation, Plant , Arabidopsis/genetics , Arabidopsis/physiology , Arabidopsis/drug effects , Abscisic Acid/metabolism , Abscisic Acid/pharmacology , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Gene Expression Regulation, Plant/drug effects , Signal Transduction , Plant Growth Regulators/metabolism , Plant Growth Regulators/pharmacology , Stress, Physiological/genetics , Gene Expression Profiling , Phosphoinositide Phospholipase C/genetics , Phosphoinositide Phospholipase C/metabolism , Drought Resistance
2.
Exp Dermatol ; 33(8): e15165, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39171634

ABSTRACT

Phenylalanine is a crucial amino acid in the process of melanogenesis. However, the exact mechanism by which it is transported into melanocytes has not been disclosed. The aim of this study was to identify and examine the key transporters that are responsible for phenylalanine transportation and evaluate their significance in melanogenesis. The amino acid transporter SLC16A10 was found to be up-regulated in both melasma (GSE72140) and sun-exposed skin (GSE67098). The protein levels of SLC16A10 were proportional to the melanin content in melanocytic nevi, indicating that SLC16A10 was related to melanogenesis. After SLC16A10 overexpression, melanin increased significantly in MNT1 cells. Meanwhile, the expression of melanogenesis-related proteins such as TYR and TYRP1 increased, while their RNA levels did not change. Transcriptomics data indicated that SLC16A10 can enhance the function of ribosome. Furthermore, targeted metabolomics data and ELISA results demonstrated SLC16A10 mainly affected the transport of phenylalanine into the cells. Then, phenylalanine was added to the cell culture medium after SLC16A10 overexpression, melanin synthesis in cells furtherly increased, which verified that SLC16A10 enhances melanogenesis by promoting the uptake of phenylalanine. Finally, we found that SLC16A10 expression increased after UVB irradiation. Knockdown SLC16A10 reduced UVB-induced melanin production and phenylalanine uptake by cells. In summary, SLC16A10 enhances melanogenesis by promoting the uptake of phenylalanine, and upregulation SLC16A10 is likely responsible for the UVB-induced hyperpigmentation as well.


Subject(s)
Melanocytes , Melanogenesis , Phenylalanine , Humans , Biological Transport , Melanocytes/metabolism , Melanogenesis/physiology , Monocarboxylic Acid Transporters/metabolism , Monocarboxylic Acid Transporters/genetics , Nevus, Pigmented/metabolism , Nevus, Pigmented/genetics , Phenylalanine/metabolism , Up-Regulation
3.
J Magn Reson Imaging ; 59(4): 1206-1217, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37526043

ABSTRACT

BACKGROUND: Tertiary lymphoid structures (TLSs) are potential prognostic indicators. Radiomics may help reduce unnecessary invasive operations. PURPOSE: To analyze the association between TLSs and prognosis, and to establish a nomogram model to evaluate the expression of TLSs in breast cancer (BC) patients. STUDY TYPE: Retrospective. POPULATION: Two hundred forty-two patients with localized primary BC (confirmed by surgery) were divided into BC + TLS group (N = 122) and BC - TLS group (N = 120). FIELD STRENGTH/SEQUENCE: 3.0T; Caipirinha-Dixon-TWIST-volume interpolated breath-hold sequence for dynamic contrast-enhanced (DCE) MRI and inversion-recovery turbo spin echo sequence for T2-weighted imaging (T2WI). ASSESSMENT: Three models for differentiating BC + TLS and BC - TLS were developed: 1) a clinical model, 2) a radiomics signature model, and 3) a combined clinical and radiomics (nomogram) model. The overall survival (OS), distant metastasis-free survival (DMFS), and disease-free survival (DFS) were compared to evaluate the prognostic value of TLSs. STATISTICAL TESTS: LASSO algorithm and ANOVA were used to select highly correlated features. Clinical relevant variables were identified by multivariable logistic regression. Model performance was evaluated by the area under the receiver operating characteristic (ROC) curve (AUC), and through decision curve analysis (DCA). The Kaplan-Meier method was used to calculate the survival rate. RESULTS: The radiomics signature model (training: AUC 0.766; test: AUC 0.749) and the nomogram model (training: AUC 0.820; test: AUC 0.749) showed better validation performance than the clinical model. DCA showed that the nomogram model had a higher net benefit than the other models. The median follow-up time was 52 months. While there was no significant difference in 3-year OS (P = 0.22) between BC + TLS and BC - TLS patients, there were significant differences in 3-year DFS and 3-year DMFS between the two groups. DATA CONCLUSION: The nomogram model performs well in distinguishing the presence or absence of TLS. BC + TLS patients had higher long-term disease control rates and better prognoses than those without TLS. EVIDENCE LEVEL: 2 TECHNICAL EFFICACY: Stage 2.


Subject(s)
Breast Neoplasms , Tertiary Lymphoid Structures , Humans , Female , Prognosis , Breast Neoplasms/diagnostic imaging , Radiomics , Retrospective Studies , Magnetic Resonance Imaging
4.
Environ Sci Technol ; 58(37): 16578-16588, 2024 Sep 17.
Article in English | MEDLINE | ID: mdl-39219237

ABSTRACT

Development of new technologies with strong selectivity for target pollutants and low sensitivity toward a water matrix remains challenging. Herein, we introduced a novel strategy that used chlorite as an activator for Mn(VII) at pH 4.8, turning the inert reactivity of the pollutants toward Mn(VII) into a strong reactivity. This paved a new way for triggering reactions in water decontamination. By utilizing sulfamethoxazole (SMX) as a typical pollutant, we proposed coupled pathways involving electron transfer across hydrogen bonds (TEHB) and oxidation by reactive manganese species. The results indicated that a hydrogen bonding complex, SMX-ClO2-*, formed through chlorite binding the amino group of SMX initially in the TEHB route; such a complex exhibited a stronger reduction capability toward Mn(VII). Chlorite, in the hydrogen bonding complex SMX-ClO2-*, can then complex with Mn(VII). Consequently, a new reactive center (SMX-ClO2--Mn(VII)*) was formed, initiating the transfer of electrons across hydrogen bonds and the preliminary degradation of SMX. This is followed by the involvement of the generated Mn(V)-ClO2-/Mn(III) in the reduction process of Mn(VII). Such a process showed pH-dependent degradation, with a removal ratio ranging from 80% to near-stagnation as pH increased from 4.8 to 7. Combining with pKa analysis showed that the predominant forms of contaminants were crucial for the removal efficiency of pollutants by the Mn(VII)/chlorite process. The impact of the water matrix was demonstrated to have few adverse or even beneficial effects. With satisfactory performance against numerous contaminants, this study introduced a novel Mn(VII) synergistic strategy, and a new reactivity pattern focused on reducing the reduction potential of the contaminant, as opposed to increasing the oxidation potential of oxidants.


Subject(s)
Decontamination , Decontamination/methods , Water Pollutants, Chemical/chemistry , Water Purification/methods , Manganese Compounds/chemistry , Oxides/chemistry , Manganese/chemistry , Oxidation-Reduction
5.
Exp Cell Res ; 432(2): 113780, 2023 Nov 15.
Article in English | MEDLINE | ID: mdl-37742725

ABSTRACT

Acute myeloid leukemia (AML) is an aggressive hematopoietic malignancy with poor prognosis and high recurrence rate. The discovery of more effective therapeutic strategies for AML plays a crucial role. The present work showed that E35, a novel derivative of emodin, significantly inhibited cell proliferation and induced autophagy and apoptosis in AML cells. Treatment with E35 markedly induced Beclin-1, LC3-II, cleaved Caspase-9 and PARP, and suppressed mitogen-activated protein kinase (MAPK) pathway. E35 exposure evoked autophagic activity prior to apoptosis induction, and autophagy inhibition by 3-methyladenine (3-MA) dramatically increased E35-induced apoptosis in both AML cell lines and patient-derived AML cells. Nevertheless, study on AML xenograft model showed that the combination E35 with 3-MA exhibited much more inhibitory effects on leukemia cell growth in vivo. No obvious adverse reactions occurred in the xenograft animals administered E35 alone or its cotreatment with 3-MA. These findings suggest that E35 could exert anti-leukemia effects, and that the combination of E35 and autophagy inhibitor might prove a more highly efficient strategy for AML treatment.

6.
Int J Hyperthermia ; 41(1): 2361708, 2024.
Article in English | MEDLINE | ID: mdl-39053902

ABSTRACT

PURPOSE: To explore the feasibility and safety of a microwave ablation (MWA) strategy involving intraductal chilled saline perfusion (ICSP) via percutaneous transhepatic cholangial drainage (PTCD) combined with ultrasound-magnetic resonance (US-MR) fusion imaging for liver tumors proximal to the hilar bile ducts (HBDs). METHODS: Patients with liver tumors proximal to the HBDs (≤5 mm) who underwent MWA at our hospital between June 2020 and April 2023 were retrospectively analyzed. The strategy of US-MR fusion imaging combined with PTCD-ICSP was used to assist the MWA procedures. The technical success, technique efficacy, local tumor progression, intrahepatic distant recurrence and complications were recorded and analyzed. RESULTS: In total, 12 patients with 12 liver tumors were retrospectively enrolled in this study. US-MR fusion imaging was utilized in all patients, and PTCD-ICSP assistance was successfully used for 4 nodules abutting HBDs (0 mm). The rates of technical success, technique efficacy, local tumor progression and intrahepatic distant recurrence were 91.7%, 83.3%, 0% and 8.3%, respectively. The major complication of biliary infection occurred in only one patient who had previously undergone left hemihepatectomy and bile-intestinal anastomosis. CONCLUSIONS: MWA for liver tumors proximal to HBDs assisted by US-MR fusion imaging combined with PTCD-ICSP was feasible and safe. This strategy made MWA of liver tumors abutting HBDs possible.


Subject(s)
Liver Neoplasms , Humans , Liver Neoplasms/diagnostic imaging , Liver Neoplasms/surgery , Male , Female , Middle Aged , Retrospective Studies , Pilot Projects , Aged , Microwaves/therapeutic use , Adult , Magnetic Resonance Imaging/methods , Ultrasonography/methods
7.
Qual Life Res ; 33(3): 745-752, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38064016

ABSTRACT

OBJECTIVE: This study aimed to translate and culturally adapt the standardized outcomes in nephrology-hemodialysis fatigue (SONG-HD fatigue) scale and to assess the psychometric properties of the Chinese version of the SONG-HD fatigue (C-SONG-HD fatigue) scale. METHODS: Forward and back translations were used to translate the SONG-HD fatigue scale into Chinese. We used the C-SONG-HD fatigue scale to survey Chinese patients undergoing hemodialysis (HD) in China. We examined the distribution of responses and floor and ceiling effects. Cronbach's alpha and McDonald's omega coefficient, intraclass coefficients, and Spearman correlations were used to assess internal consistency reliability, test-retest reliability, and convergent validity, respectively. Responsiveness was also evaluated. RESULTS: In total, 489 participants across southeast China, northwest China, and central China completed the study. The C-SONG-HD fatigue scale had good internal consistency (Cronbach's alpha coefficient 0.861, omega coefficient 0.916), test-retest reliability (intraclass correlation coefficient 0.695), and convergent validity (Spearman correlation 0.691). The analysis of all first-time HD patients did not show notable responsiveness, and only patients with temporary vascular access had good responsiveness with an effect size (ES) of 0.54, a standardized response mean (SRM) of 0.85, and a standard error of measurement (SEM) of 0.77. CONCLUSION: The Chinese version of the SONG-HD fatigue scale showed satisfactory reliability and validity in patients undergoing hemodialysis (HD) in China. It could be used as a tool to measure the fatigue of Chinese HD patients.


Subject(s)
Nephrology , Humans , Reproducibility of Results , Quality of Life/psychology , Surveys and Questionnaires , Renal Dialysis , Fatigue/therapy , China , Psychometrics , Translations
8.
Phytopathology ; 114(6): 1380-1392, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38349804

ABSTRACT

Citrus Huanglongbing, one of the most devastating citrus diseases, is caused by 'Candidatus Liberibacter asiaticus' (CLas). Polyamines are aliphatic nitrogen-containing compounds that play important roles in disease resistance and are synthesized primarily by two pathways: an arginine decarboxylation pathway and an ornithine decarboxylation pathway. However, it is unclear whether polyamines play a role in the tolerance of citrus to infection by CLas and, if so, whether one or both of the core polyamine metabolic pathways are important. We used high-performance liquid chromatography and ultra-performance liquid chromatography-quadrupole time-of-flight mass spectrometry to detect the contents of nine polyamine metabolism-related compounds in six citrus cultivars with varying levels of tolerance to CLas. We also systematically detected the changes in polyamine metabolism-related compounds and H2O2 contents and compared the gene expression levels and the activities of enzymes involved in the polyamine metabolic pathway among healthy, asymptomatic, and symptomatic leaves of Newhall navel oranges infected with CLas. The tolerant and moderately tolerant varieties showed higher polyamine metabolism-related compound levels than those of susceptible varieties. Compared with the healthy group, the symptomatic group showed significantly increased contents of arginine, ornithine, γ-aminobutyric acid, and putrescine by approximately 180, 19, 1.5, and 0.2 times, respectively, and upregulated expression of biosynthetic genes. Arginase and ornithine decarboxylase enzyme activities were the highest in the symptomatic group, whereas arginine decarboxylase and agmatine deiminase enzyme activities were the highest in the asymptomatic group. The two polyamine biosynthetic pathways showed different trends with the increase of the CLas titer, indicating that polyamines were mainly synthesized through the arginine decarboxylase pathway in the asymptomatic leaves and were synthesized via the ornithine decarboxylase pathway in symptomatic leaves. These findings provide new insight into the changes in polyamine metabolism in citrus infected with CLas.


Subject(s)
Citrus , Plant Diseases , Polyamines , Rhizobiaceae , Polyamines/metabolism , Plant Diseases/microbiology , Citrus/microbiology , Rhizobiaceae/physiology , Plant Leaves/microbiology , Plant Leaves/metabolism , Hydrogen Peroxide/metabolism , Ornithine Decarboxylase/metabolism , Ornithine Decarboxylase/genetics , Liberibacter/physiology , Gene Expression Regulation, Plant , Metabolic Networks and Pathways
9.
Genomics ; 115(6): 110730, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37866658

ABSTRACT

RNA-binding proteins (RBPs), which are key effectors of gene expression, play critical roles in inflammation and immune regulation. However, the potential biological function of RBPs in ankylosing spondylitis (AS) remains unclear. We identified differentially expressed genes (DEGs) in peripheral blood mononuclear cells (PBMCs) of five patients with AS and three healthy persons by RNA-seq, obtained differentially expressed RBPs by overlapping DEGs and RBPs summary table. RIOK3 was selected as a target RBP and knocked down in mouse bone marrow mesenchymal stem cells (mBMSCs), and transcriptomic studies of siRIOK3 mBMSCs were performed again using RNA-seq. Results showed that RIOK3 knockdown inhibited the expression of genes related to osteogenic differentiation, ribosome function, and ß-interferon pathways in mBMSCs. In vitro experiments have shown that RIOK3 knockdown reduced the osteogenic differentiation ability of mBMSCs. Collectively, RIOK3 may affect the differentiation of mBMSCs and participate in the pathogenesis of AS, especially pathological bone formation.


Subject(s)
Mesenchymal Stem Cells , Spondylitis, Ankylosing , Animals , Humans , Mice , Cell Differentiation , Cells, Cultured , Leukocytes, Mononuclear/metabolism , Mesenchymal Stem Cells/metabolism , Osteogenesis/genetics , Spondylitis, Ankylosing/genetics , Spondylitis, Ankylosing/metabolism , Spondylitis, Ankylosing/pathology
10.
Clin Immunol ; 253: 109678, 2023 08.
Article in English | MEDLINE | ID: mdl-37315680

ABSTRACT

C2 is an attractive therapeutic target for many complement-mediated diseases. We developed Nab1B10, a new anti-C2 nanobody that potently and selectively inhibits both the classical and lectin pathways of complement activation. Mechanistically, Nab1B10 binds to the C2a portion of C2 and inhibits the assembly of C3 convertase C4b2a. Nab1B10 cross-reacts with monkey but not rodent C2 and inhibits classical pathway-mediated hemolysis. Using a new complement humanized mouse model of autoimmune hemolytic anemia (AIHA), we demonstrated that Nab1B10 abolished classical pathway complement activation-mediated hemolysis in vivo. We also developed C2-neutralizing bi- and tetra-valent antibodies based on Nab1B10 and found these antibodies significantly more potent than the other anti-C2 monoclonal antibody that is already in clinical trials. These data suggest that these novel C2-neutralizing nanobodies could be further developed as new therapeutics for many complement-mediated diseases, in which pathogenesis is dependent on the classical and/or lectin pathway of complement activation.


Subject(s)
Anemia, Hemolytic, Autoimmune , Complement C2 , Mice , Animals , Complement C2/metabolism , Hemolysis , Complement Activation , Complement Inactivating Agents
11.
BMC Cancer ; 23(1): 496, 2023 Jun 01.
Article in English | MEDLINE | ID: mdl-37264319

ABSTRACT

BACKGROUND: Numerous studies have demonstrated that the high-order features (HOFs) of blood test data can be used to predict the prognosis of patients with different types of cancer. Although the majority of blood HOFs can be divided into inflammatory or nutritional markers, there are still numerous that have not been classified correctly, with the same feature being named differently. It is an urgent need to reclassify the blood HOFs and comprehensively assess their potential for cancer prognosis. METHODS: Initially, a review of existing literature was conducted to identify the high-order features (HOFs) and classify them based on their calculation method. Subsequently, a cohort of patients diagnosed with non-small cell lung cancer (NSCLC) was established, and their clinical information prior to treatment was collected, including low-order features (LOFs) obtained from routine blood tests. The HOFs were then computed and their associations with clinical features were examined. Using the LOF and HOF data sets, a deep learning algorithm called DeepSurv was utilized to predict the prognostic risk values. The effectiveness of each data set's prediction was evaluated using the decision curve analysis (DCA). Finally, a prognostic model in the form of a nomogram was developed, and its accuracy was assessed using the calibration curve. RESULTS: From 1210 documents, over 160 blood HOFs were obtained, arranged into 110, and divided into three distinct categories: 76 proportional features, 6 composition features, and 28 scoring features. Correlation analysis did not reveal a strong association between blood features and clinical features; however, the risk value predicted by the DeepSurv LOF- and HOF-models is significantly linked to the stage. Results from DCA showed that the HOF model was superior to the LOF model in terms of prediction, and that the risk value predicted by the blood data model could be employed as a complementary factor to enhance the prognosis of patients. A nomograph was created with a C-index value of 0.74, which is capable of providing a reasonably accurate prediction of 1-year and 3-year overall survival for patients. CONCLUSIONS: This research initially explored the categorization and nomenclature of blood HOF, and proved its potential in lung cancer prognosis.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , Prognosis , Nomograms , Hematologic Tests
12.
J Ultrasound Med ; 42(3): 675-685, 2023 Feb.
Article in English | MEDLINE | ID: mdl-35880406

ABSTRACT

OBJECTIVES: To evaluate the individual and combined performances of the Ovarian-adnexal Reporting and Data System Ultrasound (O-RADS US) and serum cancer antigen 125 (CA-125) in assessing adnexal malignancy risk in women with different menopausal status. METHODS: This retrospective study included patients with adnexal masses scheduled for surgery based on their preoperative US and histopathology results between January 2018 and January 2020. O-RADS were used to assess adnexal malignancy by two experienced radiologists. The area under the receiver operating characteristic curves (AUCs) were used to compare the accuracy of O-RADS and a combination of O-RADS and CA-125. The weighted κ index was used to evaluate the inter-reviewer agreement. RESULTS: Overall, the data of 443 lesions in 443 patients were included, involving 312 benign lesions and 131 malignant lesions. There were 361 premenopausal and 82 postmenopausal patients. The inter-reviewer agreement for the two radiologists was very good (weighted κ: 0.833). Combing O-RADS US and CA-125 significantly increased diagnostic accuracy for classifying malignant from benign adnexal masses, compared with O-RADS US alone (AUC: 0.97 vs 0.95, P < .001 for premenopausal population and AUC: 0.93 vs 0.85, P < .001 for postmenopausal population). The AUCs of O-RADS with and without CA-125 ranged from 0.50 to 0.99 for different adnexal pathology subtypes (ie, benign, borderline, Stage I-IV, and metastatic tumors). CONCLUSION: The addition of CA-125 helps improve discrimination of O-RADS US between benign and malignant adnexal masses, especially in postmenopausal women.


Subject(s)
Adnexal Diseases , Neoplasms , Ovarian Neoplasms , Female , Humans , Retrospective Studies , CA-125 Antigen , Ovary/pathology , Adnexal Diseases/diagnostic imaging , Premenopause , Ovarian Neoplasms/diagnostic imaging , Ultrasonography/methods , Sensitivity and Specificity
13.
Arch Gynecol Obstet ; 308(2): 631-637, 2023 08.
Article in English | MEDLINE | ID: mdl-35994107

ABSTRACT

PURPOSE: To investigate the predictive performance and reproducibility of Ovarian-Adnexal Reporting and Data System (O-RADS) ultrasound (US) system in evaluating adnexal masses between sonologists with varying levels of expertise. METHODS: This was a single-center retrospective study conducted between May 2019 and May 2020, which included 147 adnexal mases with pathological results. Four sonologists with varying experiences independently assigned an O-RADS US category to each adnexal mass twice. The intra- and inter-observer agreement was assessed using weighted kappa values. The area under the curve (AUC), sensitivity, specificity, positive and negative predictive value (PPV and NPV) were assessed for each sonologist. RESULTS: Of the 147 adnexal mases, 115 (78.2%) lesions were benign and 32 (21.8%) lesions were malignant. Considering O-RADS > 3 as a predictor for adnexal malignancy, the predictive accuracies of the four sonologists were excellent, with AUCs ranging from 0.831 to 0.926. The predictive accuracies of O-RADS US by experienced sonologists were significantly higher compared to inexperienced sonologists (all P values < 0.005). The O-RADS US presented high sensitivity and NPV value for each sonologist. With regard to the reproducibility of O-RADS, the intra- and inter-observer agreement among experienced sonologists performed better than inexperienced sonologists. CONCLUSION: O-RADS showed difference in the predictive accuracy and reproducibility in the evaluation of adnexal masses among sonologists with different levels of expertise. Training is required for inexperienced sonologists before the generalization of O-RADS classification system in clinical practice.


Subject(s)
Adnexal Diseases , Female , Humans , Ultrasonography/methods , Retrospective Studies , Reproducibility of Results , Sensitivity and Specificity , Adnexal Diseases/diagnostic imaging
14.
Chem Biodivers ; 20(4): e202300085, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36898981

ABSTRACT

Cardiovascular diseases (CVDs) are a major global health concern, and oxidative stress is known to play a central role in their pathogenesis. The identification of new agents capable of inhibiting oxidative stress presents a promising strategy for preventing and treating CVDs. Natural products and their derivatives offer a valuable source for drug discovery, and isosteviol, a readily available natural product, is known to exhibit cardioprotective effects. In this study, 22 new D-ring modified isosteviol derivatives were synthesized and evaluated for their cardioprotective effect in vivo using the zebrafish cardiomyopathy model. The findings revealed that derivative 4e exhibited the most potent cardioprotective effect, surpassing its parent compound isosteviol and the positive drug levosimendan. At 1 µM, derivative 4e significantly protected the cardiomyocytes from injury, while at 10 µM it effectively maintained normal heart phenotypes, preventing cardiac dysfunction in zebrafish. Further investigation demonstrated that 4e protected cardiomyocytes from oxidative stress-induced damage by inhibiting reactive oxygen species overaccumulation, activating superoxide dismutase 2 expression, and enhancing the endogenous antioxidant defense system. These results suggest that isosteviol derivatives, particularly 4e, have the potential to serve as a novel class of cardioprotective agents for the prevention and treatment of CVDs.


Subject(s)
Cardiotonic Agents , Diterpenes, Kaurane , Oxidative Stress , Animals , Cardiotonic Agents/pharmacology , Cardiotonic Agents/therapeutic use , Diterpenes, Kaurane/pharmacology , Diterpenes, Kaurane/therapeutic use , Oxidative Stress/drug effects , Zebrafish
15.
Development ; 146(3)2019 02 01.
Article in English | MEDLINE | ID: mdl-30658986

ABSTRACT

A distinct taxon of the Drosophila microbiota, Lactobacillus plantarum, is capable of stimulating the generation of reactive oxygen species (ROS) within cells, and inducing epithelial cell proliferation. Here, we show that microbial-induced ROS generation within Drosophila larval stem cell compartments exhibits a distinct spatial distribution. Lactobacilli-induced ROS is strictly excluded from defined midgut compartments that harbor adult midgut progenitor (AMP) cells, forming a functional 'ROS sheltered zone' (RSZ). The RSZ is undiscernible in germ-free larvae, but forms following monocolonization with L. plantarumL. plantarum is a strong activator of the ROS-sensitive CncC/Nrf2 signaling pathway within enterocytes. Enterocyte-specific activation of CncC stimulated the proliferation of AMPs, which demonstrates that pro-proliferative signals are transduced from enterocytes to AMPs. Mechanistically, we show that the cytokine Upd2 is expressed in the gut following L. plantarum colonization in a CncC-dependent fashion, and may function in lactobacilli-induced AMP proliferation and intestinal tissue growth and development.


Subject(s)
Gastrointestinal Microbiome/physiology , Lactobacillus plantarum/growth & development , Reactive Oxygen Species/metabolism , Signal Transduction/physiology , Stem Cell Niche/physiology , Stem Cells/metabolism , Animals , Drosophila melanogaster , Enterocytes/cytology , Enterocytes/metabolism , Oxidation-Reduction , Stem Cells/cytology
16.
Anal Biochem ; 639: 114511, 2022 02 15.
Article in English | MEDLINE | ID: mdl-34883070

ABSTRACT

Huanglongbing (HLB), a devastating disease for citrus worldwide, is caused by Candidatus Liberibacter asiaticus (CLas). In this study, we employed a novel extractive electrospray ionization-mass spectrometry (EESI-MS) method to analyze the metabolites in leaves of uninfected and HLB-infected Newhall navel orange. The results showed that uninfected and HLB-infected leaves could be readily distinguished based on EESI-MS combined by multivariable analysis. Nine phenolic compounds involved in phenylpropanoid pathway, such as p-coumaric acid, naringin, and apigenin, were principal components to distinguish the leaves of uninfected and HLB-infected Newhall navel orange. Gene expression was also conducted to further explore the molecular mechanism of phenylpropanoid branch pathway in HLB. The expression of genes (4CL, HCT, CHI, CHS, CYP, and C12R) involved in phenylpropanoid branch pathway was increased in asymptomatic and early period of HLB-infected leaves, while decreased in later period of HLB-infected leaves. This study provides a novel method for early detection of citrus HLB and suggests the regulation mechanism of phenylpropanoid pathway in the interaction between citrus and CLas.


Subject(s)
Citrus/microbiology , Liberibacter/physiology , Plant Diseases/microbiology , Citrus/metabolism , Metabolic Networks and Pathways , Phenols/metabolism , Spectrometry, Mass, Electrospray Ionization
17.
Virol J ; 19(1): 184, 2022 11 12.
Article in English | MEDLINE | ID: mdl-36371169

ABSTRACT

Rabies is a lethal zoonotic disease that is mainly caused by the rabies virus (RABV). Although effective vaccines have long existed, current vaccines take both time and cost to produce. Messenger RNA (mRNA) technology is an emergent vaccine platform that supports rapid vaccine development on a large scale. Here, an optimized mRNA vaccine construct (LVRNA001) expressing rabies virus glycoprotein (RABV-G) was developed in vitro and then evaluated in vivo for its immunogenicity and protective capacity in mice and dogs. LVRNA001 induced neutralizing antibody production and a strong Th1 cellular immune response in mice. In both mice and dogs, LVRNA001 provided protection against challenge with 50-fold lethal dose 50 (LD50) of RABV. With regards to protective efficiency, an extended dosing interval (14 days) induced greater antibody production than 3- or 7-day intervals in mice. Finally, post-exposure immunization against RABV was performed to evaluate the survival rates of dogs receiving two 25 µg doses of LVRNA001 vs. five doses of inactivated vaccine over the course of three months. Survival rate in the LVRNA001 group was 100%, whereas survival rate in the inactivated vaccine control group was only 33.33%. In conclusion, these results demonstrated that LVRNA001 induced strong protective immune responses in mice and dogs, which provides a new and promising prophylactic strategy for rabies.


Subject(s)
Rabies Vaccines , Rabies virus , Rabies , Dogs , Mice , Animals , Rabies Vaccines/genetics , RNA, Messenger , Antibodies, Viral , Rabies virus/genetics , Vaccines, Inactivated , Antibody Formation , mRNA Vaccines
18.
J Nat Prod ; 85(8): 1945-1958, 2022 08 26.
Article in English | MEDLINE | ID: mdl-35943432

ABSTRACT

Steviol is an ent-kaurene diterpenoid with interesting pharmacological activity. Several steviol derivatives with an exo-methylene cyclopentanone unit were discovered as potent antitumor agents. However, their poor selectivity for tumor cells relative to normal cells reduces their prospects as potential anticancer drugs. In this study, based on previous work, 32 steviol derivatives, including 28 new analogues, were synthesized. Their cytotoxicity against tumor cells and normal cells was evaluated. Several new derivatives, such as 7a, 7h, and 8f, with improved cytotoxic selectivity and antiproliferative activity were obtained, and the structure-activity relationship correlations were investigated. The new compound 8f displayed potent antiproliferative activity against Huh7 cells (IC50 = 2.6 µM) and very weak cytotoxicity against the corresponding normal cells HHL5 (IC50 = 97.0 µM). Further investigation showed that 8f arrested the cell cycle at the G0/G1 phase and caused reactive oxygen species overproduction, decreased mitochondrial membrane potential, and induced apoptosis of Huh7 cells through inhibition of the PI3K/Akt/mTOR and NF-κB pathway as well as upregulation of Bax/Bcl-2 ratio. The present study suggested that 8f is a promising lead compound for new cancer therapies, and the results presented herein may encourage the further modification of steviol for additional derivatives with enhanced efficacy and selectivity.


Subject(s)
Antineoplastic Agents , Diterpenes, Kaurane , Antineoplastic Agents/pharmacology , Apoptosis , Cell Line, Tumor , Cell Proliferation , Diterpenes, Kaurane/pharmacology , Drug Screening Assays, Antitumor , Molecular Structure , Phosphatidylinositol 3-Kinases , Structure-Activity Relationship
19.
Bioorg Chem ; 129: 106142, 2022 12.
Article in English | MEDLINE | ID: mdl-36150232

ABSTRACT

Cardiovascular diseases (CVDs) remain the leading cause of death globally. Inhibiting ferroptosis and thus preventing cardiac cell death is a promising and effective strategy for cardiomyopathy prevention and therapy. Steviol, an ent-kaurene diterpenoid, possesses broad-spectrum bioactivity. In the present study, with the aim to discover new agents for CVDs treatment, 30 derivatives of steviol, including 22 new ones, were synthesized, and evaluated their protective activity in vivo using the doxorubicin (DOX) induced zebrafish cardiomyopathy model. Our results firstly demonstrated that steviol has promising cardioprotective activity and further modification of steviol can greatly improve the activity. Among the new derivatives, 16d and 16e show the most potent activity. Both 16d (1 µM) and 16e (0.1 µM) effectively maintain the normal heart shape and prevent the cardiac dysfunction impaired by DOX in zebrafish. Their therapeutic efficacy is much superior to the parent natural product, steviol, and positive drug, levosimendan. Further study demonstrated that 16d and 16e inhibit DOX-induced ferroptosis and thus protect cardiomyopathy, by suppressing the glutathione depletion, iron accumulation, and lipid peroxidation, decreasing reactive oxygen species overaccumulation, and restoring the mitochondrial membrane potential. Consequently, due to their unique structure and significant cardioprotective activity with ferroptosis inhibition, new steviol derivatives 16d and 16e merit further research for the development of new cardioprotective drug candidates.


Subject(s)
Cardiomyopathies , Diterpenes, Kaurane , Ferroptosis , Animals , Zebrafish , Diterpenes, Kaurane/pharmacology , Diterpenes, Kaurane/therapeutic use , Doxorubicin/pharmacology , Cardiomyopathies/chemically induced , Cardiomyopathies/drug therapy , Cardiomyopathies/prevention & control
20.
Int J Mol Sci ; 23(16)2022 Aug 09.
Article in English | MEDLINE | ID: mdl-36012099

ABSTRACT

An effective method was developed to improve the interfacial interaction between Mutiwalled carbon nanotubes (MWCNTs) and epoxy matrix. The performance of thermal conductivity and strength of the epoxy vitrimer were enhanced by polydopamine (PDA) coating. Polydopamine is a commonly used photothermal agent, which of course, was effective in modifying MWCNTs used in photoresponsive epoxy resin. The surface temperature of the epoxy composite with 3% MWCNTs@PDA fillers added increased from room temperature to 215 °C in 48 s. The metal-catechol coordination interactions formed between the catechol groups of PDA and Zn2+ accelerated the stress relaxation of epoxy vitrimer. Moreover, the shape memory, repairing, and recycling of epoxy vitrimer were investigated. Therefore, dopamine coating is a multifunctional approach to enhance the performance of epoxy vitrimer.


Subject(s)
Epoxy Resins , Nanotubes, Carbon , Catechols , Thermal Conductivity
SELECTION OF CITATIONS
SEARCH DETAIL